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Abstract

We obtain estimates for the distribution of values of functions iu the

weighted BM Oy spaces, BM O};;(R), that let us find equivalent norms. It is

- also obtained that a suitable redefinition of the Hilbert transform is a bounded

operator from these spaces into themselves. This is achieved for a certain
class of weights w.

1 Introduction.

A non negative function w defined on R is called a weight if it is locally integrable.
We denote by |I| the Lebesgue measure of I and w(I) = [w(z)dz. The letter C
I

denotes a constant, not necessarily the same at-each occurrence. A weight is'said to
belong to the class A,, 1 < p < oo, if there exists a constant C such that

p—1

%/w(z)dx ’_}I/w(z)—l’—}ldx <C

I I

for every interval I C R. The class A; is defined replacing the above inequality by

1 ‘

— < 1 .

7] /w(:r) dr < Cess[mfw
I

On the other hand w is said to belong to A if there exist o and G such that
0 < @, < 1 and for every interval I and every measurable subset F of I, fwd:r <
5 ‘

B [ wdz holds whenever |E| < o|I|. The statement that w € Ao is equivalent to
1

w € A, for some p. A proof of these facts may be found at [1].
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A weight is said to satisfy a doubling condition if there exists a constant C' such
that
w(2l) < Cw(I)

for every interval I C R. As it is easy to check any weight in A, satisfies a doubling
condition.

Now let us introduce the main function spaces which concern us in this work. Let
¢ : Rt - R* be a non-decreasing function satisfying the A, Orlicz’s condition
#(2r) < Co(r) for some positive constant C' and every r > 0.

Definition 1.1 Let f be a locally integrable function on R. We say that f belongs
to BMOY(R) if there ezists a constant C such that

1
m}/“(r)—fﬂdzéc (1)

for every finite interval I C R. Here f; denotes the average of f over the interval
I, e,

1
fi= / f(@)d.

The smallest constant C satisfying (1) will be denoted by || f|| and it defines a norm
in BMO$(R). In case that (1) only holds for those I lying in some fixed interval
Iy, not necessarily of finite measure, we say that f belongs to BMO;;’(IO). In that
case, the smallest constant C satisfying the inequality will be called ||f]|;,. We
note that if ¢ = 1 the space BMOY coincides with the space BMO(w) defined by
Muckei.houpt and Wheeden in [5].

We now introduce a class of weights which appears in connection with the bound-
edness of the Hilbert transform on the BM Oy’ spaces.

Definition 1.2 Let w be a weight. We say that w € H($,00) if there ezists a
constant C' such that

7] / w(y)é (|70 ; de? < C"U(I)
¢ (1) |20 =y 1]

R-I
for every finite interval I C R, where xy denotes the center of I.

In the previous definitions we have not imposed any constraints on the growth of ¢.
It is known that if w = 1 and #(t) = t#, with 8 > 1, the unique functions belonging
to BMOy are the constant ones. In the weighted case, the spaces BM Oy may be
non-trivial for such functions ¢: that depends on the weight w. In fact, there are
examples showing this situation. However, it may be proved that if the function %(gt—)
is still increasing then BM Oy is trivial for every weight w.
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Similar considerations hold for the classes H(¢,c0). In other words, if ¢ increases

—t-j—) is non-decreasing, the only weight belonging to the class is

w = 0. We can also point out that if ¢(t) grows faster than t (let us say ﬂt-tl is
non-decreasing) but slower than ¢?, then the class H(¢,c0) is non-trivial, although
the weight w = 1 does not belong to it.

Finally, though we will not impose additional restrictions on the functions ¢ in the
statement of the theorems, it is clear that they become trivial when ¢ increases
faster than ¢2.

We present now a pair of lemmas that will be necessary later. See [5] for a proof of
the following lemma.

in such a way that

Lemma 1.1 Let1<p< oo and ! + =1. Ifwé€ A, there ezists a constant C
such that

w({zel: ) < ﬁ} ————|I| ! (I)
T w(x 0 w
for every interval I and every 5 > 0.

Lemma 1.2 is quite similar to Lemma (4.7) in [4], which has been adapted to this
context.

Lemma 1.2 Let w be a weight satisfying a doubling condition. If f € BMO};(R)
then there exists a constant C such that

for every interval I C R, where xy is the center of I.

Proof. Given an interval I = I(zg,R) let I; = I(zo,2'R). Using that f €
BMOY(R), we have

V) = sl i J ~fil,

ro ot 7 - oo P
R-1 T2 RL |zo—y|<2 IR
(o ¢] 1 N
<> mm [ W)~ fildy
7=0 [j_H_[.

[ee]

oy 2 /|f ~ Fildy

=0

IN
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g-j It
<Cm1§:|+n

> SEIORIAT

<CU1WUH§:2J§:JLE&&Q

k=0 ||
—cuiwun§22k3ﬂ%{wﬂ
<muu/ ety

The last inequality is a result of using the properties of ¢, the doubling condition
for w and the following relations

w(y)¢ Imo —y) % w(y)é (|zo — y|)
/ |$0 - y|2 Z / |~’C0 - y|2 dy

R—I k=0gk R<|zo—y|<2k+1R

(I
> ClI|™ ZTM&’CTI)W(IHI - Ii)
k=0

> oI Zz-m( I
k=0

which completes the proof. O

2 Behavior of the distribution function and equiva-
lent norms

Let f € BMOY(Ip). The question is: how does the distribution function w({z €
I:|f(z) — frlw™(z) > a}), for @ > 0 and I C I, behave? An answer is given
in [5] for the case ¢ = 1 and it may be used in our case. The result obtained by
Muckenhoupt and Wheeden is the following theorem:

Theorem. Let f be of bounded mean oscillation with weight w on Iy, that is

/\f-f,{dxgc/wdz; f,:llTlffdz, Ic I
1 I 1

a) If w € Ay, there are positive constants ¢, and co such that
w{z € I:1f(@) - filw™ (@) > a}) < cre™w(l)

Rev. Un. Mat. Argentina, Vol. 44-1



WEIGHTED BMO¢y SPACES AND THE HILBERT TRANSFORM 5

fora>0and I C Iy.
b) Ifwe Ay, 1 <p<ooand :—) + r% =1, there is a constant cg such that

w({z € I:1f(z) = filw™(z) > a}) < e3 (1 + )" w(I)
fora>0 and I C I. .
If we denote by [f], = sup f |f(z) — frldz, a careful look at the proof shows

that in the case [f];, < 1 the constants in the above estimates depend only on the

A; or A, condition for the weight w and not on f neither on the interval ;. From

this, the general case follows, as usual, taking g = [—f{!— Therefore a) and b) can be
0

written as ‘
a') If w € Ay, there exist positive constants A and B such that

wi{z € I+ |f(z) - filw™(z) > a}) < Ae” T w(1)

fora>0and I C I.
V) Ifwe Ay, 1 <p<ooand —;1; + ;% =1, there is a positive constant D such that

’

w({z € I+ 1£(2) = frlw ) > a}) < D (1 " [—f‘]“—) )

fora>0and I C I.
To estimate the distribution function for f € BMOY (o) let us take a finite interval
I C Iy, then BMO}Y(Io) € BMOY(I), and the inclusion is a continuous operator,

in fact, ||| < ||f||10
Since by definition we have

1
ST / (@) = fildz < |1f1In,

for all I C I, the fact that ¢ is an increasing function implies

(17 < SUIDIAIr-

Therefore, combining inequalities we may write

[f17 < SN 1o
for f € BMOY (1) and for all I C Io. Finally noting that h(z) = e”>,¢ > 0, is an
increasing function of z we may apply a') and use the previous inequality to obtain
for f € BMOY(ly) and w € A,

w({z € I+ |f(2) - filw™'(x) > a}) < Ae” T “w(F)

- B a _
SAG dUIDISfN 1, ’lU(I)
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forall @ > 0 and I C Ip. Also, having that the function g(z) = (1+ g)_pl with
¢ >0 and p’ > 0 is also increasing we may use b') forw € A4,,1 < p < oo, to get

/

¢<|f'\>||f||10> wid)

w{z € I+ |f(z) - filw(z) > a}) < D (1 +

for all & > 0 and I C I,.

So we have achieved our goal of knowing the behavior of the distribution function
for f € BMOY(Ip). Next theorem clearly states this result and gives in addition a
hint on an alternative way to prove it. Moreover, it shows that the condition on the
distribution of values is not only necessary but also sufficient for an f to belong to
BMOY (Iy).

Theorem 2.1 Let f € BMOY(Iy), i.e., there exists a constant C such that

. ‘
m/“(@—fﬁdmic (2)

for every interval I C Iy. Then
a) If w € Ay, there exist positive constants A and B such that

w{z e I:1f - filw™(z) > a}) < A" Ty (1) 3)

foraa> 0 and I C I,.
b)Ifwe Ay 1<p<ooand 1-11 + z% = 1, there is a positive constant D such that

w{z €I:|f - filw(z)>a}) <D (1 + Wl—%m>_ w(l) (4)

fora>0and I C I.
Conversely if w € Ay and there exist positive constants A and C such that

wi{z € I:1f - filu™ (2) > a}) < Ae T (1) (5)

fora>0and I C I, then f € BMOY(Iy). On the other hand, if w € A,, 1 <p <
oo and there is a positive constant C' such that )

wllz e I51f = flum@) > ) <0 (14 50)  wlh) (6)

fora>0and I C I, then f € BMOY(Iy).
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Proof. That the condition f € BMOY(Iy) implies (3) and (4) has been proved by
the argument given above. This may also be shown following the steps of the proof
in [5] but changing the definition of the function A(a, I) there by

Mey 1) =w({z € I:1f(2) = filw™(z) > ag(|I)}).

Then the same arguments can be carried out leading us to the required estimates.
Conversely, if w € A; and f satisfies (5) we have

|f = frldz = [ |f — filw™ wdz
[ =i [ g

:/w({IEIi|f_fl|w_1 > a})da

0
0

< Aw(I / ¢(m)

0

< Cuw(D)e (1),

where C' = 4. Therefore f € BMOY (I).
Similarly, if w € A, and f satisfies (6)

/|f—f,|dm= /w({z el:|f - frlw! > a))da
I 0

[e ]

pun) [ ( |1|>) plf(ﬁl)

0

< C'w(D)e (I11),

We conclude that f € BMOY(Iy) which completes the proof of the theorem.O

The characterization of the distribution function of the elements in BM O} given in
the previous theorem allows us to introduce some equivalent norms.

Theorem 2.2 Let 1 < p < oo andw € A,. Then f € BMOY(Iy) if and only if
there exists a constant C, such that

( / 1 = filrw T dz)r < Cog (1) (w(T)V" (7)
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for every I C Iy and every r such that 1 < r < p’ andr < co. For every fized r

satisfying these conditions the infimum constant C, defines an equivalent norm in
BMOY(Ip).

Proof. Suppose that f satisfies (7) for some 7, 1 < r < co. Then, by Holder’s
inequality

/|f f1|d$—/|f frlw T ws dz

< / | = folrwt ™ dz)V (w (D)

< Craﬁ(lll)(w( )T
= Cr o (|11) w(I).

Therefore, f € BMOY(lp). Conversely, let us suppose that f € BMOY(ly).
Then, if 0 <7 < oo

/ \f — filrw! T dz = / (If = frlw™ ) wds
I

~

_ r/a’_lw({z €1:|f(z) - filw™(z) > a})da

If w € Ay, using Theorem 2.1 and denoting C' = ||f]|1,, we have

[e0]

/|f — fr|"w'"dz < Arw([)/of‘le‘ﬁﬁ“da
I

0
00

= Arw(I)/aTeW(l?)c“d—a

a

r ——Bt@

=Arw(l /t¢ |[IHC

=Arw()¢" (|I])C /t’ te=Bldt
0

= Ar|[f117,6" (I1T]) w(I).

1/r
(/ |f - le’wl_rdz) < AIflld (1) (w(D))".

Therefore
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Now if w € A,,1 < p < oo, using part b) of Theorem 2.1, we have

’

1 i - 1
— fil'w'dz < rD g
/'f e < el /< Temm) o

oo
tr—l

= DA (1) i) | st
0
= Di||flI7,4" (1) w(I),
since p' > r. Raising to the power 1/r both sides of the inequality we obtain (7).0
The result presented in the following corollary will be useful later.

Corollary 2.1 Let1 <p < oo andw € A,. If f € BMOY(R) then there ezists a
number ¢ > 1 such that f € L] (R). Moreover, for any finite interval I we have

1 11zatry < CUAISUTw (D[

Proof. Since w € A,, it satisfies a reverse Holder inequality, i.e., there exists 8 > 1,
depending only on p and on the A, constant for w, such that, for every interval I

1/8
1
m/wﬂdm < %/w(z)dm
1 I

with a constant C' not depending on I (see [2]) Next let us choose ¢ > 1 and s >'1
such that 1 < ¢gs < p’ and 95{‘—11 < B. So the reverse Holder inequality also holds for
9:_;11. Using the.previous theorem, we will have

/ £ 11da) = / [Flw ) e
< (/ |f|qsw1—qsdz)l/qs</w(qss_l)s'dm)l/qs’
T 2

I

= ([ 1f1ewt-ran) /o [ witan) S
I

I
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< Gl ) (7 / W ) S
< CIAIB( (D)) 1/‘“]”3—;|I|11__(w(1))1'q%

= ClIF (I w(T)If3~"

for any fixed interval I C R, and we obtain the desired result. O

3 Hilbert Transform

Let f be a measurable function in R. We define the operator

. 1 X
i =t [+ 22 s
|z—y|>e

where X (y) is the characteristic function of |y| > 1, provided the limit exists for
almost every x. We denote by H f the Hilbert transform, i.e.,

Hf(z)zlim/ !

€0+ T—y
|z—y|>e

f(y)dy.

It is easy to see that if Hf and Hf both exist for almost every z then they differ
by a constant. This is the case if, for example, f € LP, 1 < p < co. However Hf
may exist while H f may not. As we will see later this happens, for example, when
f is a constant function.

It is known that the Hilbert transform Hf is bounded in L? if and only if w €
Ay, 1< p < oo[3]. Moreover, for the case p = oo it is shown in [5] that the operator
M previously defined is bounded from L ®(w™') = {f : || fw™!||, < ¢} in BMO(w)
if and only if w € H(1,00) N As. The next theorem shows that H f is well defined
for f € BMOY,w € H(¢,00) N Ay and that it is also a bounded. operator. In
particular, if = 1 we have an extension of Muckenhoupt and Wheeden’s result,
since L®(w™!) C BMO(w).

Theorem 3.1 Let f € BMOY¥(R). If w € Ay N H(¢,00) then there ezists a
constant C such that

m / 17 () = (Hf)ildz < C|If|| for every I C R,

i.e., Hf is a bounded operator from BMO®(R) into itself.
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Proof. To prove that the Hilbert transform is well defined over BM Oy we will
show first that if C is a constant then HC = 0. We only need to prove this for

C =1. Inthat case we have
1 X
H1(z) = lim / <— + ﬂ) dy.
€—0 -y Y
|z—y|>e

Note that

1 X

=0 R— oo — y
C |z—yl>e

In fact, if € and R are fixed numbers such that 0 < € < R, then

/- ! dy = 0.
r—Yy

R>|z—y|>e

Also, if |z| > 1, considering R > 2|z| and e sufficiently small, we have

|z|+R
1 1 1
—dy=sg(z / —-dy — / —dy
/ Yy 8 (@) Y Y
R>|z-y|>e R—|z| lz—y|<e

[y[>1

.=:t(1n(|x|+R)—ln(R—|:1:|))— / id%

|z—y|<e

therefore, the first term tends to zero if R — oo and the second tends to zero-if

e —0.
When |z| < 1 and R > 2 we only have the first term and taking lim we ob

R—o0

result. )
On the other hand, it is easy to see that

[ 2

_|._
rT—y
|z—y|>e
+

[ == [ el [

lz—y|>e lz—yl|>e lz—y|>e
lvl<1 tyl>1

dy < o0.

In fact

L AW

It is easy to check that the first term is finite. Also

tain the
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1 1 T
/ +—’dy: / —Ldy—l— / + —|dy
T—y Y lz — yllyl lz—y vy
lz—y|>e . |z—y|>e |z—y|>e
ly[>1 [y|>2|z| 2|z|>|y|>1
ly|>1
1 1 o1
<clz| / —dy + / ( I —| ) dy,
|y T—y| |y
ly|>2|z| 3lz|>|z—y[>e
2|z|>]yl>1

and this shows that both terms are finite. Using Lebesgue’s dominated convergence
theorem, from (8) we obtain H1 = 0, as stated.

In order to see that Hf(z) is finite almost everywhere we may write Hf(z) =
H(f — fi)(z). Let z € I = (—R,R) and R > 1/2. Then

nu-me=tn [ (75+X2) gw-
lz—y|>e

—in [ (5 D) o) - e+

e—0
|z—y|>e
ly|>2R
: 1 x(y)
1 X\Y) _
win [ (=2 ) - pyay
|z—y|>e
ly|<2R

=Ti(z) + Tr(z).

For the first term note that |z — y| > |y| — |z| > |y| = R > |y| /2, so using Lemma
1.2 and the fact that w € H(¢, c0), we have for z € I

m‘lf(y)—fﬂ dy

|z—y|>e
|ly|>2R
< 2R / |f(y) ;flldy
ly|
ly|>2R
<on If(yl) - il g,
lyI>R
< 2Re|f] W(y)qﬁz(lyl)dy
ly|>R |3/|

<cl|lfllwDe (1)) 1|7
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On the other hand

ne =ty [ G-y [ L,

e—0 r—Yy
lz—y|>e lz—y|>e
lyl<2R 2R>|y|>1

From Corollary 2.1 we know that there exists a number ¢ > 1 such that f(y) — f; €

L} .. Since Hg(z) is finite for almost every z when g € LY, considering g(y) =
X(-2r2r)(y) (f(y) — fr) we conclude that the first term is finite a.e. The absolute
value of the second term is bounded by

|f(y)——mdy < / |f(y) = frldy < oo,
|yl

2R>|y|>1 ly|<2R

because f(y) — f1 € L},.. We have shown then that # f(z) is finite for almost every
x € I. Letting R — oo our claim is completely proved.

To get the norm estimate let I be any finite interval. Since HC = 0 when C is
constant, we have that

Hf(z) =H(f - f1)(2)

Let g(z) = (f — f1)(z). Then Hf(z) = Hg(z). i
If I =2I, we put g = g1 + go, with g1 = gA7 and g2 = gX|5c where (I)¢ denotes

the complement of I. Then

/ (M () — (HF)1]de = / Hg(z) — (Hg)ild

< / (Har(z) — (Hgn)rldz + / [Hg(z) — (Hga);|de

I I
=L+

Since w € Ao and BMO? (R), using Corollary 2.1 we obtain that there exists ¢ > 1
such that f € L] (R) and therefore g; € LY(R). Then we have that Hg, = Hg; +C
and so

/ Mo (z) — (Man)ilde = / \Hoy(z) - (Hgr)1lda

I

I
<2 [ |H@)ldz

Now, using Holder’s inequality and the fact that the operator H is of strong type
(¢,q) for ¢ > 1, we have
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/WHmcwuxs</ﬂny@de“ﬂn”W
I I

sgﬂHmmeWmW
R

sa/mwwmwwww

Let us estimate ||g1]l po(40) = (I |f — fr]9dz)/a.
I

(/Wf—ﬁWMPMsg/u—f#mmm+p/uy—ﬁWMV“
T T T
= 2||f||Lq(7) + A,
= A, + A,.

Corollary 2.1 gives us a bound for A;. Now, let us estimate A,.

1/q

Ay = / \fr — filtda
T

= C|fr — f|I]Me
1 ~
SCHL/V—ﬁMﬂHW
I

1
scﬁl/u—fwquq
T

< Cw@)e(ITNIIV £

We have used the fact that f € BMOY(R) in the last inequality.
Therefore

Ay + Ay < Cflle(ThwDITT < ClIflle () w(D)|1]e™

where we used the doubling condition for w. Finally,

‘/YHgdw)—(Hgﬂﬂdxs<?HfH¢UIDuwl)
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Now, we will estimate I using Lemma 1.2 and the fact that w € H(¢, 00). Let
denote the center of I and put R = J_l then we have

1 1

T—y z2-Y

Haalz) — Han(2)] = / (

|z — =
Tyl =1l |92(y)| dy
Ic

Slz_xl / ||f_—f1|dy

z —yllz -yl
|zo-y|>2R

If = fil
s el / |zo — y|2dy

lzo—y|>R

<oy [ el i,
[0-y[>R |

= C|I|7'¢ (1) w(DII
Therefore

[Hga(z) = Haa(2)| < CHI7 ¢ (1) w(D)]I£] 9)

when z,z € I. But since

/ngz - (Hg2) |dm—/|7{g2 I]|/ng z)dz|dz
/||]|/7{92 m/%gg(z)dzIdx
/ H / (Hon(+) — Hoal2))dzlda

< m[/l/ngz(z) — Hgo(2)|dzdz,

using (9) we have

/ (Hoa(z) — (Hgo)ildz < TP (1) w(D)| I

1|
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that is to say
[ 1Haa(e) = (agnhilda < € o (D w1
I

Putting together the estimates for Hg, and Hg, we obtain the desired result. O
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