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LINEAR COMBINATION OF A NEW SEQUENCE OF
LINEAR POSITIVE OPERATORS

P.N. Agrawal” and Ali J. Mohammad™

ABSTRACT. In the present paper, we study the approximation of unbounded
continuous functions of exponential growth by the linear combination of a new sequence
of linear positive operators. First, we discuss a Voronoskaja type asymptotic formula and
then obtain an error estimate in terms of the higher order modulus of continuity of the
function being approximated.

1. INTRODUCTION

In [1] we introduced a new sequence of linear positive operators M , to approximate a
class of unbounded continuous functions of exponential growth on the interval [0, o) as
follows: ' .

Let @ >0 and f e Cyl0,0)={f € Cl0,o0):| £ (1)) <M e for some M >0}. Then,

oo

(1.1) M (f (1) =Y Py (%) [4,m (0F (DdE+ 1+ 07" £(0),
. v=l 0
_1 —nt v
where p, ,(x)= [n v )xv(l +x)7"Y, xe[0,0),and q,, (1) =e__L1'11L’ te [0,00).
1% V!

The space C,[0,0) is normed by HfHC = sup |f(1)|e™ ¥ .f € Cyl0.o0). Alternatively,

0<t<oo

the operator (1.1) may be writtenas M, (f(¢);x) = JWn(t,,t)f(t)dt , where the kernel
. 0

KEY WORDS: Linear positive operators, Linear combination, Modulus of continuity,
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W, (t,x) = nz p,;y(x)q,,vv_l (1) +(1+x)™"8(r), 8(r) being the Dirac-delta function.
v=l

The operator (l.1) was studied for degree of approximation in simultaneous

approximation in [1]. It turned out that the order of approximation of the operator (1.1)

is, at best, O(n_l) howsoever smooth the function may be. Therefore, in order to

improve the rate of convergence of the operators (1.1), we apply the technique of linear
combination introduced by May [4] and Rathore [5] to these operators. The
approximation process is defined as:

Following Agrawal and Thamer [2], the linear combination M, (f,k,x) of Md/” (f:0,

j=0,,..,k is defined as:

-2

Mdon (f;x) dO_l dO
)

. -1 2 -k
(1.2) Mﬁﬁhn=%ﬂ%ﬂﬂﬂ 7 4T AT

-1 -2 ~
Myn,(fix) d d o d*
where d,d),....d, are k+1 arbitrary but fixed distinct positive integers and 4 is the

Vandermonde determinant obtained by replacing the operator column of the above
determinant with the entries 1. On simplification, (1.2) is reduced to

k
(1.3) M, (f kox)= ) COLKM g (fi2),
Jj=0
[k d.
Tl—— k=0
where C(j.k)=1iz0 4j ~di :
i#j
1 k=0

The object of the present paper is to show that by tdking (k + 1)™ linear combination of

_U‘”)) rate of convergence can be achieved for (2k + 2) times

the operators (1.1), O(n
continuously differentiable functions on [0,). Also, the determinant form (1.2) of the
linear combination makes the determination of the polynomials Q(2k +1,k,x) and

Q(2k + 2, k, x) occurring in the following Theorem 1 of this paper quite easy.

2. DEGREE OF APPROXIMATION

Throughout our work, let N° denote the set of nonnegative integers,

O<a; <a, <by <b) <o and || . “C[a b’ the sup-norm on Cla,b]. To make the paper

self contained, we restate below two lemmas from our paper [1].
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Lemma 1. Let the m™ order moment (me N° ) for the operators (1.1) be defined by

Ty () =M, (1= 2)";x) = nZ Py () J Guy1 (O =)™ dt + (=)™ (1 + )"
v=| 0

Then T, o(x) =1, T, (x)=0 and
nT,y i1 (X) = x(1+ )Ty (x) + mT,, (X)) + mx(x + 2)T,, g (x), m21.

Further, we have the following consequences of T, , (x) :

(i) T, ,.(x) isapolynomial in x of degree m, m #1;

(i) for every xe€ [0,00), T, (x)= O(n~lmD721y,

(iii)  the coefficients of n™* in T, 5, (x) and T, 5 (x) are (2k = D)!! {x(x+2)}* and
Cx (x+2)k l(x +3x+3) respectively, where C is a constant depending only
on k and!! denotes the semi-factorial function.

Lemma 2. Let dand ¥ be any two positive real numbers and [a,b] c (0,e0). Then, for
any m >0 we have,

sup ”Z Pny(X) an'v_l (yer'dt|=0(n™).
xelab]| V2l =26
First, we prove the Voronoskaja type asymptotic result for the operator M, (f,k, x).

THEOREM 1. Let fe C,[0,) and f?**?) exists at a point x& [0, ). Then

" 2k+2 f(m)(t)
2.1) lim n**' [ M, (fk,0)= fo]= Y —=2 Q(m.k,x)
n—ree m=k+2
and
(2.2) lim n** [ M, (f k+1,0) - f(0)]=0,
n—oo
where Q(m, k, x) are certain polynomials in x of degree m.Moreover,
k
Ok + Lk, x)=—2— ( D° ok (x+2) (x? +3x+3)
de
j=0
and

k
0(2k +2,k,x)=(—k_—l—)— Qi+ D! {x (x+ 2P,

[14;
=0

where C is a constant depending only on k.
Further, if f(2k+” exists and is absolutely continuous over [0,b] and f(z“z) eL_[0.b],
then for any [c,d] < (0,b) there holds
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23 [ (f i) = F ) e g <M "_(HD{"f“cu e

where M is a constant independent of f and n.

L,.,[O-b]}

Proof: Since f***? exists at xe [0, ), it follows that
”A+"f m)

fwy=73

m=0
where £(r,x) >0 as t > x.

- 0™+ et x) (- x) k3,

In view of M, (I,k,x)=1, we can write

ke 2532 f(m)(f)

2 M, (f k) - f(o]= M, ((t =" k,x)

+nkH! ZC(j,k)Md LE (-0 0
j=0

=1, +1,,say.
Using Lemma |, we have

T (x) = Pl(x) Pz(x) + P[m/2](x)
djn.m (d .)lm D12 g ) lme)/ 2]+ (d .n)™! ’
J J J

for certain polynomials P;,i=1,2,...,[m/2] in x of degree at most m.
C]ear]y,
ZC J.k) Td nm(x)
j=0

P (x) P (x) Bimiy (%) -l -2 -k

[(m+1)/2) [(m+1)/2]+1 te m-| do do dg
(doil) (don) (dofl) .

P](X) Pz(x) P[m/2] (X) -1 ) —k

L (72 T (menrzr Tt m—1 d, d o d,
A (d]n) (dln) (dln)
L e
R Py (x) . (m/21(X) 47 4 4,
(dkn)[(m+l)/2] (dkn)[(rn+l)/2]+] (dk n)m-l
(2.4)
=n" " 0m k, x)+ o)), m=k+2,k+3,....2k+2.
2k+2 f m)( )

So, I, is determined by Z Q(m, k x)+o(l).

m=k+2
The expression for Q(2k +1,k,x) and Q(2k +2,k,x) can be easily obtamed from

Lemma | in (2.4). Hence in order to prove (2.1) it suffices to show that
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I, >0 as n—e. For a given £>0, there exists a d>0 such that |t—:(1.x)|<s,

whenever ]t—x]<6, and for |t—x|26, there exists a constant K >0 such that
)
e, )| (1 - )2k < g oYt

Let @ 5(r) be the characteristic function of the interval (x - &, x + J)-, then

k
|| <n* S lCG k| My e, (1= 0)* 2 Dd5(1);x)
j=0 '

k
+n Y NCGKR| Mg e 0| (= 0P (= Bs ()3 x) =15+,
j=0

k
Again, using Lemma 1 we get /5 Si-:nk”[ZIC(j,k)’] max{de,,.z,\.+2(,r)}< K.
j=0 0<j<k

Now, applying Schwarz inequality for integration and then for summation and Lemma 2
we are led to

k
1, <K n* S |C k) M g, (1= @5(0);x) = n**10(n™™), for any m>0.
j=0
=0n**"My=0(1) for m>k+1. -
Since € >0 is arbitrary, it follows that /3 — 0 for sufficiently large n. Combining the
estimates of /5 and [/, we conclude that/, -0 as n— e . The assertion (2.2) can be
proved in a similar manner as M, (t-x)" k+1,x)= O(n'(k+2)) , for all

m=k+3k+4,.2k+2.
Now, we shall prove (2.3). Let ‘¥'(¢) be the characteristic function of [0,b], then

M, (fk,x)=M,(Y@)(f@) = ).k, x)+ M, ((1="F()(f ()= f(x).k,x)
= 15 + 16'
Proceeding as in the estimate of /4, we have for all xe[c,d],

Ie <|f]., O(™),where m>0.

From the hypothesis on f, we can write, for all t€[0,b] and x€ [c,d],

f(0) - flo)= 2§1£@(r L }(r —w) R () dw
. par ! 2k +1)! :
Therefore '
2k+1 f(i) (X)

Is= 2 == M, (PO (-0 k)
i=] :
t

! M, (P(0) [ =w) ™ £ 22 () dw &, x)

+—
(2k +1)!
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= {M ((t—r) k,x)+ M, ((‘P(r)—l)(r—x)ﬂk,x)}

1

t
—_—M — ) 2kHl £ (2k+2)
o MO rj(t w) 2t 2D () & x)

2+ ()

= ' (r){17+1 }+ 1.
=l !

In view of (2.4), we have 5 = O(n_(km), uniformly for all x€ [c,d]. Since ¥(1) is the

characteristic function of [0,b] and x e [c,d], we can choose d >0 such that lt - x|z 0.

Using Lemma 1, we have [g = O(n~ Dy, Again, applying Lemma 1, we get

"19"C[ab] < K:,_ n—(k'ﬂ) f(2k+2)

‘L‘,,[Ob . Combining the estimates of /5 — /4, we have

(k+1) (i) (2k+2)
e b

Now, applying Goldberg and Meir (3] property, the required result is immediate.
In our next theorem we estimate the degree of approximation of M, (f,k,x) to f(x) in

terms of the higher order modulus of continuity of f m
Theorem 2. Let f € C,[0,%). Then, for sufficiently large n, there exists a constant M
independent of n and f such that

(2.5) 1M (k) = Fllota, o0 5M{°°2k+2(fv"—”2aanvb1 ) +"_(k+”"f“c }

Proof: For f e Cy[0,%), the Steklov mean f, 5., (x)€ C** of (2k +2)" order is

defined as

-(2k+2) M/2 n/2 s 2+ k42
fn,2k+2(x):—2k—— J (- 1) A7k+2 fO )+( Jf(x) Hduv,
+2 /2 -ni2 2 Uy
k+1 vl

where (k+1)277 < min{a, —a;,b; —b,} and 47 is the r" symmetric difference operator
defined by:

apan 2k+2 2k+2
_.( k+)f( )—Z( 1)( ; jf(x+(’)k+7_l)zu)

v=l
Then the function f 54 42(x) has the following properties:

(2k+

<M177 Dy (fomanb);

(2.6) “ (”k+")

,2k+2
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2.7 ”f -/ 2/<+2u b SM2 @22 (S04, 01) 5
(2.8) ‘.fn 7/<+2” b) —M “f“c[a Bl —M4||f||c )

where M, =M, eb', M;'s are certain constants depending on k& only and

[a’v

Wap42(f. 1, a;,by) is the modulus of continuity of order 2k + 2 corresponding to f :

Orpa (fo1ay,b0) = sup Az,,k+2 f(X)l-

|h|<17
x.x+(2k+2)hela; b))
Now, in order to prove (2.6), notice that

2k +2 5
(- l)k( ol ]ﬂ2k+' Sr2k+2(X)

n/2 n/2 [2k+2 \ 2k+2 ( 2%+2
= j j Z( 1)( _ )f(r+(k+l—z)Zu +(—1)*k ) z)} Hdu

-n/2 -n/2L ! v=l

n/2 n/2 | 2k+2 2k+2 2k+2
= [ Z( 1)( jf(v+(k+1—z) >uy)| [1duy

-n/2 /2| v=l v=l

_ti/\+l

ni2 n2rk ) 2k+2
=] . Z(—l)‘( , )f(x+(k+1—z) > u,)

-2 -pr2li=0 ! v=l

2k+2 2k+2 2k+2
+ D (- 1)[ ; ]f(x+(k+1—z)2u )}Hdu
i=k+2 v=l v=l

n/2 n/2 2k+2
= J J' Z( ])[ ) j{f(x+ k+]—z)Zu

-n/2 _n/v (=0 L v=]|

2k+2 2k+2 -
+f(x—=(k+1-1) Zuv)}Hduv
v=| v=]
Since ‘
4 2k+2 n/2 n/2 2k+2 2k+2 242 ein
— J [f(x%— Zuv)+f(x— Zuv)j|Hduv =2A:7(“k+“)f(x),
dx -n/2 . -n/2 v=| v=l v=]

and @y 4o (filk +1=i|7m) S|k +1= i@y 42 (f377), we have,

—(2k+2) k 2%k +2
_n ~(2k+2)
1 2A
Clapby)  (2k +2 Z( ) ( i j (ket-i) S ()
k+1

f (2k+2)
n,2k+2

Clay by
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—-(2k+2) &k

Ui 2% +2 ,

s 2% +2 2;}( ; ](k+1—l)w2k+2(f,77,a1,b1)
k+1

and thus (2.6) follows.
From the definition of f, 5., we have

. ‘ n n/Jz n/'[z ke ) 2ﬁ2
f—fnv2k+2 <— A-Zk:l f X duv
2k +2 N2 -m2| 2w v=l
k+1 vel

SM'w2k+2(f;77(k+l),a1,bl) S(k+1)M'a)2k+2(f;77,a1.,b|)
=M, @y, (fi1,ay,by) forall xela,y,b,],

which proves (2.7). The proof of the inequality (2.8) is trivial and therefore we omit it.
Now, we shall prove (2.5). we can write

M, (f ok, X) = F(X)= My (f = Fraksa ko) + (Fraiea () = £(2)

+ (M, (frake2:5: ) = frapra (1) = 1(x) + 15 (x) + 15 (x), say.
From (2.7) we have

leHC[ug,sz SM oWy (Fi1.a1.b) =My 5 (fin™ 2 0 b))
Next, proceeding as in the estimate of [, in the previous theorem, we have
k o -
L] 2NCUR Wy (1) £ () = fr2eaa 0] d 1
J=0 0 '

and

c’]“/le-n ([vx)‘f(t)_f,7’2k+2([)|d[: -[ +
0 |-x|<8 |56

< Nf - f;],2k+2\ Clay-5:5,-5) + km n" ”fuc(, ,forall m>0,

where, § <min{a, —a,,b —b,}. Hence, again in view of (2.7)
-1/2 -
“11||C[a2,b3] My @ypiy (fin™ "% ay,b))+ K pyn™" ”fuca .
Finally, in order to estimate /5(x), we observe that by Taylor expansion

2k+2f(i7)k 2 (X)
2.9)  frauma(D= Yy =t

i=0
where £ lies between ¢ and x. Operating M(.,k,x) on (2.9) and separating the

(2k+2)

(t-x0' +mf,,‘2k+2 (&) —x)*2,

i!

integral into two parts as in the estimation of /,(x), from Lemma | and (2.4) we are led
to

Rev. Un. Mat. Argentina, Vol. 44-1



LINEAR COMBINATION OF A NEW SEQUENCE 41

HM,, (fraks2:K0) = faoken “C[az.bzl

2k+2
=(k+1) ()
SMsn Z “fn.2k+7
i=

—lrl
m

2lctay s j ’

(2+2)
* “fr7.2k+2

k42 .
- C[d:.b:] fl'] ke Cu

Using [3], we get

(i)
n2k+2

("L+’)
e

<M .
Clay by 6[.‘f’7'2/‘+2 Claa. b-\

and choosing m 2k + 1, we have further that
“M,, (faks2 ko) = f,,'2k+2‘ <M~ (”fq,zmz\c
Now, applying (2.6), (2.8) and the definition of £, 5;,, We get:
|]13||C[a2'bz] <My (.coz,(ﬂ(f;,,-l/z,al by)+ D ”f”ca )

Combining the estimates of [|(x)—/5(x) we obtain (2.5).

Cla by) ]

Clay by)
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