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ONE-SIDED SINGULAR INTEGRAL OPERATORS 
ON CALDERÓN-HARDY SPACES 

S. OMBROSI AND C. SEGOVIA 

ABSTRACT. In [5J we have defined and studied the 1t�:;t(w) spaces for weights w 
belonging to the class A;; definecl by E. Sawyer, ancl where the parameter a is a 
positive real number. When a is a natural number, these spaces can be identifiecl 
with the one-sidecl Hardy space H� (w) clefinecl in [7J. This identifieation could be 
used to define a eontinuous extension of a one-sided regular Calderón-Zygmund 
operator from 1í�:;t(w) into 1t�:;t(w), when the parameter a is a natural number. 
In this paper, we give a direct definition of a one-sided regular Calderón-Zygmund 
operator on Aa n1í�:;(w), which is valid for any real number a> 0, and we prove 
that these operators can be extended to bouncled operators from 1í�:;t (w) into 
1t�:;t (w). 

1 .  NOTATION, OEFINITIONS ANO SOME PREVIOUS RESULTS 

17 

Let f(x) be a Lebesgue measurable function defined on IR. The one-sided Hardy
Littlewood maximal functions M+ f(x) and M- f(x) are defined as 

1 ¡X+h 
M+ f(x) = sup h If(t) 1 dt 

h>O x 
and 

1 ¡X 
M-f(x) = sup h If(t) 1 dt. 

h>O x-h 

As usual, a weight w(x) is a measurable and non-negative function. If E e � is a 
Lebesgue measurable set, we denote its w-measure by w(E) = fE w(t)dt. A function 

f(x) belongs to U (w ) , O < s ::; 00, if IlfIILs(w) = (f�oo f(x)Sw(x)dx) l/s is finite. 

A weight w(x) belongs to the class A;-, 1 ::; s < 00, defined by E. Sawyer in [7], 
if there exists a constant e such that ( 1 lx ) ( 1 ¡X+h 1) s-l 

sup 
-h w(t)dt -h w(t)-s::¡ dt ::; e, 

h>O x-h x 

for al! real number x. We observe that w(x) belongs to the class Ai if and only 
if M-w(x) ::; ew(x) for al! real number x. It is wel! known that if w (x) E A;
(1 < s < 00), then thete exists a constant ew such that the inequality 

(1) 

holds for every f E U (w) (e.g., see [7] or [4]). 
Given w(x) E A;-, 1 ::; s < 00, we can define a number X-oo, -00 ::; X-oo ::; 00, 

such that for almost every x, w(x) = O in (-00, x-oo) and O < w(x) in (x-oo, +00). 

Ke:1J 'Words and phmses. one-sided weights, one-sided regular Calderón-Zygmund ker

neis, Calderón-Hardy spaces. 
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1 8  S .  OMBROSI AND C. SEGOVIA 

Let us fix w E A;- and let X-oo be as before. Let Lfoc(x-oo, 00) ,1 < q < 00, be the 
space of the real�valued functions f(x) on IR that belong locally to U for compact 
subsets of (x-oo, 00 ) ) .  We endow Lfoc(x-oo, 00) which the topology generated for the 
seminorms 

I f l q,J = ( 111 -1 ! I f (yW dY) l/q , 

where 1 = [a, b] is an interval contained in (x:... 00 , 00) and 111 = b - a. 
For f(x) in L[oc (x_?O , 00) , we define a maximal function nia (f ; x) as 

n�a (f; x) = sup p-a Iflq,[x,x+pj , . p>O 
where a is a positive real number. 

Let N a non negative integer and PN the subspace of Lfoc(X-oo, 00) formed by 
all the polynomials of degree at most N. We denote by EN the quotient space of 

L[oc(Loo, 00) by PN· If F E EN, we define the seminorm I I F l l q,J = inf { l f l q,J : f E F} . 
The family of aH these seminorms induces on EN the quotient topology. 

Given a real number a > O, we can write a = N + (3, where N is a non negative 
integer and O < (3 :s: 1. This decomposition is unique. 

For F in EN, we define a maximal function Nia(F; x) as 

N::a(F;x) = inf {n�a(f;x): f E F} . 
We say that an element F in EN belongs to the Calderón-Hardy space 1-l�:;t (w), 
O < p :s: 1, if the maximal function N;}:a (F; x) E lJ' (w) . The "norm" of F in 1-l�:;t (w) 
is defined as 1 1 F 1 1'H�:t(w) = IIN;}:a(F; x) I ILP (w) ' These spaces have been defined in [5] 
and, in the case that w = 1, these spaces have been studied in [3]. 

We say that a class A E EN is a p-atom in 1-l�:;t (w) if there exist a representative 
a (y) of A and a bounded interval 1 such that 

i) supp(a) e 1 e (x-oo, 00) , w(I) < 00 
ii) N;}:a (A , x) :s: W(I)-l/p for aH x E (Loo, 00) . 
In [5] it was proved the following result: 

Theorem 1.1 (Descomposition into atoms ) . Let w E A;- and O < p :s: 1 ,  such 
that (a + l/q)p 2: s > 1 or (a + l/q)p > 1 if s = 1. Then, if F E 1-l�:;t (w) there 
exists a sequence Pi} of real numbers and a sequence {Ai} of p-atoms in 1-l�:;t (w) 

. such that F = ¿ .\;Ai en EN (x-oo, 00 ) . M oreover the series ¿ '\iAi converges in 
1t�:;t (w) and there exist two constants Cl and C2 not depending of F, such that 

Cl 1 1F1 I��:t(w) :s: ¿ l,\dP :s: c2 1 1 F 1 1��:t(w)' 
As before, let a = N + (3, where O < (3 :s: 1. We denote by Aa (x-oo, 00) , the 

space consisting of those classes F in EN such that if fE F then f E eN (x-oo, 00) , 
and there exists a constant e such that the derivative DN f satisfies the Lipschitz 
condition 
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O NE-SIDE D  SINGULAR lNTEGRAL O PERATO RS 19 

To sirnplify the notation, we write Aa instead Aa(x-oo, 00) . In the following lernrna 
we state sorne results on the rnaxirnal function N:'a (F, x) and the spaces 1í�:; (w) 
that we will need in this papero 

Lemma 1. 2. Let F E E'J.¡. 
(i) Jf N:'a (F, xo) is finite for some Xo there exists a unique representative f of F 

such that N:,a(F, xo) = n;'a(J, XO). 
(ii) F belongs to Aa if and only if there exists a constant finite C such that 

N:'a(F,x)::; C for all x E (x-oo, 00) . 
(iii) Jf F E 1í�:; (w) and t > O, we can decompose F as F = Gt + 8t, where 

N:'a(Gt,x)::; C t for all x E (x-oo, 00) and 

roo N:a(8t, x)Pw(x)dx::; C { + N:a(F,x)Pw(x)dx. 
Jx_oc J {xE(x_oc,oo):Nq,,,,(F,x»t} 

Prooj. Part (i) is Lernrna 2 . 2  in [5] , part (ii) is Lernrna 3.10 in [5] and part (iii) is 
Lernrna 4.3 in [5]. O 
Corollary 1.3. The set 1í�:;(w) n Aa is dense in 1í�:;(w). 

We say that a function k in Lfoc(lR - {O }) is a regular Calderón-Zygrnund kernel, 
if there exists a finite constant C such that the following properties are satisfied: 

(a) l !g<IXI<M k(x)dxl ::; C holds for aH é and M, O < é < M, and there exists 

lirng--+o+ !g<lxl<l k(x )dx. 
(b) I k ( x ) I ::; 

I
�
I
' for all x # O .  

(c) Ik(x - y) - k(x)1 ::; C ly l lx l -2 for aH x and y with Ixl > 2 1y l > O .  
We observe that (b) irnplies that for r > O, 

(2 ) 1 . Ik(y)ldy::;Cl ly l-1dy::;C'. 
r::;lyl::;2r r::;lyl::;2r 

A regular Calderón-Zygrnund kernel with support in ( - 00 , O) will be called a 
one-sided regular Calderón-Zygrnund kernel. In [ 1] H. Airnar, L .  Forzani and F. 
Martín-Reyes proved that the class of these kernels is not ernpty, in fact , the kernel 

(3) 
sin(1og Ix l )  k(x) = Ixl log Ix l X(-oo,O) (x), 

satisfies the conditions (a) , (b) and (c) . 
We denote 

K f (x) = V.p. J k(� - y)f (y)dy = lirn 1 k(x - y)f(y)dy, 
g--+O+ Ix-yl>g 

the singular integral operator associated with k(y), and by K* f (x) the rnaxirnal 
singular integral operator given by 

(4) K* f (x) = sup 11 k(x - y)f(Y)dy l · 
g>O !x-y!>g 

The foHowing result can be found in [ 1]. 
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20 S . OMBROSI AND C. SEGOVIA 

Theorem 1.4 ( [l}). Let w E A;-, 1 < s < 00, and let k be a one-sided regular 
Calderón-Zygmund kernel. Then,there exists a finite constant C such that 

J IK* f (xW w(x)dx ::; C J If (xW w(x)dx 
holds for all fE U(w). 

Let n be a non negative integer , we will say that k(x) is a regular kernel of order 

n, if k E cn away the origin, and 

(5) I Di k (x)1 ::; IX��I' for every i = 1 , 2, . . . , n and every x 1= ° 

Lemma 1.5. The kernel k (x) defined in (3) is regular of order n, for every n 2: O. 

Proof. We denote g(t) = si�t and f(t) = log It l .  For x < 0, we get 

k (x) = - (g o f(x) )  Df(x). 
Now, since Df(x) =�, we have that 

Dif (x) = (_l )i-l (i -1)! [Df(x)Ji , 
for every natural number i. Arguing by induction it is eásy to see that if n is natural 
number, then Dnk(x) is given by a sum of n + 1 terms of the way 

Ch,nDhg o f(x) [Df(x)¡n+1 , 
where Ch,n is a constant and ° ::; h ::; n. Then, since Dhg (t) E VJO for every non 
negative integer h, the lemma follows . O 

2. DEFINITION OF ONE-SIDED REGULAR CALDERÓN-ZYGMUND OPERATORS ON 

THE CLASSES 1í�:� (w) n Aa 

We will assume in the sequel that w E A;-, where (a + l/q)p 2: s > 1 or (a + 
l/q)p> 1 if s = 1; and without loss of generality, we will assume that the number 
X-oo associated to the weight w is less than zero. 

Lemma 2.1. Let a = N + 1 and let F E 1í�:�(w) n Aa. Jf fE F then 

(6) IDN+1f(x)1 ::; Nia(FiX) for every x E (x_oo,oo) 
The proof of this lemma is similar to the proM of Theorem 4 in [2] , and it will 

not be given here . 

Lemma 2.2. Let F in Aa and Xl E (x-oo, 00 ) . Jf f (y) is the representative of F 
such that N:'a (F, X l ) = n-;'a (j, X¡), then 

(7) 

I Dif(y)1 ::; C I INia (F ; · ) 1100 Iy - xt!a-i holds, for i = 0, 1, . . . , N and y E (x_oo,oo). 
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ONE-SIDED SINGULAR INTEGRAL OPERATORS 21 

Proof. The proof of this result is a corollary of the proof of Lemma 4.2 in [5]. In 
fact , with the notation of that lemma, if we consider t = IINi,,(F; .) 1100' then F 
coincides with the class G that appear there. Then (7) follows from estimate (24) 
of Lemma 4.2 in [5]. O 

Let us fix a function cP ECo, ° ::; cp(y) ::; 1, supp(cp) e [-2 , 2] and such that 
cp(y) == 1 in [-1 , 1]. Let r > 0, and Xl E IR. We denote 

(8) ( y - Xl ) CPx¡,r(y) = cP -r -
. 

Then, the support of CPx¡,r(y) is contained in [Xl - 2r, Xl + 2r] and cp(y) = 1 in 
[Xl - r, Xl + r]. Moreover, we have that 

(9) 

for every non negative integer i. If Xl = 0, we denote CPo,r(y) by CPr(Y)' 

Lemma 2.3. Let a = N + 1, and F E 1i�:�(w) n A". Let f(y) be the representative 
of F such that n�" (f, O) = Ni" (F, O). Jf k(y) is a one-sided regular Calderón
Zygmund kernel, then 

.lim 11 k( -Y)Dif(Y)DN+l-iCPj(Y)dy l = 0, for i = 0, 1, .. . , N, 
J-++OO 

and CPj(Y) = cp(j), where cP is the function that was fixed before . 
Proof. By Lemma 2 . 2 ,  it follows that Dh f(O) = O, for h = 0 , 1 ,  ... , N. Then, by the 
Taylor's formula and Lemma 2 . 1 ,  we obtain 

::; C 101 
N:',,(F; ty)dt lyIN+l-i. 

Prom the last estimate,  since supp(k) e (-00, O) and supp(DN+l-icpj) e {j ::; Iyl ::; 2j}, 
we have that 

(10) 11 k( -y)Dif(y)DN+1-iCPj(y)dy l 
::; C l2j 

IDN+l-icpj(y)llk(_y)llyIN+l-i 101 N:',,(F;ty)dt dy. 
Rev. Un. Mat. A rgentina, Vol. 44-1 



22 S .  OMBROSI AND C. SEGOVIA 

By (9) , we have that I DN+l-i<j>j (y) IlyIN+1-i::; G, if Iyl ::; 2j. Prom this fact and by 
(10), we obtain 

1I k( _y)Di!(y)DN+1-i<j>j(y)dyl ::; G 11 l
2j 
Ik( -y)1 Nio:(F; ty)dydt 

1fj 2j 1 2j 
=G 1 llk(-y)INio:(F;tY)dYdt+G lfjl,k(-y),Nio:(F;tY)dYdt 

= Sl(j) + S2(j) 
By (2) , it follows that the inner integrals in S¡(j) and S2(j) are bounded by 

I I  Nio:(F; ·)1100 l
2j 
Ik(-y)J dy ::; GJ, 

and therefore SI(j ) --+ O, when j --+ +00. As for S 2(j ) , vve will see that 

[l
2j 
Jk(-y)J Nq,o:(F;tY)dY] --+ O. 

Using condition (b) of k, changing variables and by H6lder's inequality, if SI > 
S 2:: 1 and for t > 1/j, we get 

(11) [2
j 
Ik( -y)J Nio:(F; ty)dy::; [ . Izl-l Nio:(F; z)dz Jj Jtj<z<2tj 

. � 
Since w-;} E A�, by the version for M- of (1), we have that JZ>I.w�z�!'l(z)dz::; Gw, 
then since 

( [ Nio:(F; Z ) SlW(Z )dz)l/s ::; I I  Nio:(F; . ) I I� ( [ Nio:(F; z ) Pw(z )dZ )I/s , Jtj<z<2tj . '  Jtj<z<2tj 
tends to zero for each t � O, we obtain S 2(j ) --+ O, when j --+ +00. O 

Lemma 2.4. Let F E 1t�:�(w) nAo:,and let f(y) be a representative of F. Let k be 
a one-sided regular Calderón-Zygmund kernel of order [a] + 1. Jf we define 

(12) gj(x) = 
. N . - . 

v.p. J k (x - Y)f(y)<P�(y)dy - t; J Dik(-y)f(y)(<j>j (y) - <PI (y))dY:; , 

where <Pj(Y) and <PI (y) are given as in (8), then there existslimj-+oo 9j in Lioc (x-oo, 00). 
Proof. If we denote fo the representative of F such that nt,o: (Jo,.o) = N;J:o: (F, O) , 
we have that f (y) = fo (y) + P (y), where P (y) is a polynomial of degree at most 
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ONE-STDED SINGULAR INTEGRAL O P ERATORS 23 

N. Let us fix an interval 1 = [a, b] e (x-oo , 00) , and we consider a natural number l 
such that 1 e [- l/2 ,  l/2] . Then, for every x E 1 ,  and if j > l we have that 

N . 
( 13) gj (x} - g¡ (x) = 

j
[k (X - y) - L j 

Dik (-y) �; ]f (y) (<pj (y) - <p¡ (y) )dy , 
,=0 

We will prove that the limit of the right hand si de of ( 13) exists .  We consider two 
cases , the first when a is not a natural number, Le . , a = N + f3 where O < f3 < 1, 
and the second when a = N + 1 .  In the first case , if x E 1 e [-l/2 ,  l/2] '  since 
supp ( l - <p¡ ) e I y l 2:: l ,  by Taylor 's formula, (5), Lemma 2 . 2  and the estimate 
I P(y) 1  � G( ly l + l )N ,  we get the following estimate for the right hand side of ( 13) 

(14) 1 k(x - y) - t Dj k( -y) �!
i I f (y) 1 (1 - <p¡ (y) ) dy 

Iy l >¡ i=O 

1 
xN+l 

� I DN+l k (�x - y) l l f (y) 1 dy (N + 1) 1 Iy l >¡ . 

� G¡ l I �x - y l - (N+2) I fo (y) + P (y) 1  dy 
Iy l> l 

� G¡ I I N;a (F; . ) 1100 1 l y l - (N+2) ly IN+,6 dy + G¡ l l y l - (N+2) ( Iy l + l )N dy < oo .  
I y l> ¡ I y l>¡ 

Therefore, by Bounded Convergence Theorem the right hand side of (13) converges 
to 

when j --t oo. We observe that in this case , i .e . , when O < f3 < 1, it is enough to 
assume that F E Aa to prove the lemma. 

In the second case, i . e .  a = N + 1, in order to show that the limit of the right hand 
si de of (13) exists , we have to consider the cases f (y) = P (y) and f (y) = fo (y) . 
For the case f (y) = P (y) we argue as before. As for the case f = fo , we can write 
the right hand side of ( 13) as 

(15) 

j N+l Xi [k (x - y) - � Djk( -y) i! ] fo (y) (<pj (Y ) - <p¡ (y) )dy 

j 
xN+l + DN+lk( -y)fo (y) (<pj (y) - <p¡ (y) )dy (N + 1) ! ' 

For the first term of (15) , proceeding in the same way that for f3 < 1, we see that 
this term converges to j N+l Xi [k(x - y) - L Djk(-y) i! ] fo (y) ( l - <p¡ (y) )dy . 

;=0 
Integrating by parts, we obtain that the second term of ( 15) coincides with 

( _ l )N+l j k ( _y)DN+l [Jo (y) (<pj (y) - <p¡ (y ) ) ] dy . 
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24 S. O MB ROSI  AND C. SEGOVIA 

By Leibnitz 's formula, and since supp (k) e ( - 00 ,  O) , the integral aboye is equal to 

N+1 21 
( 16) ¿ CN,i 1 k( _y)Difo (y)DN+l-i (<pj (Y) - <pl (y) )dy 

i=O 1 
N+1 

+ ¿ CN'i ! k (-y)Difo (y)DN+l-i<pj (y)dy . 
i=O y>21 

If J > 2l , the first sum in ( 16) is equal to 

( 1 7) 

N 21 ¿ CN,i 1 k (  -y)Difo (y)D(N+l -il <Pl (y)dy 
i=O 1 121 
+ 1 k (  _y)DN+l fo (y) ( l  - <Pl (y) )dy . 

By (2) and Lemma 2 . 1 , the last term is bounded by 

C I I DN+l fo l l oo 121
1 k ( -y) 1 dy ::; C I I DN+1 fo l l oo ::; C I INia (F ; . ) 1 1 00 . 

On the other hand, taking into account Lemma 2 .2, the inequality I D (N+l -il<pl (y) 1 ::; 
Cl- (N+ l-il and (2 ) , we obtain that each term of the sum in (17) is bounded by 

121 1 k (  -y) I I Difo (y) I I D(N+1-il <pl (y) 1 dy ::; 

C I I Nia (F ;  . ) 1 1 00 j21 1 k ( _y) l l y I N+l-i Z- (N+l-il dy ::; C I I Nia (F ; . ) 1 1 00 .  

As for the second sum in ( 16) ,  by Lemma 2 .3, the terms corresponding to i < 
N + 1 converge to zero , and the term JY>21 k( _y)DN+l fo (y )<pj (y) dy converges to Jy>21 k (  _y)DN+l fo (y) dy , in fact the pointwise convergen ce of the integrand is clear , 
and by Lemma 2 . 1 ,  for 8 1 > 8 2: 1, we have that 

1 I k ( -y )DN+1 fo (y)<pj (y) 1 dy ::; 1 IY I - I IDN+1 fo (y ) 1 dy l y l >21 y>21 
::; ( r Nia(F;y)SI W(Y)dy) I/S1 (1 IYI-s� W-* (Y)dy) l/s� J1yl >21 y>21 

!1.::E (1 
) 1/ SI ::; Cw,l I INia(F; · ) I I�I Nia (F; y)Pw(y)dy < 00 ly l >21 

Then, lim 9j (X ) exists in Lioc (x-oo , (0 ) . J �OO o 

Taking into account the notation of the previous lemma, for F E 1t�:; (w) n Aa , if 
f(y) is a representative of F and k is a one-sided regular Calderón-Zygmund kernel 
of order [a] + 1 ,  we define 

( 18) Kof(x) = lim 9j (X) J �OO 

� ,ti.');, [v ,p, J k (x - Y)f(y)�, (y )dy - t, J D;k (-y)f (y) (�, (y) - �l (Y) )d<; l ' 
Rev. Vil. Mal. Argemina, Vol. 44- 1 



ONE-SIDED S INGULAR INTEGRAL OPERATORS 25 

where the limit is taking in the sense of Lioc (x - oo ,  00 ) . In Lemma 2 . 4  we have proved 
that for x E 1 = [a , b] e [- l/2 , l/2] , 
( 19 )  Kof(x) = lim gj (x) ' J --->OO 

� g/ (x ) + J [k (X - y) - t J Dik(-y):: j f(y) ( l - �/ (y) ) dy , 

where g¡ (x) = V.p. J k (x - y)f (Y)eP¡ (y)dy - L�o J Dik ( -y) f(y) (eP¡ (Y) - ePl (y) )dy * .  
Lemma 2.5. Let P(y) a polynomial of degree at most N ,  and let k (y) be a regular 
Calderón-Zygmund kernel of order N + 1 ,  then KoP(x) coincides with a polynomial 
of degree at most N in (x - oo ,  00) . 
Proof. Without loss of generality, we can assume that P(y) = yn where O :S n :s N. 
Let us fix a natural number l , and let x E [- l/2 , l/2] n (x-oo , 00 ) . Then, from ( 19) , 
we have that 

KoP(x) � v.p. J k (x - y)yn�/ (y)dy + J [k(X - y) - t Dik (  -y) :: 1 yn ( 1 - �/ (y) )dy 

( 20) 
N J Xi + L Dik ( -y) yn (cp¡ (y) - ePl (y) ) dYi! = Sl (X) + S2 (X) + S3 (X) , 
i=O 

where S3 (X) is a polynomial of degree at most N. Since k (y) is a regular Calderón
Zygmund kernel of order N + 1 and yncp¡ (y) E eff, it easy to see that 

( 2 1 )  DN+1S1 (X) = J k(x - y)DN+1 [yncp(y) ]dy . 
As for S2 (x) , we can derive under the integral sign, in fact for h = O, 1 ,  2 , . . .  , N + 1 ,  

and I y l > l , by Taylor 's  formula and (5) , we obtain that 

N i 
D� [k (x - y) - L Dik(-y) �! ] :s e I DN+1 k (�x - Y) l l x IN+1 -h :s e¡ ly l -N-2 , 

i=O 
then 

< el r l y l n-N-2 dy < oo .  
J1y l>¡ 

Therefore DN+1S2 (x) = J (D�+l [k (x - y)]) yn (l - cp¡ (y) ) dy and integrating by 
parts, we obtain 

DN+1 S2 (X) = J (D�+l [k (x - y) ] ) yn ( l _ cp¡ (y) )dy 

= J k (x - y) D:+l [yn ( l  - eP¡ (y) ) ]dy = - J k(x - y) D:+1 [yncp¡ (y) ] dy , 
Then, from (20) , and since S3 (x) is a polynomial of degree at most N, we have that 
DN+l (KoP) == O ,  and the conclusion of lemma follows . O 
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26 S .  OMBROSI AND C. SEGOVIA 

The previous two lernrnas enable us to give the following definition: 

Definition 2. 6 .  Let k be a one-sided regular Calderón-Zygmund kernel of order 
[a] + 1 .  Let F E Aa and iJ, in addition, a is a natural number we assume that F 
also belongs to '}-{�;� (w ) . Then, we define K F the class in E'fv of the function 

(22) Kof(x) = 

;Ii.� [v .P. J k(x - y)f (y),p; (y) dy - t J V'k( -y)f(y) (,p; (y) - 'P. (Y) )d<: ] , 
where f (y) is a representative of F. 

This definition rnakes sense , since by Lernrna 2 .4 we have that for each represen
tative of F, the lirnit in (22)  exists in the sense of Lroc (x-oo , 00 ) and by Lernrna 
2 . 5  the class K F do es not depend of the representative f of F. Furtherrnore, if 
Xo E (Loo , 00) and if we define 

(23 )  Kxof (x) = 

�irn [v .p. J k(x - y)f (Y)cPxo ,j (y)dy J -+OO 

�J i (x - XO ) i - i:o' D k (xo - y)f (y) (cPxo,J (y) - cPxo , l (y) )dy i! ] ,  

where f is a representat ive of F. Routine cornputations show that Kxof (x) differs 
from K of (x) in a polynornial of degree at most N, and therefore K F is also the 
class of Kxof (x) . For x E [a , b] e [xo - l , xo + l] , arguing as before in order to obtain 
( 19) , it follows that 

(24) Kxof(x) = 

i (x - xo )' [ N ' ] 
gxo , I (X) + J k (x - y) - f; 1 D k(xo - y) i! f (y) ( 1 - cPxol (y) )dy , 

where 

9xO ,I (X) == V .p. 1 k(x - y)f(Y)cPxo ,l (y)dy -N ) ' "1 i (x - Xo ' � D k (xo - y)f (y) (cPxo , l (y) - cPxo , l (y) )dy i! . 
i=O 

3 . MAIN RESULTS 

Theorem 3.1. Let  w E A; and O < p :::; 1 ,  such that (a + l/q) p � s > 1 or 
(a + l/q) p > 1 if s = 1 .  Let K be the operator a¡sociated with a one-sided regular 
Calderón-Zygmund kernel k(x) of order [a] + 1 9�ven in the Definition 2. 6. Then, 
K can be extended to a bounded operator from '}-{�:� (w) into '}-{�:� ( w) . 

If a is not a natural riurnber, Theorem 3 . 1 is a consequence of Corollary 1 . 3  and 
of the following result : 
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Theorem 3 . 2. Let F E Aa , where o: = N + (3 is nat a natural number, i. e . ,  O < 
(3 < 1.  Let K be the operator associated with a ane-sided regular Calderón-Zygmund 
kernel k (x) of arder N + 1 given in the Definitian 2. 6. Then 

where C is a finite constant not depending on F. 

Proof. Let us fix X l  E (x-oo , 00) and p > O. Let f(y) be the representative of F such 
that N:a (F; Xl)  = n�a (J, Xl) ' Then, for X E [X l ,  X l  + ¡J , from (24) and associating 
conveniently we have that 

N . 

Kx¡ (J (1 - CPX ¡ ,p ) (X) = ¿ J Dik(Xl - y)f (Y)CPx¡ , l (y) dy (X �
!
X l ) � 

i=O 
N . 

(25) - ¿ J Dik(Xl - y)f (Y)CPx¡ , l (Y)CPx¡ ,p (y)dy (x �
!

X ¡ ) ' 

;=0 

+ J [k(X - y) -t D'k(Xl - y) (x � ,
Xl) ' l (1 - �" ,, (y ) )f (y)dy 

= Q(xl , x) - A + B . 

The integrals in Q (Xl , X) are finite. In fact , by Lemma ( 2 . 2 )  and since supp(k) e 
( -00, O) , we obtain 

Then, Q(Xl ,  x) is a polynomial of degree at most N. By (5) and taking into ac
count that suPP (k (X l  - Y)CPX¡ ,p (Y) )  e [Xl , Xl + 2p] , we obtain that each term in A is 
bounded by 
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As for B, by Taylor 's formula, (5) and sinee /3 < 1 , we obtain that it is bounded by I 

J 
. ( t+l 

DN+l k (X I + B(x -'- Xl ) - y) ( l - cPX¡ ,p (y) )f (y)dy X(�: 1 ) ! 

Them, froÍn (25 ) , (26) and (27) , we obtain that for X E [X l , Xl + '¡ ] , 
(28) I Kx¡  U( l  - cPX¡ ,p) (x) - Q (XI , x ) 1 ::; CN::cr (F; XI )Pcr . 

Now, taking into aceount that cPX ¡ ,P has a bounded support and eonsidering (23) , 
we have that 

(29) Kx¡ UcPX¡ ,p) (x) = 

V .p. J k(x - y)f (Y)cPX ¡ ,p (y ) )dy 
N . 

+ L J Dik (X I  - y)f (Y)cPX ¡ ,p (y) ( l - cPX ¡ , I (y) )dY (X � !
xd . 

i=O 
Arguing as in estimate (26) , we obtain that the sum in (29) is bounded by CN::cr (F;'XI )pcr . 
As for the first term, sine e supp (k ) e ( - 00 ,  O) and taking into account that the op
erator K is bounded in Lq , we obtain 

¡�
¡+PI4 Iv .p. J k (x - y)X(X¡ ,oo) (y) f (y)cPx ¡ ,p (y) )dy l q dx 

< C J I X(x ¡ ,oo) (x) cPX¡ ,P (x) f (xW dx ::; C ¡� ¡ +2P 
I f (xW dx ::; CN::cr (F; x ¡ ) qpcrq+l . 

Thus 

(30) 

Therefore, from (28) and (30) we obtain that ¡X ¡ +PI4 . 
IKxJ(x) - Q (XI , xW dx ::; CN::cr (F; XI ) qpcrq+ l , 

X ¡  
whieh implies the eonclusion of the theorem. o 

We observe that Theorem 3 . 2  gives a proof of the classie result that singular 
integral operators associated with regular kernels map Acr into Acr . 

As we have already mentioned if a is not a natural number , then Theorem 3 . 1  is 
a eonsequenee of Theorem 3 . 2 .  If a is a natural number we eould prove Theorem 
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3 . 1  from the identification between 7-{�:;t (w) and the one-sided Hardy spaces H� (w) 
(see [5]) . However , we give here a direct proof, which follows from Theorem 1 . 1  and 
the following lemma: 

Lemma 3 .3. Let w E A;- and O < p :::; 1, such that (a + l /q) p 2: s > 1 or 
(a + l/q) P > 1 if s = 1 . Let a = N + 1, and let K be the opemtor associated 
with a one-sided regular Calderón-Zygmund kernel k (x) of order N + 2 given in the 
Definition 2. 6. Then, if A is a p-atom in 1-{�:t (w) , we have that 

(3 1 )  

where e is a finite constant no t  depending on  A. 

Proof. Let a(y) be the represe�tative of  A with compact support , such that supp (a) e 
1 ,  where Nia (A ;  x) :::; w (I) - l/p . Without 10ss of generality we can suppose that 
1 = [O , rj . We will prove the following estimates: let Xl E (x-oo , 00) then 

(i) If X l � [-2r , r] , 
N:a (KA; Xl ) :::; e (M+X¡ (X l )t+l/q w (I) - l /p , , 

and 
( i i )  If Xl E [-2r , r], 

N:a (KA ; X¡ ) :::; e [w(I) - l/p + I K* (DN+ la) (X l ) l ]  , 

. where K* is given in (4) . . 
Let us consider ( i ) . The function Ka(x) = lime:->o+ l¡y-x l>e k(x - y)a(y)dy i s  a 

representative of KA. Since supp(k)  e (-00, 0) , if Xl > r, we have that Ka(x) = O 
for X 2: X l , this implies ( i )  for Xl > r. Now, we assume that Xl < ' - 2r . We 
will argue as in the proof of Theorem 3 .2 .  Let us fix p > O , and we as sume that 
X E [X l , X l + ¡] , then 

K(a( l - cPX ¡ ,p )) (X) = J k (x - y)a(y) ( l  - cPX¡ ,p (y) )dy . 

By Tay10r 's formula, we have that 

( 32 ) K(a( l - cPX¡ ,p) (x) 
N . N . 

" J . 
(X - X ¡ ) ' "J . (X - Xl ) ' = L. D'k(X l - y)a(y)dy i r - L. D'k (Xl - y)a(Y)cPx ¡Ay)dy, i r i=O i=O 

+ J DN+ l k (X l + B(x - Xl ) - y) ( l _ cPX ¡ ,p (y))a(y) dy 
(X

(� :)�:l 
In the same way as in the proof of Theorem 3 . 2 , we can see that the first sum in the 
right hand side of (32 )  is a polynomial of degree at most N, that we denote Q(Xl , x) . 

We observe that since nia (a, -r) = Nia (A, -r) :::; w (I) - l /p , we have that 

(33) 
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Let us suppose first that p 2: IX 1�-r , and therefore that p 2: 1:f 2: � .  Then, by the 
eondition (5) , sinee supp (a (y ) )  e [O , r] and (33) , we obtain that 

(34) J
o (x - xd ¡r C o D'k (X l - y)a (y)<px l ,p (y)dy o ,  :S I I i+ l l a (y ) 1 dyp' z .  o Xl - Y 
pi ¡r r",+l r",+l 

:S C� l a (y) 1 dy :S �w(Irl/ppi :S aH w (I) - l/pp"' . I X l l  O I Xl l I X l l 
Arguing in a similar way, we get 

(35) 
X - Xl J ( ) N+l 

[DN+l k (X l + B (x - x¡ ) - y)] ( 1 - <pxl ,p (y) )a(y)dy (N + 1 ) ! 

:S C lr I X l - y l -N-2 [1 - <PX1 , P (y)] l a(Y) 1 dypNH :S C C:l l ) "'H 
w (I) - l/pp"' . 

Now, if p < I X 1�-r , sinee X l < -2r we have that [X l - 2p, X l + 2p] n [O , r] = 0 ,  This 
implies that 

( 36) J Dik(Xl - y)a(y)<pxl ,p (y)dy = O. 

On the other hand, sinee p < I X 1�-r and X E [X l , Xl + ¡ ] , for any y E [O , r] , we have 

p I X l l I Xl + B(x - x¡ ) - y l  2: I Xl l  - I x - xI I - r 2: I Xl l  - 4 - r 2: 4 '  
Then, arguing as before ,  we get 

(37) J [DN+l k (X l + B(x - x¡ )  - y)] (1 - ePxl ,p (y ) )a(y)dy (X(� �G�l 

1 r ( r ) "'+1 
:S C I X l I N+2 Jo l a (y) l dypN+l :s C I Xl l  w (I) - l/pl-" . 

Thus, from the estimates (34) , (35) , (36) and (37) and sine e 1:1 1  < 1 ,  we obtain 

1 ¡X l+P/4 ( r ) aq+l 
(38) -1 I K(a ( l - ePXl p) (x) - Q(Xl , xW dx :S C -1 -1 w (Itq/p P",q+ XI ' X l 
If p < IX I!-r , the supports of a (y) and ePX¡ ,P (y) are disjoint and therefore K(aePxl 'p ) (x) 
= O. If p 2: I X I�-r 2: I X41 1 , sinee K is bounded on Lq and by (33) , we get 

1 ¡X I + ¡ q C ¡r q raqHw(I) -q/p 
(39) aq+l I K(aePx l ,p ) (x) 1 dx :S I I ",q+l l a (x) 1 dx :S  C 

I I ",q+ l . p X l Xl o Xl 
Then, from (38) and ( 39) , we obtain 

1 ¡X I + .e 
-1-/ ( 4 I K  a (x) - Q(Xl , xW dX) l/q :S C [M+X¡ (X l ll",H/q w (I ) - l/P , pa+ q X I 

which implies ( i ) . 
Now, we prove ( i i ) . Let Xl E [-2r, rJ . Let f (y) E A, sueh that nt,,,, (f ; x ¡ ) = 

Nq:", (A; Xl ) ' Let p > O and X E [Xl , Xl + ¡] . In the proof of Theorem 3 . 2  we 
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saw that Q(Xl , x ) = 2:;:'0 J Dik (Xl - Y)f (y)tPx¡ , I (y)dy (x��¡ ) ' is a polynomial and 
furthermore 

Kx¡ (f ( 1 - tPX¡ ,p) (x) - Q(Xl , x) 

�!  i (x - xd = - � D k (X l - y) f (y)cjJX ¡ , l (y) tPX ¡ ,p (y) dy i !  
i=O 

N i 
(40) + ! [k (X - y) � L Dik(Xl - y) (x � !X l )  ] ( 1  - tPX ¡ ,p (y) ) f (y ) dy 

i=O 
= 11 + 12 •  

Proceeding a s  i n  estimate (26 ) we obtain that 1 11 1  i s  bounded by  Cw (Itl/p pa . 
( )N+ ¡ 

Subtracting and adding DN+ l k (Xl - y) x(��I) ! in the integrand of h and arguing 
as in estimate (27) , we get that 

(4 1 ) 1 12 1 :::; Cw(I) - I/ppa + I ! [DN+1k (Xl - y)] (1 - tPX¡ ,p (y ) ) f (y )dy l pO . 

Integrating by parts and by Leibnitz's formula, we have 

I ! [DN+l k(X l  - y)] ( 1 - tPX ¡ ,p (y) ) f (Y)dY I 
= I ! k (X l - y)DN+1 [ ( 1 - tPX¡ ,p (y ) ) f (y) ] dy l 

N+ l 
(42) < L CN , i ! k (X l - y)DN+1-if (y )Di ( 1 - tPX¡ ,p (y) ) dy 

i=1 
+ I ! k (X l - y)DN+l a(y) ( 1  - tPX¡ ,p (y) ) dy l · 

For i � 1 ,  the support of D i ( 1 - tPX¡ ,p(y) )  is contained in {y : p :::; Iy  - xI I :::; 2p} . 
Then, since supp (k ) e (-00, O) , I DitPx¡ ,p (y) 1 :::; CiP-i and by Lemma 2 . 2  we get 
that the sum in the second line of (42 ) is bounded by CW(I) -l/p . As for the last 
summand of (42 ) , using Lemma 2 . 1 ,  we obtain that it is bounded by 

I r  I k (x l - Y) I J DN+l a (y) J dy l + 1 1 k (X l - y)DN+ 1 a (y)dy l Jp<ly-x ¡ 19P ly-x¡ I >2p 
:::; Cw (Itl/p r I k (x I - y) 1 + sup 1 1 k (X I - y)DN+la(y)dy l Jp< ly-x ¡ I :5:. 2p p>O ly-x¡ I >2p 

(43)  :::; Cw(Itl/p + K* (DN+la) (x l ) ' 
Then, from (40 ) ,  (4 1 ) and (43 ) , we obtain for x E [X l , X l + ¡ ] that 

IKq (f ( 1  - tPX¡ ,p ) (x) - Q(Xl , x) 1 :::; C [w (I) - l/p + K* (DN+ l a) (x ¡ ) ] pa . 
On the other hand, proceeding as in the proof of (30) in Theorem 3 . 2 ,  we get 

¡X¡+P/4 
I Kx¡ (ftPX ¡ ,p (xW dx :::; Cw (Itq/ppOq+ 1 , 

X ¡ 
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Thus, we have that 

(lXI+P/4 ) l /q 
X I 

I KxJ(x) - Q (X l , xW dx :s C [w (I) - l/p + K* (DN+1 a) (x l ) ] pa+1/q , 

which implies ( i i) . 
Finally, we will see that ( i ) and ( i i) imply the lemma. By ( i) and (1) , we obtain 

1 N;a (KA; x)Pw (x)dx :S  Cw(It1 J [M+XI (X l ) ] (a+l/q)p w (x)dx :S  C. (x-oc ,oo)nx�[-2r,r] 
By ( ii) , Holder 's inequality and Theorem 1 . 4 , we get that 

1 N;a (KA; x)Pw (x)dx :s Cw + r K* (DN+1a) (X 1 )Pw(x)dx (X_oc ,oo)nxE[-2r,r] J -2r 

< Cw + (J K* (DN+1 a) (xdP(N+2)w (X)dX) N�2 (J:
2r 

W (X)dX) 1- N
�

2 

I ( r P (N+2) ) N+2 I 
< Cw + Cw Jo (DN+1a) (X 1 ) ) w (x)dx w ( [-2r, r] ) l - N+2 :s Cw, 

which concludes the proof. 
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