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ONE-SIDED SINGULAR INTEGRAL OPERATORS
ON CALDERON-HARDY SPACES

S. OMBROSI AND C. SEGOVIA

ABSTRACT. In [5] we have defined and studied the H?'} (w) spaces for weights w

q,o

belonging to the class A} defined by E. Sawyer, and ivhere the parameter o is a
positive real number. When « is a natural number, these spaces can be identified
with the one-sided Hardy space HY (w) defined in [7]. This identification could be
used to define a continuous extension of a one-sided regular Calderén-Zygmund
operator from H?¥ (w) into H'} (w), when the parameter « is a natural number.
In this paper, we give a direct definition of a one-sided regular Calderén-Zygmund
operator on A, ﬂ'Hg;;f (w), which is valid for any real number & > 0, and we prove
that these operators can be extended to bounded operators from H%:% (w) into
Hpd (w).

1. NOTATION, DEFINITIONS AND SOME PREVIOUS RESULTS

Let f(x) be a Lebesgue measurable function defined on R. The one-sided Hardy-
Littlewood maximal functions M* f(z) and M~ f(z) are defined as

h>0 h h>0 h z—h

r+h T
M*f(z:)=supl/ |f(2)]dt and M~ f(z) =supl/ |f(2)] dt.

As usual, a weight w(z) is a measurable and non—negétive function. If EC Risa
Lebesgue measurable set, we denote its w-measure by w(E) = [, w(t)dt. A function

oo 1/s
f(z) belongs to L*(w), 0 < s < 00, if || fll o) = (f_oo f(x)sw(x)dx) is finite.

A weight w(z) belongs to the class Af, 1 < s < oo, defined by E. Sawyer in [7],
if there exists a constant ¢ such that

s—1

1 T 1 z+h o
sup —/ w(t)dt —/ w(t) " 1dt <cg,
h>0 h z—h h’ T

for all real number z. We observe that w(z) belongs to the class AT if and only
if M~w(z) < cw(z) for all real number z. It is well known that if w(z) € A}
(1 < s < ), then there exists a constant ¢, such that the inequality

(1) HM-*_f| L#(w) S.Cw ”f“[,s(w)

holds for every f € L® (w) (e.g., see (7] or [4]).
Given w(z) € Af, 1 < s < o0, we can define a number z_, —00 < z_ < 00,
such that for almost every z, w(z) =0 in (—00,Z_) and 0 < w(z) in (Z_s, +00).
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18 S. OMBROSI AND C. SEGOVIA

Let usfix w € A} and let z_o, be as before. Let L] (z_o0, 00) ,1 < g < 00, be the
space of the real-valued functions f(z) on R that belong locally to L? for compact
subsets of (Z_c0,00)). We endow L] (z_c,00) which the topology generated for the

seminorms
o= (117 W)

where I = [a,b] is an interval contained in (z_e, 00) and |I| = b — a.
For f(z) in L},.(Z_00,00), we define a maximal function nf,(f;z) as

nt (f;z) =supp™® ,
9, (f ) p>g p |f|q,[:z:,:z+p]

where « is a positive real number.
Let N a non negative integer and Py the subspace of L (z_o0,00) formed by
all the polynomials of degree at most N. We denote by EY, the quotient space of

L} (_o,00) by Py. If F € EY;, we define the seminorm || ||, ; = inf{|f|q_1 :f € F} .

loc

The family of all these seminorms induces on E}, the quotient topology.

Given a real number a > 0, we can write « = N + (3, where N is a non negative
integer and 0 < # < 1. This decomposition is unique.
For F'in E}, we define a maximal function N}, (F';z) as

N;,-a(F;-T) = inf {n;a(f;:c) :f € F} .
We say that an element F' in Ef belongs to the Calderén-Hardy space 'Hfl’;: (w),
0 < p < 1, if the maximal function N}, (F;z) € LP(w). The “norm” of F in HE:F (w)

is defined as || F'llyp.+ () = ”Nq’ || Le(w)~ T hese spaces have been defined in [5]
and, in the case that w = 1, these spaces have been studied in [3].

We say that a class A € EY, is a p-atom in Hfl’,’j; (w) if there exist a representative
a(y) of A and a bounded interval I such that

i) supp(a) C I C (T—o0, ), w(I) < 00

it) N, (A,z) < w(I)™7 for all £ € (Z_c0,00).

In [5] it was proved the following result:

Theorem 1.1 (Descomposition into atoms ') Let w € Af and 0 < p < 1, such
that (a +1/q)p > s > 1 or (a+1/q)p > 1 if s = 1. Then, if F € HP} (w) there
erists a sequence {\i} of real numbers and a sequence {A;} of p-atoms in HP (w)
such that F = Y MA; en B} (2-c0,00). Moreover the series Y \; A; converges in
HPd (w) and there exist two constants ¢ and c; not depending of F, such that

e IF Ity € SINP < 2 IF Iy

As before, let @ = N + 3, where 0 < 8 < 1. We denote by A, (Z_x, 00), the
space consisting of those classes F'in E}; such that if f € F then f € CN (T _oo, ),
and there exists a constant C such that the derivative DV f satisfies the Lipschitz
condition

|DY f(z) = DV f(y)| < C |y — 2l for every 2,y in (200, 00).
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ONE-SIDED SINGULAR INTEGRAL OPERATORS 19

To simplify the notation, we write A, instead A, (Z_c0,00). In the following lemma
we state some results on the maximal function N}, (F,z) and the spaces HEY (w)
that we will need in this paper.

Lemma 1.2. Let F € E},.

(4) If N, (F,z0) is finite for some zo there ezists a unique representative f of F
such that Nt (F,zo) = nt (f, o). _
(12) F belongs to Ay if and only if there exists a constant finite C such that
N} (F,z) < C for all z € (T_co,0).
(1) If F € HEE (w) and t > 0, we can decompose F as F' = Gy + ©;, where
NS (Gi, ) < C't for all z € (T_c0,00) and

/ Nyo(©y, z)Pw(z)dz < C N} (F, z)Pw(z)dz.
Teoo {ze(z_w,oo):N;:a(F,:c)>t}

Proof. Part (z) is Lemma 2.2 in [5], part (i2) is Lemma 3.10 in [5] and part (i) is
Lemma 4.3 in [5)]. O
Corollary 1.3. The set HE'F (w) N Ag is dense in HEE (w).

We say that a function & in L} (R — {0}) is a regular Calderén-Zygmund kernel,
if there exists a finite constant C such that the following properties are satisfied:

(a) fe<|a:|<M k(z)dz’ < C holds for all e and M, 0 <e < M, and there exists
lim,_,o+ f5<lzl<1 k(z)dz.

(b) |k(z)] < I—g—l’ for all z # 0.

(c) |k(z —y) — k(z)| < C'lyl|z|™* for all z and y with |z| > 2|y| > 0.

We observe that (b) implies that for r > 0,

(2) /, Ik(y)|dy < C W™ dy < C.
r<|y|<2r r<|y|<2r

A regular Calderén-Zygmund kernel with support in (—o00,0) will be called a
one-sided regular Calderén-Zygmund kernel. In [1] H. Aimar, L. Forzani and F.
Martin-Reyes proved that the class of these kernels is not empty, in fact, the kernel

(3) | k(z)

satisfies the conditions (a), (b) and (c).
We denote

Kﬂw=up/%@—wﬂw@=1m Kz - v)£(9)dy,

e—0+ |z—y|>e

__sin(log |z)

- X —00,0 (3)),
|z]log |z] *~=)

the singular integral operator associated with k(y), and by K*f(z) the maximal
singular integral operator given by

(4) K*f(z) = sup

e>0

/lx—y|>s bla - y)f(y)dy‘ :

The following result can be found in [1].
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20 S. OMBROSI AND C. SEGOVIA

Theorem 1.4 ([1]). Let w € A¥, 1 < s < o0, and let k be a one-sided regular
Calderdn-Zygmund kernel. Then, there exists a finite constant C such that

/ K*f (@) w(z)dz < C / @) w(z)de

holds for all f € L*(w).

Let n be a non negative integer, we will say that k(z) is a regular kernel of order
n, if k € C™ away the origin, and

(5) |D k(z for every i = 1,2,...,n and every z # 0

l— | IH—I’

Lemma 1.5. The kernel k (x) deﬁned in (3) is regular of order n, for every n > 0.

Proof. We denote g(t) = 1t and f(t) = log|t|. For z < 0, we get
k(z) = — (g o f(z)) Df ().
Now, since D f(z) = 1, we have that
Dif(z) = (1)@= D! [Df ()],

for every natural number i. Arguing by induction it is easy to see that if n is natural
number, then D"k(z) is given by a sum of n + 1 terms of the way

Ch,nDhgo [Df ]'ﬂ+l

where Ch, is a constant and 0 < h < n. Then, since Dhg(t) € L for every non
negative integer h, the lemma follows. O

2. DEFINITION OF ONE-SIDED REGULAR CALDERON-ZYGMUND OPERATORS ON

THE CLASSES HE¥ (w) N Aq

We will assume in the sequel that w € A, where (a + 1/¢)p > s > 1 or (a +
1/q¢)p > 1 if s = 1; and without loss of generality, we will assume that the number
T_oo associated to the weight w is less than zero.

Lemma 2.1. Leta = N +1 and let F' € HPF (w) N Aq. If f € F then
(6 DM £(2)] < N(Fa) for every & € (-o0,o0)

The proof of this lemma is similar to the proof of Theorem 4 in [2], and it will
not be given here.

Lemma 2.2. Let F in Ay and 21 € (Z—w,00). If f(y) is the representative of F
such that N, (F,z1) = n}, (f,z1), then

(7)
|D’f(y)| <C ||N;a(F; )”00 ly — xl]"_i holds, fori=0,1,..., N and y € (T_s, 0)-
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ONE-SIDED SINGULAR INTEGRAL OPERATORS 21

Proof. The proof of this result is a corollary of the proof of Lemma 4.2 in [5]. In

fact, with the notation of that lemma, if we consider ¢t = ||N;0(F; .)Hoo, then F'
coincides with the class G that appear there. Then (7) follows from estimate (24)
of Lemma 4.2 in [5]. O

Let us fix a function ¢ € C§°, 0 < ¢(y) < 1, supp(@) C [—2,2] and such that
#(y) =1in [-1,1]. Let r > 0, and z; € R. We denote

) () = 6 (z:g) |

Then, the support of ¢,,.(y) is contained in [z — 2,71 4+ 27] and ¢(y) = 1 in
[z1 — 7,21 + 7). Moreover, we have that

(9) |D¥(¢2,,4)(¥)| < Cir ™,

for every non negative integer ¢. If z; = 0, we denote ¢ (y) by ¢-(v).

Lemma 2.3. Let a = N +1, and F € Hot(w) N Aq. Let f(y) be the representative
of F such that nf, (f,0) = N}, (F,0). If k(y) is a one-sided regular Calderdn-
Zygmund kernel, then

lim ‘ / k(—y)D"f(y)D”“‘%j(y)dy’ =0, fori=0,1,.., N,

Jj—+oo
and ¢;(y) = qb(*;i.), where ¢ is the function that was fized before.

Proof. By Lemma 2.2, it follows that D"f(0) = 0, for h = 0,1, ..., N. Then, by the
Taylor’s formula and Lemma 2.1, we obtain

N—i

lD"f(y) - o)L

D' f(y)
| | 2 =

1 .
< C/ |DN+f(ty)| (1 — )N+t |y Y
0

so/ L(Fsty)dt [y

From the last estimate, since supp(k) C (—o0, 0) and supp(DN“‘iqﬁj) c {j <yl <25},

we have that
(10 [ 0D DM gy

<C’/ | DNH=; ()| |k(—y)| Iy |N+1—‘/ (F;ty)dt dy.
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22 S. OMBROSI AND C. SEGOVIA

By (9), we have that |DN*1=¢;(y)| ly|N < €, if |y| < 25. From this fact and by
(10), we obtain : :

/ k(-y)D'f(y)DN+1~¢ dy‘ <C / / + (F; ty)dydt
/i (25 2j
= C/ / S(Fity dydt+C/ / o(F;ty)dydt
1/ Jj
= S1(4) + S2(5)

By (2), it follows that the inner integrals in Sy(j) and Sa(j) are bounded by

2j
Nz FOlL, [ IK-wldy < C5,
)

and therefore S;(j) — 0, when 7 — +00. As for Sy(j), we will see that

[/jzj |k(—y)|Nq,a(F;ty)dy] Y

Using condition (b) of k, changing variables and by Holder’s inequality, if s; >
s>1and fort > 1/j, we get

. 25 '
(1) / Ik(=9)| N (Fi ty)dy < / |2 N (F; 2)dz
J tj<z<2tj

< (/ N (F; z)slw(z)dZ)l/sl(/ 2 =1s(’z) dz)*
ti<z<2tj ' 1 |27

7|

- Since w_% € A, by the version for M~ of (1), we have that fz —lﬁ-zldz < Cy,

A
then since

(/ N} (F; 2)"w(z)dz) s < H / N;a(F;z)”w(z)dz)l/s,
tj<z<ti tj<z<2t]

tends to zero for each t > 0, we obtain S3(j) — 0, when j — +oo0. O

Lemma 2.4. Let F € HEF(w) N Aq, and let f(y) be a representative of F. Let k be
a one-sided reqular Calderdn-Zygmund kernel of order [a] + 1. If we define

(12) 9;(x) =
i z'
op. [ Kz =) S)os(u)ds - Z/D £ ¢J( ) - 1))y,
where ¢;(y) and ¢1(y) are given as in (8), then there existslim;_. g; in L?oc (-0, 00).

Proof. If we denote fo the representative of F such that n}, (fo,0) = Nf, (F,0),
we have that f(y) = fo (y) + P.(y), where P (y) is a polynomlal of degree at most
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ONE-SIDED SINGULAR INTEGRAL OPERATORS 23

N. Let us fix an interval I = [a,b] C (Z_s, 00), and we consider a natural number !
such that I C [—1/2,1/2]. Then, for every z € I, and if j > [ we have that

(13) g - ale /[kx— Z /DZ F(0)(6;) - di(v))dy,

1=0
We will prove that the limit of the right hand side of (13) exists. We consider two
cases, the first when « is not a natural number, i.e., « = N + 3 where 0 < 3 < 1,
and the second when & = N + 1. In the first case, if z € T C [-1/2,1/2], since
supp(l — ¢1) C |y| > I, by Taylor’s formula, (5), Lemma 2.2 and the estimate
|P(y)| < C(ly| + 1)V, we get the following estimate for the right hand side of (13)

(14) /W Z Dik(- "’—,

1=0

If W) (1= uly))dy

/ | N+1 | If(v) g+
< DY k(€ e
e (N +1)!

< / €z — 3"V | fo(y) + P (y) | dy
Jly|>1

SCIHNIQ(F;-)UOO/H llyl‘(N”’ ly|N+de+Cz/ =™ (lyl + 1)Vdy < 0.
y|> Yy

lyl>1

Therefore, by Bounded Convergence Theorem the right hand side of (13) converges

to
/ [ )= 3" Dik(-y } )1 - di(w)dy

1=0

when j — oo. We observe that in this case, i.e., when 0 < 8 < 1, it is enough to
assume that F' € A, to prove the lemma.

In the second case, i.e. @ = N+1, in order to show that the limit of the right hand
side of (13) exists, we have to consider the cases f (y) = P (y) and f(y) = fo(v).
For the case f (y) = P (y) we argue as before. As for the case f = fo, we can write
the right hand side of (13) as

N+1
/[k (z—9) - 3 Dik(- —1 fol)(#5(y) — du())dy
1_0 N+
(15) + [ DHh=0) f0) 6500 ~ Ay

For the first term of (15), proceeding in the same way that for 8 < 1, we see that
this term converges to

N+1

[z =)= 3 DR-0E) )1 - 40y

1=0

Integrating by parts, we obtain that the second term of (15) coincides with
()% [ K=0)D"* fa(3)(8,0) — )]
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24 S. OMBROSI AND C. SEGOVIA

By Leibnitz’s formula, and since supp(k) C (—o0,0), the integral above is equal to

N+1 2l _

(16) > 0w / —y) D folw) DV (5(9) — u(v))dy
N+1 ‘
+3On / —y)D o) DV (y) dy
y>2l
If] > 21, the first sum in (16) is equal to
z Cns [ K0P ) DY)y
21

17) n / E(—y) DV fol)(1 — ¢1(y))dy

By (2) and Lemma 2.1, the last term is bounded by

’ 21
C 0% ol [ IKldy < C D™ R < CIINZF

On the other hand, taking into account Lemma 2.2, the inequality [ DN*1-9¢,(y)| <
CI=(N+1=9) and (2), we obtain that each term of the sum in (17) is bounded by

21
/, k(=9I | D' folw)| | DN+ (3)| dy <

2l . A
C'HNJ,Q(F;»)HOO/[ k(=) [y " m N dy < O ||NFL(F3 ) -

As for the second sum in (16), by Lemma 2.3, the terms corresponding to i <
N + 1 converge to zero, and the term f>2z y) DN+ fo(y)b;(y)dy converges to

fy>2[ (—y)DN*1 fo(y)dy, in fact the pointwise convergence of the integrand is clear,
and by Lemma 2.1, for s; > s > 1, we have that

/ (=) DV foly) 6 (3)] dy < / lyI ™! [DY* foly)| dy
ly|>21 y>2l

1/s1 o 1/sy
s -8y, —3t
< ([ veEwruma) ([ e o)
ly|>2L y>2l

_ 1/s1
s1-p
< Cot N2 (P ( [ N;amy)"w(y)dy) <o
y|>2l .

Then, lim g;(z) exists in L], (T_co, 00). ' O
J—00

Taking into account the notation of the previous lemma, for F' € HPE (w) N A,, if
f(y) is a representative of F and k is a one-sided regular Calderén-Zygmund kernel
of order [a] + 1, we define

(18) . Kof(z) = lim g;(z)

= lim {vp/ (z —y)f(y)e;i(y)dy — Z/Dl ¢j () — ¢1(y))dy 1]

—00
J 1=0
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ONE-SIDED SINGULAR INTEGRAL OPERATORS 25

where the limit is taking in the sense of L] (z_oo, 00) . In Lemma 2.4 we have proved
that for z € I = [a,b] C [-1/2,1/2],

(19) Kof(z) = lim g(z)’
=gt(x)+/[ Z/DI ] (¥)(1 = &u(y))dy,

where gi(z) = v.p. [ k(z —y) f(v)di(y)dy — Tiro [ D'k(=y) f(v)(d1(y) — b1 (y))dy =

Lemma 2.5. Let P(y) a polynomial of degree at most N, and let k(y) be a regular
Calderén-Zygmund kernel of order N + 1, then KoP(z) coincides with a polynomial
of degree at most N in (z_q, 00).

Proof. Without loss of generality, we can assume that P(y) = y™ where 0 < n < N.
Let us fix a natural number , and let z € [—1/2,1/2] N (Z—c0, 0). Then, from (19),
we have that .

KoP(e) = vp. [ ko= ywreuti)dn+ [ ke =3) = 30 DR-0)5 | 5°(1 - au)dy
@)+ [ DR L) - D = () + Sie) + Slo)

1=0
where S3(z) is a polynomial of degree at most N. Since k (y) is a regular Calderdn-
Zygmund kernel of order N + 1 and y"¢; (y) € C§°, it easy to see that

(21) DN*18(z /k (z — y) DV [y d(y)]dy.

As for Sy(z), we can derive under the integral sign, in fact for h = 0,1,2,..., N+1,
and |y| > [, by Taylor’s formula and (5), we obtain that

=)l < C|DMk(er — )| |2V < iy TV,

N
Dik(z —y) — Y D'k(~y

1=0

then

| 1" (1 = @) dy

-3 k-

1=0
< C:/ ly" " dy < oo.
ly|>1 :

Therefore DNV*1S5,(z) = [ (DY¥*![k(z —y)]) v*(1 — ¢i(y))dy and integrating by
parts, we obtain

D¥15a) = [ (DY [k(e — 9)]) v"(1 - duy))dy

= /k( y) DYy (1 - du(y)))dy = /k(:r— y) D,y du(y))dy,
Then, from (20), and since S3 (z) is a polynomial of degree at most NV, we have that
DN*1(KyP) =0, and the conclusion of lemma follows. O
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26 S. OMBROSI AND C. SEGOVIA
The previous two lemmas enable us to give the following definition:
Definition 2.6. Let k be a one-sided regular Calderdn-Zygmund kernel of order

@) + 1. Let F € A, and if, in addition, o is a natural number we assume that F
also belongs to H2'¥ (w). Then, we define KF the class in EY; of the function

(22) Kof( )=
Jlim [v.p- / k(z —y)f(y)i(y)dy — Z / D'k( i (v) —¢1(y))dyf—;

where f(y) is a representative of F.

This definition makes sense, since by Lemma 2.4 we have that for each represen-
tative of F, the limit in (22) exists in the sense of L (z_o,00) and by Lemma
2.5 the class K F does not depend of the representative f of F. Furthermore, if
T € (T-o0, 00) and if we define

(23) Kz f(z) =
hm[vp/k:c— Y)bzo.5 (y)dy

—Z / D'k(z0 — 1) f () (G205 () — dron(w))dy E=Z22L,

1!

where f is a representative of F. Routine computations show that K, f(z) differs
from Kof(z) in a polynomial of degree at most N, and therefore KF is also the
class of K, f(z). For z € [a,b] C [zo—, zo+ ], arguing as before in order to obtain
(19), it follows that

(24) a:of( ) = i
N i
9z0.1(T) +/ (z - Z/ (zo — (I—Z,—@—] FY) (1 = ¢za(y))dy,
where

Gaot(z) = V.. / k@ — )7 (3)beoa(y)dy —

Z [ Do = 176 Groi) = broa ) EEL

1!

3. MAIN RESULTS

Theorem 3.1. Let w € AY and 0 < p < 1, such that (a+1/q)p > s > 1 or
(@+1/q)p>1ifs=1. Let K be the operator associated with a one-sided regular
Calderdn-Zygmund kernel k(z) of order [a] + 1 given in the Definition 2.6. Then,
K can be extended to a bounded operator from H{]’:Z(w) into 'Hf;;j (w).

If & is not a natural number, Theorem 3.1 is a consequence of Corollary 1.3 and
of the following result:
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ONE-SIDED SINGULAR INTEGRAL OPERATORS 27
Theorem 3.2. Let F € A,, where @« = N + ( is not a natural number, i.e., 0 <

B < 1. Let K be the operator associated with a one-sided reqular Calderdn-Zygmund
kernel k(z) of order N + 1 given in the Definition 2.6. Then

N} (KF;z) < CN} (F;z) for all z € (2_c0,00),

where C is a finite constant not depending on F.

Proof. Let us fix 1 € (Z_c,00) and p > 0. Let f(y) be the representative of F such
that N (F;z1) = nt, (f,z1). Then, forz € [a:l, z; + 5], from (24) and associating
conveniently we have that

Kol f1 = g6 = 3 / Dk(e: ~ I Wm0y T
(25 - Z / Dk(z: = 1)/ ey >¢zl,p<y>dyi“’—“i—!f”‘—y
N i
+/ k(z —y) =) Dik(z: - y)(i—;,x—l)—} (1= o)) (v)dy
i=0 : '
= Q(z1,z) — A+ B.

The integrals in Q(z1,z) are finite. In fact, by Lemma (2.2) and since supp(k) C
(=00, 0), we obtain

T1+2 .
/ |Dik(zs — 1)] 1£@)] orn W)y < C | Niu(F5 || / ly— 2|y — 21| dy < oo.

1

Then, Q(z;,z) is a polynomial of degree at most N. By (5) and taking into ac-
count that supp(k(z1 — y)¢z, ,(y)) C [z1, 21 + 2p], we obtain that each term in A is
bounded by

oo

z14+2p . 14277t 1p .
e [ —C—,.J,—llf@ndypzsz—&— [ @

1 ly — 5131| = (279p)"* Jzir2-4p

e _7+1 1 14279+, . 1/q ; .
< Z _M s | F@Fdy) o < ONGL(Fim)et,

z1
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As for B, by Taylor’s formula, (5) and since 8 < 1, we obtain that it is bounded by

D¥*k(z, +6 1 T ki i
/ (x1+0(z=21) —y)(1 = ¢zl,p(y))f(y) yw
: * - -N-2 N+1 1 AR N
<c | oo™V i) dyet <cZ—N+2/ 1) dyp
z1+p (2] ) lz1+21p
) a—(N+l) 1 z1+29+1p l/q
q N+1

@ Z sz (W / i dy>, /

( (2)° ) a(Fia)p® = ONJ(Fim)p®,
7=0

Them, from (25), (26) and (27), we obtain that for z € [zl,xl + 'ﬂ,
(28) IKII(f(l - ‘7511,/1)(1:) - Q(iEl,(E)l < CN;,_Q(F; xl)pa

Now, taking into account that ¢, , has a bounded support and considering (23),
we have that

(29) ' , er(f(bzhp)(z) =
v, / k(& — ) F(0)erp(v)dy

-}-X:/Dz T — )¢11p( )(1 _¢z111(y))dy(x_—{lﬁ'

Arguing as in estimate (26) , we obtain that the sum in (29) is bounded by C N/, (F',x;)p®
As for the first term, since supp(k) C (—o0, 0) and taking into account that the op-
erator K is bounded in Lq , we obtain

z1+p/4 q
/ v, / k(@ = 9)Xeroo) () F @) berp@))dy| dz
- 21+2p
< [ It (@) b @ @ e <0 [ (@)1 b < ONG (i)
Thus
z1+p/4
(30) / 1Koy (F20)(@)[ dz < CNF(F20) 7050,

Therefore, from (28) and (30) we obtain that

T1+p/4 )
/ Ko f(2) — Q(a1,3)| dz < ONZ(F;3y)7p7+,

1

which implies the conclusion of the theorem. O

We observe that Theorem 3.2 gives a proof of the classic result that singular
integral operators associated with regular kernels map A, into A,.

As we have already mentioned if « is not a natural number, then Theorem 3.1 is
a consequence of Theorem 3.2. If « is a natural number we could prove Theorem
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3.1 from the identification between H2:¥(w) and the one-sided Hardy spaces H% (w)
(see [5]). However, we give here a direct proof, which follows from Theorem 1.1 and
the following lemma:

Lemma 3.3. Let w € A and 0 < p < 1, such that (a+1/q)p > s > 1 or
(@+1/q)p > 1ifs=1. Let o = N+ 1, and let K be the operator associated
with a one-sided reqular Calderén-Zygmund kernel k(z) of order N + 2 gwen in the
Definition 2.6. Then, if A is a p-atom in HE (w), we have that

(31) '”?A”Hg;:(w) <G,
where C is a finite constant not depending on A.

Proof. Let a(y) be the representative of A with compact support, such that supp(a) C
I, where N, (A;z) < w(/l )~YP | Without loss of generality we can suppose that
I =0,r]. We will prove the following estimates: let z; € (2_o, 00) then

(i) If-zy ¢ [—2r,7],

Ny (B A 21) < C (M*xa(20) ™ (1) 7o,

and
(ii) If z; € [=2r,7],

No(R &) < O [u(D) ™7 + |K* (DY) (a)]]

" where K* is given in (4). -
Let us consider_*(i). The function Ka(z) = lim._o+ fly—zl>s k(z — y)a(y)dy is a
representative of K A. Since supp(k) C (—00,0), if z; > 7, we have that Ka(z) =0
for z > 1z, this implies (i) for z; > 7. Now, we assume that z; < —2r. We
will argue as in the proof of Theorem 3.2. Let us fix p > 0, and we assume that
T € [:cl,ml + ] then

K(al1 = 62,,)(a) = [ K@ = 1)alu)(1 = bs, o)y
By Taylor’s formula, we have that

(32) ( ( - ¢x1,P)( )

N i
=Z/Dik(xl-y)a() "‘"“‘1 Z/Dkxl (Y)Pz1,(y)d &= 2)

il
)N+1

_i__ / DN+1/€(CE1 + 9(:E - IEl) - y)(l - ¢11,P(y))a(y)dy%

In the same way as in the proof of Theorem 3.2, we can see that the first sum in the
right hand side of (32) is a polynomial of degree at most NN, that we denote Q(z1, z).

We observe that since n}, (a, —7) = N, (4,-r) <w ()77, we have that

r r 1/q
®  [lwiwscr (3 [ wra) <oun e

-7
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Let us suppose first that p > E%'—T, and therefore that p > l%ll > 5. Then, by the
condition (5), since supp(a(y)) C [0,7] and (33), we obtain that

< [ o el

a+l

¢ ret! 1/p i r -1/p jo
SCW A |a(y)|dy§ Ww(f) p' < |a+1 w(I)™*p

Arguing in a similar way, we get

(.’1,‘—.’111

(34) l/D k 1131 )¢Il P( )

(.’L‘ _ .’L'l)N+l

e

r a+1l
<c / 21— 9172 [1 = (@) laly)] dyp™* < c( ) w(I) Voo,

Now, if p < ‘—I-‘é;r, since z; < —2r we have that [z; — 2p, 21 + 2p] N [0, 7] = @, This
implies that

(35) ‘/ [D"*k(zy + 0(z — z1) = Y)] (1 = bz(y))aly)dy

|4

(36) . [ Dk(e = v)a)o slu)dy = 0
On the other hand, since p < % and z € [z, 7 + §], for any y € [0, 7], we have
|21+ 0(z—z1) —y| 2 |za| = |z — 21| =7 2 |x1|—§—r > %
Then, arguing as before, we get
_ (iL' _ IL'1)N+1
(37) / [D"*k(zy + 0(z — z1) —y)] (1 — ¢zl.p(y))a(y)dy——(m—i)!—

a+l1
< C N+2/ la(y) Idyp"’+1 < C( ) w(l)™Ppe,
|z |21
Thus, from the estimates (34), (35), (36) and (37) and since 7 < 1, we obtain

1 z1+p/4 . r ag+1 B
[ K@= b)) - Qo )'qd““(lm) w(I)o

T

(38)

Ifp< I’”—I};—r, the supports of a (y) and ¢, , (y) are disjoint and therefore K (a¢,, ,)(z)
=0.Ifp> li‘—é_—r > I—%l, since K is bounded on L? and by (33), we get

1 z1+4 . C u . Taq+lw(])—q/P
(39) P /Il |K (a¢z,,)(2)|" dz < W:T/O la(z)|? dz < CWI—'

Then, from (38) and (39), we obtain

1
pa+1/q

zl+§ g . + a+l/q ~1/p
(/ Ka(z) — Q(a1,2)|7de)/? < C [M*x1(20)] 0 w(1) VP,

which implies (i).

Now, we prove (ii). Let z; € [-2r,7]. Let f(y) € A, such that n (f;21) =
Nf.(A;z1). Let p > 0 and = € [z1,7,+ £] . In the proof of Theorem 3.2 we
Rev. Un. Mat. Argentina, Vol. 44-1
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saw that Q(z1,z) = ZfiofDik(xl - y)f(?,/)qﬁgghl(y)dy,lﬁﬂ”—"““”—l-Zi is a polynomial and *
furthermore

Koy (f(1 = ¢zy,0)(7) — Q(z1, 7)
=~ Z/D k 1 — )¢11 1( )¢11,p(y)dyui

s 1!
@+ [z - Y DK - y>“§—!$”1<1 G0 ey

=.[1+12.

Proceeding as in estimate (26) we obtain that |I;] is bounded by Cw(I)~7p=.
N+

Subtracting and adding DV*'k(z; — y)gx(TTl—)—— in the integrand of I and arguing

as in estimate (27), we get that

/ [DY* k(21 — )] (1 = 6216(v)) f(v)dy|p

Integrating by parts and by Leibnitz’s formula, we have

[ 1%kt )] (1= a0

’/ml Y)DVFH(1 = ¢ay (y) (]dy‘

(41)  |Bl < Cw(I)™7p™ +

N+1

(42) <13 0w | blar =)DV FQ)DF (1= b)) dy

+ ‘/k(ml —9)D"*a(y) (1 = ¢a1(¥)) dy‘ :

For i > 1, the support of D (1 — ¢, ,(y)) is contained in {y: p < |y — z1| < 2p}.
Then, since supp(k) C (—00,0), |Di¢, »(y)] < Cip™* and by Lemma 2.2 we get
that the sum in the second line of (42) is bounded by Cw(I)~!/?. As for the last
summand of (42), using Lemma 2.1, we obtain that it is bounded by

/ |k(z1 — )| IDN“a(y)ldy’ + / k(z —y)DN“a(y)dy’
p<ly—z1|<2p ly—z1/>2p

< Cu(I)V? / k(2 — y)| + sup
<ly-z1|<2p

p>0

A} ml>2pk(9~"1 - y)DN““la(y)dy'
(43) < Cw(I)™V7 + K*(DV*a)(zy).
Then, from (40), (41) and (43), we obtain for z € [:clyxl + {4-’] that

| Koy (f(1 = ¢a1,0)(2) = Qa1 2)| < C [w(I)™7 + K*(D¥*a)(21)] o

On the other hand, proceeding as in the proof of (30) in Theorem 3.2, we get

z14+p/4
/ ‘Kzl(quxl,p(x)lqu < Cw([>-q/ppaq+1’

Ty
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Thus, we have that

z14p/4 1/q
</ 1K f(2) = Qa, 2)f dr) < C fw()™7 + K*(DM*a)(a)] o=,
z1

which implies (ii).

Finally, we will see that (i) and (ii) imply the lemma. By (i) and (1), we obtain

/ NJQ(_XA;x)pw(a:)d:c < Cw(I)™! / [M+X1(z1)](a+1/q)pw(a:)dx <C.
(T—00,00)NTE[—2r,7]

By (ii), Holder’s inequality and Theorem 1.4, we get that

T

/( . NLKAzPu@ds < Cut [ KD a)(aPula)ds
T_ oo, Nze T,T

=2r

Cw—;- </ K*(1,)N+1a)(xl)p(N+2)w(r)d$>TV’1+—2 </_T2ru)(x)dm> N

Co + Co ( / T (DVa) ()P w(z)dm) w(l=2r, )\ < O,

0
which concludes the proof. a

IN
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