LINEAR COMBINATION OF A NEW SEQUENCE OF LINEAR POSITIVE OPERATORS

P.N. Agrawal* and Ali J. Mohammad**

ABSTRACT. In the present paper, we study the approximation of unbounded continuous functions of exponential growth by the linear combination of a new sequence of linear positive operators. First, we discuss a Voronoskaja type asymptotic formula and then obtain an error estimate in terms of the higher order modulus of continuity of the function being approximated.

1. INTRODUCTION

In [1] we introduced a new sequence of linear positive operators M_n to approximate a class of unbounded continuous functions of exponential growth on the interval $[0,\infty)$ as follows:

Let $\alpha>0$ and $f\in C_{\alpha}[0,\infty)=\{f\in C[0,\infty): \big|f(t)\big|\leq M\ e^{\alpha t}\ \text{for some }M>0\}$. Then,

(1.1)
$$M_n(f(t);x) = n \sum_{\nu=1}^{\infty} p_{n,\nu}(x) \int_{0}^{\infty} q_{n,\nu-1}(t) f(t) dt + (1+x)^{-n} f(0),$$

where
$$p_{n,\nu}(x) = \binom{n+\nu-1}{\nu} x^{\nu} (1+x)^{-n-\nu}, x \in [0,\infty)$$
, and $q_{n,\nu}(t) = \frac{e^{-nt} (nt)^{\nu}}{\nu!}, t \in [0,\infty)$.

The space $C_{\alpha}[0,\infty)$ is normed by $\|f\|_{C_{\alpha}}=\sup_{0\leq t<\infty}|f(t)|e^{-\alpha t}$, $f\in C_{\alpha}[0,\infty)$. Alternatively,

the operator (1.1) may be written as $M_n(f(t);x) = \int_0^\infty W_n(t,x)f(t)dt$, where the kernel

KEY WORDS: Linear positive operators, Linear combination, Modulus of continuity, Simultaneous approximation.

$$W_n(t,x) = n \sum_{\nu=1}^{\infty} p_{n,\nu}(x) q_{n,\nu-1}(t) + (1+x)^{-n} \delta(t), \ \delta(t) \text{ being the Dirac-delta function.}$$

The operator (1.1) was studied for degree of approximation in simultaneous approximation in [1]. It turned out that the order of approximation of the operator (1.1) is, at best, $O(n^{-1})$ howsoever smooth the function may be. Therefore, in order to improve the rate of convergence of the operators (1.1), we apply the technique of linear combination introduced by May [4] and Rathore [5] to these operators. The approximation process is defined as:

Following Agrawal and Thamer [2], the linear combination $M_n(f,k,x)$ of $M_{d_jn}(f;x)$, j=0,1,...,k is defined as:

$$(1.2) M_n(f,k,x) = \frac{1}{\Delta} \begin{vmatrix} M_{d_0n}(f;x) & d_0^{-1} & d_0^{-2} & \dots & d_0^{-k} \\ M_{d_1n}(f;x) & d_1^{-1} & d_1^{-2} & \dots & d_1^{-k} \\ \dots & \dots & \dots & \dots & \dots \\ M_{d_kn}(f;x) & d_k^{-1} & d_k^{-2} & \dots & d_k^{-k} \end{vmatrix},$$

where $d_0, d_1, ..., d_k$ are k+1 arbitrary but fixed distinct positive integers and Δ is the Vandermonde determinant obtained by replacing the operator column of the above determinant with the entries 1. On simplification, (1.2) is reduced to

(1.3)
$$M_n(f,k,x) = \sum_{j=0}^k C(j,k) M_{d_j n}(f;x),$$

where
$$C(j,k) = \begin{cases} \prod_{i=0}^{k} \frac{d_j}{d_j - d_i}, k \neq 0 \\ \sum_{i \neq j}^{k} 1, k \neq 0 \end{cases}$$

The object of the present paper is to show that by taking $(k+1)^{th}$ linear combination of the operators (1.1), $O(n^{-(k+1)})$ rate of convergence can be achieved for (2k+2) times continuously differentiable functions on $[0,\infty)$. Also, the determinant form (1.2) of the linear combination makes the determination of the polynomials Q(2k+1,k,x) and Q(2k+2,k,x) occurring in the following Theorem 1 of this paper quite easy.

2. DEGREE OF APPROXIMATION

Throughout our work, let N^0 denote the set of nonnegative integers, $0 < a_1 < a_2 < b_2 < b_1 < \infty$ and $\| \cdot \|_{C[a,b]}$, the sup-norm on C[a,b]. To make the paper self contained, we restate below two lemmas from our paper [1].

Lemma 1. Let the m^{th} order moment $(m \in N^0)$ for the operators (1.1) be defined by

$$T_{n,m}(x) = M_n((t-x)^m; x) = n \sum_{\nu=1}^{\infty} p_{n,\nu}(x) \int_0^{\infty} q_{n,\nu-1}(t) (t-x)^m dt + (-x)^m (1+x)^{-n}.$$

Then $T_{n,0}(x) = 1$, $T_{n,1}(x) = 0$ and

$$nT_{n,m+1}(x) = x(1+x)T'_{n,m}(x) + mT_{n,m}(x) + mx(x+2)T_{n,m-1}(x), m \ge 1.$$

Further, we have the following consequences of $T_{n,m}(x)$:

- (i) $T_{n,m}(x)$ is a polynomial in x of degree $m, m \neq 1$;
- (ii) for every $x \in [0, \infty)$, $T_{n,m}(x) = O(n^{-((m+1)/2)})$;
- (iii) the coefficients of n^{-k} in $T_{n,2k}(x)$ and $T_{n,2k-1}(x)$ are $(2k-1)!! \{x(x+2)\}^k$ and $Cx^k(x+2)^{k-1}(x^2+3x+3)$ respectively, where C is a constant depending only on k and k! denotes the semi-factorial function.

Lemma 2. Let δ and γ be any two positive real numbers and $[a,b] \subset (0,\infty)$. Then, for any m>0 we have,

$$\sup_{x \in [a,b]} \left| n \sum_{\nu=1}^{\infty} p_{n,\nu}(x) \int_{|t-x| \ge \delta} q_{n,\nu-1}(t) e^{\gamma t} dt \right| = O(n^{-m}).$$

First, we prove the Voronoskaja type asymptotic result for the operator $M_n(f,k,x)$.

THEOREM 1. Let $f \in C_{\alpha}[0,\infty)$ and $f^{(2k+2)}$ exists at a point $x \in [0,\infty)$. Then

(2.1)
$$\lim_{n \to \infty} n^{k+1} \left[M_n(f, k, x) - f(x) \right] = \sum_{m=k+2}^{2k+2} \frac{f^{(m)}(x)}{m!} Q(m, k, x)$$

and

(2.2)
$$\lim_{n \to \infty} n^{k+1} [M_n(f, k+1, x) - f(x)] = 0,$$

where Q(m, k, x) are certain polynomials in x of degree m. Moreover,

$$Q(2k+1,k,x) = \frac{(-1)^k}{\prod_{j=0}^k d_j} C x^k (x+2)^{k-1} (x^2 + 3x + 3)$$

and

$$Q(2k+2,k,x) = \frac{(-1)^k}{\prod_{j=0}^k d_j} (2k+1)!! \left\{ x (x+2) \right\}^{k+1},$$

where C is a constant depending only on k.

Further, if $f^{(2k+1)}$ exists and is absolutely continuous over [0,b] and $f^{(2k+2)} \in L_{\infty}[0,b]$, then for any $[c,d] \subset (0,b)$ there holds

(2.3)
$$\| M_n(f,k,x) - f(x) \|_{C[c,d]} \le M n^{-(k+1)} \| \|f\|_{C_\alpha} + \|f^{(2k+2)}\|_{L_\infty[0,b]} ,$$

where M is a constant independent of f and n.

Proof: Since $f^{(2k+2)}$ exists at $x \in [0, \infty)$, it follows that

$$f(t) = \sum_{n=0}^{2k+2} \frac{f^{(m)}(x)}{m!} (t-x)^m + \varepsilon(t,x) (t-x)^{2k+2},$$

where $\varepsilon(t,x) \to 0$ as $t \to x$.

In view of $M_n(1, k, x) = 1$, we can write

$$\begin{split} n^{k+1}\big[M_n(f,k,x)-f(x)\big] &= n^{k+1}\sum_{m=1}^{2k+2}\frac{f^{(m)}(x)}{m!}\,M_n((t-x)^m,k,x) \\ &+ n^{k+1}\sum_{j=0}^kC(j,k)\,M_{d_jn}(\varepsilon(t,x)(t-x)^{2k+2};x) \\ &= I_1+I_2\text{, say.} \end{split}$$

Using Lemma 1, we have

$$T_{d_{j}n,m}(x) = \frac{P_{1}(x)}{(d_{j}n)^{[(m+1)/2]}} + \frac{P_{2}(x)}{(d_{j}n)^{[(m+1)/2]+1}} + \dots + \frac{P_{[m/2]}(x)}{(d_{j}n)^{m-1}},$$

for certain polynomials P_i , i = 1, 2, ..., [m/2] in x of degree at most m. Clearly,

$$\sum_{j=0}^{k} C(j,k) T_{d_{j}n,m}(x)$$

$$= \frac{1}{\Delta} \frac{\frac{P_{1}(x)}{(d_{0}n)^{[(m+1)/2]}} + \frac{P_{2}(x)}{(d_{0}n)^{[(m+1)/2]+1}} + \dots + \frac{P_{[m/2]}(x)}{(d_{0}n)^{m-1}} \quad d_{0}^{-1} \quad d_{0}^{-2} \quad \dots \quad d_{0}^{-k}}{(d_{0}n)^{[(m+1)/2]}} + \frac{P_{2}(x)}{(d_{1}n)^{[(m+1)/2]+1}} + \dots + \frac{P_{[m/2]}(x)}{(d_{1}n)^{m-1}} \quad d_{1}^{-1} \quad d_{1}^{-2} \quad \dots \quad d_{1}^{-k}}{(d_{k}n)^{[(m+1)/2]}} + \frac{P_{2}(x)}{(d_{k}n)^{[(m+1)/2]+1}} + \dots + \frac{P_{[m/2]}(x)}{(d_{k}n)^{m-1}} \quad d_{k}^{-1} \quad d_{k}^{-2} \quad \dots \quad d_{k}^{-k}}$$

(2.4)
=
$$n^{-(k+1)} \{Q(m,k,x) + o(1)\}, m = k+2,k+3,...,2k+2$$
.
So, I_1 is determined by
$$\sum_{m=k+2}^{2k+2} \frac{f^{(m)}(x)}{m!} Q(m,k,x) + o(1).$$

The expression for Q(2k+1,k,x) and Q(2k+2,k,x) can be easily obtained from Lemma 1 in (2.4). Hence in order to prove (2.1) it suffices to show that

 $I_2 \to 0$ as $n \to \infty$. For a given $\varepsilon > 0$, there exists a $\delta > 0$ such that $|\varepsilon(t, x)| < \varepsilon$, whenever $|t - x| < \delta$, and for $|t - x| \ge \delta$, there exists a constant K > 0 such that $|\varepsilon(t, x)| (t - x)^{2k+2} \le K e^{\alpha t}$.

Let $\Phi_{\delta}(t)$ be the characteristic function of the interval $(x - \delta, x + \delta)$, then

$$\begin{split} \left|I_{2}\right| & \leq n^{k+1} \sum_{j=0}^{k} \left|C(j,k)\right| \, M_{d_{j}n}(\left|\varepsilon(t,x)\right|(t-x)^{2k+2} \, \Phi_{\delta}(t);x) \\ & + n^{k+1} \sum_{j=0}^{k} \left|C(j,k)\right| \, M_{d_{j}n}(\left|\varepsilon(t,x)\right|(t-x)^{2k+2} \, (1-\varPhi_{\delta}(t));x) \coloneqq I_{3} + I_{4} \, . \end{split}$$

Again, using Lemma 1 we get
$$I_3 \le \varepsilon n^{k+1} \left(\sum_{j=0}^k |C(j,k)| \right) \max_{0 \le j \le k} \left\{ T_{d_j n, 2k+2}(x) \right\} < K_1 \varepsilon.$$

Now, applying Schwarz inequality for integration and then for summation and Lemma 2 we are led to

$$I_4 \le K n^{k+1} \sum_{j=0}^k |C(j,k)| M_{d_j n}(e^{\alpha t} (1 - \Phi_{\delta}(t)); x) = n^{k+1} O(n^{-m}), \text{ for any } m > 0.$$

$$= O(n^{k+1-m}) = o(1)$$
 for $m > k+1$.

Since $\varepsilon > 0$ is arbitrary, it follows that $I_3 \to 0$ for sufficiently large n. Combining the estimates of I_3 and I_4 we conclude that $I_2 \to 0$ as $n \to \infty$. The assertion (2.2) can be proved in a similar manner as $M_n((t-x)^m, k+1, x) = O(n^{-(k+2)})$, for all m = k+3, k+4, ..., 2k+2.

Now, we shall prove (2.3). Let $\Psi(t)$ be the characteristic function of [0,b], then $M_n((f,k,x) = M_n(\Psi(t))(f(t) - f(x)),k,x) + M_n((1 - \Psi(t)))(f(t) - f(x)),k,x)$:= $I_5 + I_6$.

Proceeding as in the estimate of I_4 , we have for all $x \in [c,d]$,

$$I_6 \le ||f||_{C_{\alpha}} O(n^{-m})$$
, where $m > 0$.

From the hypothesis on f, we can write, for all $t \in [0, h]$ and $x \in [c, d]$,

$$f(t) - f(x) = \sum_{i=1}^{2k+1} \frac{f^{(i)}(x)}{i!} (t-x)^i + \frac{1}{(2k+1)!} \int_{x}^{t} (t-w)^{2k+1} f^{(2k+2)}(w) dw.$$

Therefore

$$I_{5} = \sum_{i=1}^{2k+1} \frac{f^{(i)}(x)}{i!} M_{n}(\Psi(t)(t-x)^{i}, k, x) + \frac{1}{(2k+1)!} M_{n}(\Psi(t) \int_{t}^{t} (t-w)^{2k+1} f^{(2k+2)}(w) dw, k, x)$$

$$= \sum_{i=1}^{2k+1} \frac{f^{(i)}(x)}{i!} \left\{ M_n((t-x)^i, k, x) + M_n((\Psi(t)-1)(t-x)^i, k, x) \right\}$$

$$+ \frac{1}{(2k+1)!} M_n(\Psi(t) \int_x^t (t-w)^{2k+1} f^{(2k+2)}(w) dw, k, x)$$

$$:= \sum_{i=1}^{2k+1} \frac{f^{(i)}(x)}{i!} \left\{ I_7 + I_8 \right\} + I_9.$$

In view of (2.4), we have $I_7 = O(n^{-(k+1)})$, uniformly for all $x \in [c,d]$. Since $\mathcal{Y}(t)$ is the characteristic function of [0,b] and $x \in [c,d]$, we can choose $\delta > 0$ such that $|t-x| \ge \delta$.

Using Lemma 1, we have $I_8 = O(n^{-(k+1)})$. Again, applying Lemma 1, we get

$$||I_9||_{C[a,b]} \le K_2 n^{-(k+1)} ||f^{(2k+2)}||_{L_{\infty}[0,b]}$$
. Combining the estimates of $I_7 - I_9$, we have

$$||I_5|| \le K_3 n^{-(k+1)} \left(\sum_{i=1}^{2k+1} ||f^{(i)}||_{C[a,b]} + ||f^{(2k+2)}||_{L_{\infty}[0,b]} \right).$$

Now, applying Goldberg and Meir [3] property, the required result is immediate. In our next theorem we estimate the degree of approximation of $M_n(f,k,x)$ to f(x) in terms of the higher order modulus of continuity of f =

Theorem 2. Let $f \in C_{\alpha}[0,\infty)$. Then, for sufficiently large n, there exists a constant M independent of n and f such that

Proof: For $f \in C_{\alpha}[0,\infty)$, the Steklov mean $f_{\eta,2k+2}(x) \in C^{2k+2}$ of $(2k+2)^{th}$ order is defined as

$$f_{\eta,2k+2}(x) = \frac{\eta^{-(2k+2)}}{\binom{2k+2}{k+1}} \int_{-\eta/2}^{\eta/2} \dots \int_{-\eta/2}^{\eta/2} \left[(-1)^k \Delta_{2k+2 \atop \nu=1}^{-(2k+2)} f(x) + \binom{2k+2}{k+1} f(x) \right] \prod_{\nu=1}^{2k+2} du_{\nu},$$

where $(k+1)^2 \eta < \min\{a_2 - a_1, b_1 - b_2\}$ and Δ_h^{-r} is the r^{th} symmetric difference operator defined by:

$$\Delta_h^{-(2k+2)} f(x) = \sum_{i=0}^{2k+2} (-1)^i \binom{2k+2}{i} f(x+(2k+2-i) \sum_{v=1}^{2k+2} u_v).$$

Then the function $f_{\eta,2k+2}(x)$ has the following properties:

(2.6)
$$\left\| f_{\eta,2k+2}^{(2k+2)} \right\|_{C[a_2,b_2]} \le M_1 \eta^{-(2k+2)} \omega_{2k+2}(f,\eta,a_1,b_1);$$

(2.7)
$$\left\| f - f_{\eta, 2k+2} \right\|_{C[a_2, b_2]} \le M_2 \, \omega_{2k+2}(f, \eta, a_1, b_1) ;$$

(2.8)
$$\|f_{\eta,2k+2}\|_{C[a_2,b_2]} \le M_3 \|f\|_{C[a_1,b_1]} \le M_4 \|f\|_{C_{\alpha}},$$

where $M_4 = M_3 e^{b_1}$, M_i 's are certain constants depending on k only and $\omega_{2k+2}(f, \eta, a_1, b_1)$ is the modulus of continuity of order 2k + 2 corresponding to f:

$$\omega_{2k+2}(f,\eta,a_1,b_1) = \sup_{\substack{|h| \le \eta \\ x,x+(2k+2)h \in [a_1,b_1]}} \left| \Delta_h^{2k+2} f(x) \right|.$$

Now, in order to prove (2.6), notice that

$$\begin{aligned} &(-1)^k \binom{2k+2}{k+1} \eta^{2k+2} \ f_{n,2k+2}(x) \\ &= \int\limits_{-\eta/2}^{\eta/2} \dots \int\limits_{-\eta/2}^{\eta/2} \left[\sum\limits_{i=0}^{2k+2} (-1)^i \binom{2k+2}{i} f(x+(k+1-i) \sum\limits_{v=1}^{2k+2} u_v) + (-1)^k \binom{2k+2}{k+1} f(x) \right] \prod_{v=1}^{2k+2} du_v \\ &= \int\limits_{-\eta/2}^{\eta/2} \dots \int\limits_{-\eta/2}^{\eta/2} \left[\sum\limits_{i=0}^{2k+2} (-1)^i \binom{2k+2}{i} f(x+(k+1-i) \sum\limits_{v=1}^{2k+2} u_v) \right] \prod_{v=1}^{2k+2} du_v \\ &= \int\limits_{-\eta/2}^{\eta/2} \dots \int\limits_{-\eta/2}^{\eta/2} \left[\sum\limits_{i=0}^{k} (-1)^i \binom{2k+2}{i} f(x+(k+1-i) \sum\limits_{v=1}^{2k+2} u_v) \right] \prod_{v=1}^{2k+2} du_v \\ &+ \sum\limits_{i=k+2}^{2k+2} (-1)^i \binom{2k+2}{i} f(x+(k+1-i) \sum\limits_{v=1}^{2k+2} u_v) \right] \prod\limits_{v=1}^{2k+2} du_v \\ &= \int\limits_{-\eta/2}^{\eta/2} \dots \int\limits_{-\eta/2}^{\eta/2} \sum\limits_{i=0}^{k} (-1)^i \binom{2k+2}{i} f(x+(k+1-i) \sum\limits_{v=1}^{2k+2} u_v) \right] \prod_{v=1}^{2k+2} du_v \\ &+ f(x-(k+1-i) \sum\limits_{v=1}^{2k+2} u_v) \right\} \prod_{v=1}^{2k+2} du_v \,. \end{aligned}$$

Since

$$\frac{d^{2k+2}}{dx^{2k+2}}\int_{-\eta/2}^{\eta/2} \dots \int_{-\eta/2}^{\eta/2} \left[f(x + \sum_{\nu=1}^{2k+2} u_{\nu}) + f(x - \sum_{\nu=1}^{2k+2} u_{\nu}) \right] \prod_{\nu=1}^{2k+2} du_{\nu} = 2\Delta_{\eta}^{-(2k+2)} f(x),$$

and $\omega_{2k+2}(f;|k+1-i|\eta) \le |k+1-i|\omega_{2k+2}(f;\eta)$, we have,

$$\left\| f_{\eta,2k+2}^{(2k+2)} \right\|_{C[a_2,b_2]} = \frac{\eta^{-(2k+2)}}{\binom{2k+2}{k+1}} \left\| \sum_{i=0}^k (-1)^i \binom{2k+2}{i} 2\Delta_{(k+1-i)}^{-(2k+2)} f(x) \right\|_{C[a_1,b_1]}$$

$$\leq \frac{\eta^{-(2k+2)}}{\binom{2k+2}{k+1}} 2 \sum_{i=0}^{k} \binom{2k+2}{i} (k+1-i) \omega_{2k+2}(f,\eta,a_1,b_1)$$

and thus (2.6) follows.

From the definition of $f_{\eta,2k+2}$, we have

$$\begin{split} \left| f - f_{\eta,2k+2} \right| &\leq \frac{\eta}{\binom{2k+2}{k+1}} \int\limits_{-\eta/2}^{\eta/2} \dots \int\limits_{-\eta/2}^{\eta/2} \left| \Delta_{\frac{2k+2}{2k+2}}^{-(2k+2)} f(x) \right| \prod_{\nu=1}^{2k+2} du_{\nu} \\ &\leq M' \omega_{2k+2} (f; \eta(k+1), a_{1}, b_{1}) \leq (k+1) M' \omega_{2k+2} (f; \eta, a_{1}, b_{1}) \\ &= M_{2} \omega_{2k+2} (f; \eta, a_{1}, b_{1}) \text{ for all } x \in [a_{2}, b_{2}], \end{split}$$

which proves (2.7). The proof of the inequality (2.8) is trivial and therefore we omit it. Now, we shall prove (2.5). we can write

$$M_n(f,k,x) - f(x) = M_n(f - f_{\eta,2k+2},k,x) + (f_{\eta,2k+2}(x) - f(x))$$

+ $(M_n(f_{\eta,2k+2},k,x) - f_{\eta,2k+2}(x)) = I_1(x) + I_2(x) + I_3(x)$, say.

From (2.7) we have

$$||I_2||_{C[a_2,b_2]} \le M_2 \omega_{2k+2}(f;\eta,a_1,b_1) = M_2 \omega_{2k+2}(f;n^{-1/2},a_1,b_1).$$

Next, proceeding as in the estimate of I_4 in the previous theorem, we have

$$|I_1(x)| \le \sum_{j=0}^{k} |C(j,k)| \int_{0}^{\infty} W_{d_{j}n}(t,x) |f(t) - f_{\eta,2k+2}(t)| dt$$

and

$$\int_{0}^{\infty} W_{d_{j}n}(t,x) |f(t) - f_{\eta,2k+2}(t)| dt = \int_{|t-x| \le \delta} + \int_{|t-x| > \delta} \\
\le |f - f_{\eta,2k+2}|_{C[a_{2} - \delta, b_{2} - \delta]} + K_{m} n^{-m} ||f||_{C_{\alpha}}, \text{ for all } m > 0,$$

where, $\delta < \min\{a_2 - a_1, b_1 - b_2\}$. Hence, again in view of (2.7)

$$\left\|I_{1}\right\|_{C[a_{2},b_{2}]} \leq M_{2} \, \omega_{2k+2}(f;n^{-1/2},a_{1},b_{1}) + K_{m} \, n^{-m} \, \left\|f\right\|_{C_{\alpha}}.$$

Finally, in order to estimate $I_3(x)$, we observe that by Taylor expansion

$$(2.9) f_{\eta,2k+2}(t) = \sum_{i=0}^{2k+2} \frac{f_{\eta,2k+2}^{(i)}(x)}{i!} (t-x)^i + \frac{1}{(2k+2)!} f_{\eta,2k+2}^{(2k+2)}(\xi) (t-x)^{2k+2},$$

where ξ lies between t and x. Operating M(.,k,x) on (2.9) and separating the integral into two parts as in the estimation of $I_1(x)$, from Lemma 1 and (2.4) we are led to

$$\begin{split} \left\| M_n(f_{\eta,2k+2},k,.) - f_{\eta,2k+2} \right\|_{C[a_2,b_2]} \\ & \leq M_5 \, n^{-(k+1)} \sum_{i=1}^{2k+2} \left\| f_{\eta,2k+2}^{(i)} \right\|_{C[a_2,b_2]} + K_m \, n^{-m} \, \left\| f_{\eta,2k+2} \right\|_{C_{\alpha}}. \end{split}$$

Using [3], we get

$$\left\|f_{\eta,2k+2}^{(i)}\right\|_{C[a_2,b_2]} \le M_6 \left(\left\|f_{\eta,2k+2}\right\|_{C[a_2,b_2]} + \left\|f_{\eta,2k+2}^{(2k+2)}\right\|_{C[a_2,b_2]}\right),$$

and choosing $m \ge k + 1$, we have further that

$$\left\| M_n(f_{\eta,2k+2},k,.) - f_{\eta,2k+2} \right\|_{C[a_2,b_2]} \le M_7 n^{-(k+1)} \left(\left\| f_{\eta,2k+2} \right\|_{C_\alpha} + \left\| f_{\eta,2k+2}^{(2k+2)} \right\|_{C[a_2,b_2]} \right).$$

Now, applying (2.6), (2.8) and the definition of $f_{\eta,2k+2}$ we get:

$$||I_3||_{C[a_2,b_2]} \le M_8 \left(\omega_{2k+2}(f;n^{-1/2},a_1,b_1) + n^{-(k+1)} ||f||_{C_\alpha} \right).$$

Combining the estimates of $I_1(x) - I_3(x)$ we obtain (2.5).

ACKNOWLEDGEMENT

The authors are extremely grateful to the referee for making useful suggestions leading to a better presentation of their paper.

References:

- [1] Agrawal, P.N. and Mohammad, Ali J.: On convergence of derivatives of a new sequence of linear positive operators, Kyunpook Math. J., Submitted for publication.
- [2] Agrawal, P.N. and Thamer, K.J.: Linear combinations of Szãsz Baskakov type operators, Demonstratio Math., 32(3) (1999), 575-580.
- [3] Goldberg, S. and Meir, V.: Minimum moduli of differential operator, Proc. London Math. Soc., 23 (1971), 1-15.
- [4] May, C.P.: Saturation and inverse theorem for combinations for a class of exponential type operators, Canad. J. Math., 28 (1976), 1224-125.
- [5] Rathore, R.K.S., Linear combinations of linear positive operators and generating relations in special functions, Ph.D. Thesis, I.I.T. Delhi, (1973).

Department of Mathematics Indian Institute of Technology-Roorkee,

Roorkee-247 667, INDIA.

E-mail*: pnappfma@iitr.ernet.in E-mail**: alijasmoh@yahoo.com

Recibido : 2 de Noviembre de 2001.

Aceptado: 1 de Julio de 2002.