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Spline wavelets in periodic Sobolev spaces and
application to high order collocation methods

F. Bastin, C. Boigelot, P. Laubin

Abstract

In this paper, we present a particular family of spline wavelets constructed
from the Chui-Wang Riesz basis of L2(R). The construction is explicit, al-
lowing the study of specific functional properties and rather easy handling in
numerical computations. This family constitutes a Riesz hierarchical basis in
periodic Sobolev spaces. We also present a necessary and sufficient condition
of strong ellipticity for pseudodifferential operators obtained with respect to
these splines. It uses a new expression for the numerical symbol of the bound-
ary integral operators. This expression allows us to use efficiently collocation
methods with different meshes and splines.
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1 Introduction

Collocation methods using splines is a natural and widely used technique for solving
strongly elliptic pseudodifferential equations on closed curves (see [2], [8], [20]).
However, stability, asymptotic convergence, good condition numbers and efficient
compression are not so easy to obtain. For smooth boundaries, the convergence of
these methods has been proved by Arnold, Saranen and Wendland ([1], [2], [19]).
Several recent papers use these methods in a more general setting (see for example
[12], [14], [15]).

. Wavelets can be used in this context because they provide Riesz bases, allow
progressive computations and give good compression schemes. Moreover, one can
adapt the construction of the basis so that the properties of the functions solve or
reduce technical and numerical difficulties.

In this paper, we first present new explicit constructions of Riesz bases of spline
wavelets in periodic Sobolev spaces based on the Chui-Wang wavelets and we study
typical properties of these bases. We focus on spline functions especially because

" they are easy to handle in implementation. We also show how to obtain the dual
bases explicitly. '

Then we discuss the usefulness of these bases to obtain good convergence and
asymptotic stability for collocation methods in the resolution of boundary integral
equations. In this framework, we present a result concerning the numerical symbol
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of periodic pseudodifferential operators. We give a proof of the characterization of
the coercivity condition which leads to relations on the meshes and order of the
splines that is easy to handle (see Theorem 7).

As a typical example of application, we treat the simple and double layer po-
tentials for the Dirichlet problem of the Laplace operator. The first one involves
Sobolev spaces of half integer orders and the second one Sobolev space of integer
orders. Some numerical computations of the condition number are presented and
confirm the theoretical results.

2 Spline wavelets in periodic Sobolev spaces

2.1  Chui-Wang wavelets

For any strictly positive integer m and any integer j, denote by Vj(m) the set of
functions on R which are smooth splines of degree m — 1 with respect to the mesh
{279k : k € Z} and belong to L?(R). If § € [0, 1[, we denote by V](:;n) the same set of
splines but with respect to the mesh {27(k + 6) : k € Z}. The corresponding sets
of 1-periodic splines are respectively denoted by V](-m) and V;T;).
Let
Nim = X[o,1] * - - - * X[0,1]

m

be the cardinal spline function. The classical Chui-Wang spline biwavelet 1), € Vl(m)
is defined by R R ‘
wm(2§) = pm(&)NM(g)

Vwith
. 1—e % .,
pm() = e () (e )
+00 m—1
wn(®) = > INaE+2km)P= > e Nyu(m + k).
k=—00 k=—m+1

It is well known (see [6]), that the functions ¢,,(z—k), k € Z, form a Riesz basis of
the orthogonal complement W™ of V{™ in V™. Moreover supp(¥) C [0, 2m —1].
Since we have orthogonality between the levels, the functions

Ymijp(7) = 290 (2z — k), j k€2,

form a Riesz basis of L%(R).

Let oo
Upij(z) = 27 D (2 (z k), >0
k=—oc0
and

Ui (2) = Uiz — k2779), 5> 0,0 < k< 2.
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It is readily seen that for every j, the functions ¥,,;x,0 < k < 27, form a Riesz
basis of the orthogonal complement of V](-m) in VJ(TI) and that we have orthogonality
between the levels. The Riesz bounds are independent of j. The spline functions
1and ¥, %, J 2 0, 0 < k < 27, form a Riesz basis of L?(]0,1[). Moreover, after
normalization of the constant function 1, the Riesz bounds in L?(]0, 1[) are the same
as the ones obtained for the functions ¥, J, k € Z, in L?(R).

Let us consider the Sobolev spaces H,.(]0, 1[), s € R, of 1-periodic distributions
endowed with the norm
e
fulf, = 3 k2 e

k50

ey, = uol? + o

where

and ug is the k-th Fourier coefficient of u. We also use the notation

lullo = [lullL2qo,1p-

We recall also that in case s > 1/2, the norm ||.|| g,, is equivalent to the following
one v
[ull? = [(O)® + [ulfr,,, = (@) + Y [k|**ful>
k50

The stability of Chui-Wang wavelets in Sobolev spaces has been studied in [16]
and [10]. This result is covered in greater generality in various studies. However, for
the sake of completeness, we give here a simple and very direct proof in the periodic
setting with optimal indices.

Proposition 1 If |s| < m — % then there are C,c > 0 such that

+00 271 400 271 +o00 271
DS el <UD D k2 Ukl SC DD leinl®
j=0 k=0 7=0 k=0 j=0 k=0

This result is optimal since Wpm;; € H3,(]0,1[) if and only if s <m — 3.
Proof. Let
21
Q;f = Pinf - Fif = Z CikVmijk-
. k=0
Here P; is the L%-orthogonal projection onto VJ(-m). Let s be such that |s| < m — %
We have ‘
1Q; flla, < C2°N|Q;flle V5 €N.

Indeed, if s > 0, this property follows from the inverse property of periodic splines
in Sobolev spaces (see for example, Theorem 2.11 of [17]). If s < 0, we write

1Qifllag, < sup [{Qif )l < IIijHo| sip_ {1 Q590

_s <1 ~s <
ol s < ol <

< 11Qiflle sup |lg — Pigllo
"g”Hp—eerl
< C271|Q;fllo
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using the approximation property of splines-(see Theorem 2.6 of [17)).

Now, if € > 0 satisfies |s £ €| < m — 1, we get

Fa T2RD_2TUMNQSF, Quf )y,

i<k

+00 +0oo
“.Z(;Q_JSQMH%"”“ < Zog—zyan,-f\
Jj= Jj=

+00
CYNQifIE+2R D275 (Q,F, Qu

<
j=0 i<k
+00 '
< O NQifIG+2Y 279 Qs f Nl prase Qe fll e
j=0 i<k
+o0 ]
< C Y 2 Q, fllol| Qe fllo
5,k=0
<

+o00
Cr Y 11Q; 115
j=0

Finally

+o0
> 1Q;f118
i=0 -

=0 =0

+o00 +00
<Z 2]’3ij,}:2-”ij>
L2(Jo,1))

+00 +o0
<D Qi fllaa 1Y 277Q5 fll .,
j=0 3=0

IA

+00 +00
Co DRI 1D 27°Qs fllmg,,
=0 §=0 .
This proves the proposition. O

2.2 Modified spline wavelets

Since, by construction, the function ,, has m vanishing moments, there is a unique
spline function 6, € V1(2m) on R such that D™, = 9, and supp(f) C [0,2m — 1].
Explicitly, we have

1 z m—
Om(z) = ] 0/(-’l«‘-lt) " (1)
and also —~ ©
2 ey Ym (€
Let

+o00
Omyi(z) =27™H2 N~ 6,.(2P(x - k), j > 0.

k=—00
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SPLINE WAVELETS IN PERIODIC SOBOLEV SPACES 57

It follows that .
supp(Om;;) C U [k, k+277(2m — 1)].

k=-00

In [0, 1], this set is reduced to an interval with length 277(2m — 1) if j is large. With
the previous notation, we get D™O,,,; = ¥,,.;. We also consider the functions

Omjk(z) = Omj(z —k277), §>0,0< k< 2.

These functions are not orthogonal to constants since 8,, has no vanishing mo-
ment. But this property is “replaced” by the fact that they all vanish at 0, which is
very useful in the sequel. We give now the proof of this property.

Lemma 2 For every m € N and every integer p, we have

Om(p) = 0.

It follows that for every m € N,j > 0,k € {0,...,29 — 1}, and q € Z, we have
Om;k(277¢) = 0.

Proof. Since

+oo
Omisk(27g) = 2752 Y 76, (g — k — 271)
l=—00
it suffices to show that
On(p) =0 VpeZ.

From the relations

Um(26) = Pr(€)Nm(€) = 27 Do (€ + ) (1) N (€)
G
m—1
wm(€) = Z e *E No(m + k) = Z e * Ny (m + k)
k=—-m+1 k=-o00

we get
On(26) = 27memim-l (€+7F)N2m(§)

= 9—2m—i(m=1)¢ Z (_]_)ke_ikENQm(m + k)j\\f?m(é)

k=—00

Om(z) = 272mH1 Z )% Ny (. + k) Nop (22 — (k +m) + 1).

k=—o00
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It follows that for any integer p, if one changes the sum over & to a sum over k' with
k+m=2p— (m+k')+ 1, one gets

Om(p) = 272t Z N2m (m+k) Nom(2p — (m+ k) + 1)
k=-00
= -7 Z ) Nom(2p = (m + ) + 1) Nogn(m. + K')
ki=— . .
= —0n(p).

a

Proposition 3 For any integer m > 1 and any real number s such that % <5<
2m — 1, the functions 1 and 2/™=9@p;, j >0, 0 < k < 27, form a Riesz basis of

per(]O 1[)

Proof. By construction, we have |(©m k)il = |(270) ™™ (U k)i| for L € Z,1 # 0
hence :

+00 27 -1

| C] k2j ™ S)em e lepcr = (27r)_m' Z Z cjnkz](m_S) lIlm;j,k

;=0 j=0 k=0

+
8
E

s—m
Hpcr

-~
1l
<}
>
Il

400 291

2m)™™ Z Z G, § 2/ \I’mjk”H,,c,

j=0 k=0

It

with |s —m| < m — 1/2. Using Proposition 1, we then get constants ¢, C > 0 such
that

400271 +o0 271 - 400 27-1
. 2 j(m— 2 2
e N ekl <D0 a2t VO sl < CY N lesul
j=0 k=0 §j=0 k=0 j=0 k=0

Now, since the functions ©,; all vanish at 0, we get

2

+00 27 ~1 +o00 271
oo 9 o
ot D D w2 ™ IOmul|l = leol® + 1Y 2 Oyl
j=0 k=0 R j=0 k=0

Using these two relations, we obtain that the functions 1 and 27 (’”‘S)@m;j,k, i >0,
0 < k <2/, form a Riesz family.

The functions O« are 1-periodic spline functions of degree 2m —1 with respect
to the mesh {27771 : k € Z}. The space V+1 of these functions has the dimension
27*1 and we have exactly 14+ 1+2+ ...+ 2/ = 27+! elements of this space among
the Riesz family. Since the union of these spaces is dense in Hp,,( (0, 1[), this proves
the proposition. O
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SPLINE WAVELETS IN PERIODIC SOBOLEV SPACES 59

It is now natural to ask for a characterization of the dual Riesz basis of the family
{1} U {2 90,5k, 7 >0,0 < k < 27},

at least for s = m. If one remembers the link with the Chui-Wang wavelets, it is
clear that this basis should be related to the dual of the Chui-Wang wavelets and
" constructed in the same way.

For any m € N, it is known that the function ¥m, called the dual Chui-Wang
wavelet, defined as

2 P (€)
m(E) = &
( T2 o |Um (€ + 2km)|2

has the following properties (see 6], [7]).

Proposition 4 For every j, k € Z we set P x(z) = 29/ 2, (2z — k), z € R.
1) We have

+o0
> [l + 2 = m(€mShem(m +3), € €R

k=—00

It follows that {[m is ezponentially decreasing and that there are c,(cm), k € Z and

Tm > 0 such that

+00 ’
Ym(z) = Z Cfcm)wm(x —k), T€R, Sl]ip eTm'HIC}(cm)l < 4o0.
k=—00

2) For every j € Z, the family v:[)vm;j,k (k € Z) is the L*(R) dual of the Riesz basis
Ymijk (k € Z) of Wj(m). Since the spaces Wj(m) are L?-orthogonal to each other, we
get that the family Ymjk (3,k € Z) is the dual Riesz basis of Ym;jk (4,k € Z).0

We define §m as follows:

T

Om(z) = (;/ (=)™ Pm(t) dt, z€R.

m—1!J_,

Here again, it is readily seen that this function has the following properties.

Proposition 5 We have D™, = ¥ on R and G (z) = S57° ™0, (z — k) for

k=—o00

every € R. It follows that Orm belongs to Vl(zm) and is exponentially decreasing.O

For 0 < j and 0 < k < 27, we also define

+00
Opmy(z) =272 N 0 (P (2= k), Omyk(x) = Omy(z —k277), z€ER.

k=—00
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We see that these functions are continuous 1—periodic functions and that they are
related to the functions ©mjp, (7 > 0,0 < p < 27) by the following relations

271

Z c(m)@mJ (z — 277k) Z C ,p mijp(T

k=—o00
with
+o00
(m) (m)
iy = 2 Cyawr P=0... 2 —1
k=—00

Proposition 6 For any integer m > 1, the family {1}u {(27r)2"‘ém;j,k, 7>0,0<
k < 27}, is the dual of the Riesz basis {1} U{Omjk, j > 0,0 < k < 27} relatively to
the scalar product

(f,9)m = FO)G(0) + Y [k[*™ fiTy

k+£0

Proof. We only have to show the orthonormality between these two families. We
have

<9m;j,k, ém;j’,k’>m = Omnj(0)Ormyr e (0) + (2m) 7" <‘I’m;1‘k, ‘T’m;jﬂk’>o
= (@m) <‘I’ﬁ;j,k7‘1’m;j',k'>0
= (27T)—2m5j,j15k,k/
and
_, (Omijk, 1),, = 0.
Moreover, using ©,,(1) =0 (I € Z), we get

291

i 0) = 2 5 O 20 =

forevery j > 0,0 < k < 2/. Hence

O

Remark. Other hierarchical Riesz bases of splines could be used for test and trial
functions (the Chui-Wang periodic wavelets are the first example). To get collocation
methods, test functions have to be splines of degree 2m—1 but for the trial functions,
according to Theorem 7, we could use splines of any degree. For example, we could
also consider functions coming from ! < m primitivations of %,, i.e. the functions
Smy defined by DlSm;l = %,,. These functions have m — | vanishing moments and
the corresponding periodic functions :

Spmitis () ) = 2772 Z Smat(2(z — p))

p=—00
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SPLINE WAVELETS IN PERIODIC SOBOLEV SPACES 61

are such that A

L2 Sk, 52 0,0 <k < 2,
form a Riesz basis of smooth 1-periodic splines of degre m + [ — 1 for H;_(]0,1[) if
l,s satisfy 1/2—m + 1 < s < m+1—1/2. This result is directly obtained using
Proposition 1.

Moreover, since the functions S,,; have at least one vanishing moment, the func-
tions S,,..; are L%(]0, 1[) orthogonal to constants. This leads to the fact that we see
immediately that the dual Riesz basis of the family

L2852 0,0 k<2,
relatively to the scalar product
{f:9)m,, = foo + Z |k|21fk§k_
k#0
is obtained by the same procedure as before, but with [ primitivations of the dual
Chui-Wang wavelet.

3 Collocation with spline wavelets

3.1 Presentation of the problem
Let © be a smooth bounded and connected open subset of R? whose boundary 09
is also connected. To solve the Dirichlet problem

—Au=0 in Q

oo = f
two methods are widely used. First, we can use the single layer potential represen-
tation of u

=_—/ y)log|z —y|do(y), z €N

where the boundary integral equation for v is simply Vv = f with
(Vo)(z) = ——/ y)log |z — y| do(y), = € ON.
We can also represent the solution as a double layer potential
1 (€—y)y
uz) = — —Haw(y)do(y), z€Q,
@) =5 | T u()doty)

where v is the unit inward normal to the boundary and the boundary equation for
wis (3 + K)w = f with
1 (z —vy).v,
Kw(z =—/ Y y(y)do(y), = € N
(z) 2m Joa |z -yl ) )

It is known that V : H*(9Q) — H**1(8Q) is an isomorphism for every s if and
only if the analytic capacity of € is not 1. Moreover 3 + K : H*(09) — H*(09)
is an isomorphism for every s € R. Since the boundary is smooth, K is a compact
operator from H*(002) to H*(0%).
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62 F. BASTIN, C. BOIGELOT AND P. LAUBIN

3.2 A result of coercivity

These two boundary operators are particular cases of the classical pseudodifferential
operators with constant coefficients in the periodic setting : ‘

A=0,Q5 +b.Q% + K,
where b,,b_ € C, B e R, _
Qu(z) = Y [kPure™™=,  QPu(z) = sen(k) |kl ure™

k£0 k#£0

and, for all 7 € R, Ko is compact from Hp, into ng‘rﬂ. Indeed, if we use a pa-
rameterization of 99 proportional to arc length and defined in [0, 1], the boundary
operators considered are of this form with :

-f=0and b_ =0,b, = %, Kou = % + Kwu for the double layer potential
-B=-land b_ =0,b; = &, Ko a compact operator from H’, (]0,1[) into CS, for

per per
the single layer potential.

The following result gives an estimate of Céa type for strongly elliptic constant
coefficients pseudodifferential operators. It concerns splines of any order (see also
[17]). The technique used here presents a new expression of the condition leading
to the estimate of Céa type. This expression gives then an easy description of the
relations between the degree (r) of the splines and the meshes (see 1) and 2) of
Theorem 7 below). It also leads to results on boundedness of condition number
arising in numerical computations.

Theorem 7 Let m be a strictly positive integer, 0 € [0,1],
‘ Au=b,Q%u +b_Q%u + up

a pseudodifferential operator and assume that s > % and T + % > s+ (3. Then there
is ¢ > 0 such that

sup [{Af, ), | 2 cllf

(2m) -
Qevj vHQHHggrt—s—l

HiP

for every j and every f € V](:;H) if and only if by # £b_ and the function
+00 r—BN(r)(t a 9)
O,0) = [ T thoI)y
a4 (a6) /0 cosh t — cos 0

does not vanish in |0, 1] with § = 2m6. Here
NO(6,0,0) = (b + b et — ) (—1)7H (b — b)e (e — ¢,

Defining cy := by +b_, c_ := by — b_ and v := inf{Recy, Re_}, we get the
following particular cases of application.
1) Assume (b =0 and by #0) or (by,b_ € R and v > 0). Ifr is odd (respectively
T is even), the condition is satisfied if and only if § # % (respectively § # 0).
2) Assume v > 0. If T is odd (respectively r is even), the condition is satisfied in
case 6 = 0 (respectively 6 = %)
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Proof. Let N = 27. The Fourier coefficients
1 .
Cp = / g(x)e——ka:z dr
0

of g€ VJ(-Z'") satisfy
kchk = (k + N)2m0k+1v, keZ.

For f € VJ(.,TJH), we have

+o00
f(IL') — z ake—2ik1r6/N 62ik1rz

k=—00

where the coefficients . 5
QU =/0 f($+N)e—2i7rk1 dz
satisfy
/CH'IOzk = (k + N)T+lak+N, keZ.
‘Using this, we get

+o0

(Af,!]);{gér = aoCo + Z |k|2m+f3(b++b_ Sgn(k))akc_ke‘%’““‘s/N
k=—00
N-1

= ot + § k?m—H‘-{—1akc—k-e—%lmré/Ndlc
k=1

which leads to

S = sup [{(Af, 9) g |

{2m) per
ev;e, ~s=1
g€V, gl 2=

N lal2d?)
—_ la0|2 + Z k2(7‘+1) k k: — Af, gO
P Toollnzz— /.

k=1 per
per

where, for k=1,..., N -1

+o0 too
L k+pN|P 1
dy = e~ %™ (b, + b_sgn(k + pN —l———, = —
k p;oo ( ++ Sgn( p ))(k+pN)T+1 k Zoo (k+pN)2s
and go € Vﬁm) is defined by
co=S"ltag, o= S‘_le‘Zi”k‘s/Nkr+1'2makgﬁ, k=1,...,N -1

Pk
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In the same way

+o0
o> + D [k[2+ oy ?

k=—00

N-1
_ Ia0|2 + Zk2(r+l)|ak|2
k=1

71240

+00 1

Z [k + pN[20+D—2(+8)°
p=—00

It follows that the stated bound holds if and only if there is C' > 0 such that

oy . e ?
oo [k + pN[2r+D=-2(s48) = "

for any N,k such that 1 < k < N. Since both sides are homogeneous of degree
2(r + 1 — s — B) with respect to (k, N), this is equivalent to the existence of C > 0
such that

oo 1 +o00 1
C i
P;oo (p+a)* q;m (q + a)X+D=2(+5)
+o0
% +al’
< 2ipmé () b sen(p+a L_ ,
< |p;ooe (bs +b-sgn(p +a)) o o (%)
for any a €]0,1[. Lemma 8 below shows that, for a € ]0, 1[, we have
+oo ‘ +00 4r—f (r)
. +a[ﬂ 1 t N (t a 0)
—2ipmd b b Ip _ / .
p;ooe (by+b_sgn(p + a)) (p+a)yt 2M(r+1-5) /o Py —

The left hand side of (*) is a continuous and strictly positive function of a € ]0,1];
moreover it has the behaviour of a=2"+1=#) (resp. (1 — a)~2+!=A)) when a — 0+
(resp. 1-). Using the results of Lemma 8, the assertion readily follows. O

To simplify notations in the following lemma, we assume that we are in the
conditions of Theorem 7 and we set

400
o —iph lp + alf
£(a,0,r) = p;ooe P (b++b_sgn(p+a))m

= c¢.&:(a,0,7) + (=1)"*c_ & (a,8,7)

where
+o0 —iph -1 —ip6
e P e P
g a,@,r = R 5_(a,0,r)= .
‘+( ) pgo <p + a)7’+.1—ﬁ ’ p;x) (__p _ a)r+l—ﬂ
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Lemma 8 We consider the function a € |0,1[ — &(a,6,71).
1) This function is continuous, satisfies

1 +00 tT—ﬁN(T) (t,a,e)
€(a,0,r) = m/o “coshi—cosf O

and

lim a""' £, (a,0,7) € C\ {0}, hr{l_(l —a)"t'PE_(a,0,7) € C\ {0}.

a—0t

2) Assume (b— =0 and by #0) or (by,b_ € R andy > 0). Ifr is odd (respectively
T 1is even), then

E(a,0,r) #0Va € |0,1[ & 6 # w(r_espectively 6 #0).
3) Assume v > 0. If r is odd (respectively T is even), then
6 = 0 (respectively § = ) = E(a,0,7) #0 Va € ]0,1[.
Proof. 1) For a > 0, |z| < 1, Ra > 1, we have
+oo +00 +00 ya—1,~(a-1)t

> T Zz”/mt“—le-(“ﬂ)td%— . / dt
(a+p  TI(a) 0 - T(a) Jo et =z '

p=0 p=0

It follows that

+o00 e—ipo 1 0 i‘i eipa
£(a0,r) =y S — (1)
+ ; (p + a)7“+1—ﬁ o (p +1- a)r+1—5
1 +o0 tr—ﬂe(l—a)t +00 tr_ﬁe(a—l)t
= — —dt —1'+1_/ ——dt
F(T +1- ﬁ) (C+A et — g1 + ( ) ¢ 0 e~ _ -t )
_ 1 /+°° t™=PN)(t, a,0)
T 2D(r+1-0) Jo cosht — cosf

with ,
N (t, a, 9) — c+e—at(et _ 610) + (_1)r+lc_eat(ei0 _ e—t)-

The behaviour of the functions £, (a,8, ) is clear.
2) Ifb_ =0, we get

NO(t,a,0) = by (e7(e* — cos ) + (—1)""e*(cosf — e7*) —isin (e~ + (—1)"e*)) .

Then, for by # 0, a direct computation shows that if r is odd (respectively r is even)

1
£(a,6,r)=0 & f=7manda= E(respectively =0and a= %)
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If b,,b_ € R, we separate real and imaginary parts and get

Nt a,8)
= cre (e —cos) + c—(—1)e* (e — cosf) —isinO(cye ™ + c_(—1)"e™)
= et L (—1) c_el® D — cosf(cpe™ + (—1)"c_e®)
- —isinB(cye™® + (1) c_e®).

Assume now ¢y > 0. For r even, we get directly that if £(a,8,7) = 0 for some
a € 10,1[, then § = 0. The converse also holds since

lim &£(a,0,7) = +o00, lim &(a,0,7) = —oo0.

a—0+ a—1-

Let us assume now that 7 is odd. If a € 0, 1] is such that £(a,8,r) = 0, a look at
the real part of N (T)(t, a,8) shows immediately that 8 # 0; moreover, since

sinf R NO(t,a,0) + (1 —cos8)S N(t,a,0) = sinf(cye (e — 1) +c_e® (1 —et))
we have

0 = sinf RE(a,0,r) + (1 —cosf) E(a,b,1)

sin @ /+°° tr_ﬁche‘“‘(e‘ —1)+ce*(l—et) ”
2I(r+1-0) Jo cosht — cosf '

This implies sin # = 0 and finally # = 7. As in the previous case, the converse also
holds.

3) For 7 even and 6 = 7 (respectively r odd and 6 = 0), we get |

N©(t,a,0) = cre (e £1) + c_e®(1 £e™?).
Taking real parts proves the assertion. O

Remarks.
1) If we consider _
A=b,Q% +b_Q° + K,

where by, b_ € C, B € R,

Q'iu(:c) = Z |k|Pure?®™, QPFu(z) = ngn(k)lklﬁukei’isz
k#0 S

and, for all 7 € R, Ko is compact from HJ, into H;;rﬁ and if the operator u —

b+Q€u + b_Q[iu + ug satisfies the inequality of Theorem 7, then there is a compact
operator Ky : H%2(]0, 1) — H:2#(]0, 1[) such that

per
sup l (Afag)Hgér I 2 c”f”H;j,ﬁ - “Klf”H;‘e",[’

V™, gl am s =1
9€V™, gl -5
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for every 7 and every f € VJ(»,T,;H). If A is bijective from Hg;ﬂ into Hp,,, a classical
compactness argument shows that this inequality remains also valid with K; = 0
and a smaller constant c.

2) For s > 1/2, the norm ||.||; related to the scalar product

(u, v), = u(0)B(0) + Y _ [k|*wivs

k>0

is equivalent to the norm ||.|[gs, . Under the assumptions of Theorem 7, if A is
bijective and s + § > 1/2, 2m — s > 1/2, we obtain that there is ¢ > 0 such that

sup [{Af, 0y | 2 lf

r+1
H;:rﬁ’ f E V](’J )
(2m) —
9&V;"" gl y2m—s =1

if and only if there is ¢’ > 0 such that

r+1
sup [(Af, Q)| 2 €l f v, £ €V
9€VE™  ligllzm-s=1

This is essentially due to the fact that the difference between the two scalar prod-
ucts involves compact operators. The proof is straightforward and uses classical
techniques.

3.3 Numerical approach
3.3.1 Introduction

If Q is a smooth bounded and connected open subset of R? whose boundary 0 is
also connected, the norm |||, defines the usual topology on H™(92).
Let 6 € [0,1[, 7,m € N and

A=b,Q° +b_Q° + K,

be a bijective pseudodifferential operator as introduced before and such that the
operator u — b+Qﬁu + b_Qg u + uo satisfies the conditions of Theorem 7. To

obtain an approximate solution of Au = f, one looks for u; € V;:;H) such that the
collocation equations

Au;(277k) = f(279k), k=0,...,27 -1 (1)
are satisfied. These equations are equivalent to
<AUj,U>m: <f,’U>m, ’Uev]@m). (2)

Indeed, both (2) and (1) define a 27 x 27 linear system and 2m integrations by
parts show that (2) is a consequence of (1). Moreover, for large j, it follows from
Céa’s lemma (see appendix) that the system (2) has full rank since Theorem 7 gives
the strong ellipticity of the operators in the used spaces.
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Using Theorem 7 and the fact that we deal with Riesz bases, we obtain that the
l-condition numbers of the Galerkin matrices are bounded uniformly in j (Propo-
sition 9). Hence, using the equivalence between the Galerkin and the collocation
systems, the condition numbers of the collocation matrices have also a good asymp-
totic behaviour after preconditionning. Without this manipulation, we do not obtain
a good condition number for the collocation matrices, but we do for the double layer
potential (see Example 10).

3.3.2 Theoretical results on the [3-condition number

Let us introduce some notations for the next result (Proposition 9). For every integer
j >0, we consider a Riesz basis {ul™ : p € Z,p > 0} of H=2(]0,1[) (with bounds

per
b, B) satisfying the following property: the functions uésw ) (p=0,...,27—1) form a
basis of V,(:;H). In the same way, we consider a Riesz basis {v;(,sw ) pE Z,p>0}of
H27=2(]0,1[) (with bounds ¢, C) of splines of order 2m satisfying similar conditions.
Wavelets bases fulfil these conditions.

Proposition 9 Assume that 3 <s<2m—3, 3 <s+8<r+3. If

A = b+Qﬁ + b—Qlj + KO : H;;B(]()’ 1[) - H;er(]oa 1[)

" s bijective .and is such that the operator u — b+Qiu + b_QPu + uo satisfies the
conditions of Theorem?, then there is R > 0 such that the matrices A; of dimension
2 defined by

A] = (<Aul(ls+ﬂ)aUI(;2m_S)>m)OSp'q<2j

satisfy

_ BC
M2(A;) = [| 421 4; e < RW

if 7 is large enough. The constant R depends on the norm of the operator A(hence
on the boundary of the domain) and on the constant of coercivity ¢ (Theorem 7).

Proof. The conditions on s, 7, m, come from the fact they we use Theorem 7
and Riesz bases. The proof goes in the classical way using Riesz bases in the right
spaces and Theorem 7. O

For the collocation case, we also introduce some notations.
If B; = {ug, l=0,...,27 — 1} is a basis of VJE%“), we study the behaviour if

j — 400 of the condition numbers of the collocation matrices Afj defined as follows

J

B; _ l -j - J_
@)MJMMMLl@kOWQ 1

where ‘
A=b,Q% +b_Q° + Ko.
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We shall now discuss some examples that will be implemented numerically in
Section 3.4. below. We only want to treat some examples, used in our numerical
examples. First, we consider the following bases

B; = {ug(z) =uj(z—1277), 1=0,...,2" — 1},

B = {1} U{Wsrq1;ik, 0 <17 <70<k< 2%
where
- +o00 ‘
w(z) =22 " Nypa(P(z = 1), Nopai(z) = Neya(z = 6),
l=—00

and where the functions ¥s,4+1ik are constructed as usual starting from Us,,,
which is the 1—periodization of 9r41(z — §/2). We shall also consider r = 2m — 1
and the bases

Bi={1}U{2 U 0<i<j0< k<2,

B = {1} U{2™ 0k 0<i<j,0< k<2
In this case, because the order of the splines is even, we choose § = 0.

Example 10 Assume that% <s<2m-1ii<s+p< r+% and that the operator

22
U +— b+Qiu +b_Q%u + (u)o satisfies one of the conditions 1), 2) of Theorem 7.

Then there are constants ry,79 > 0 such that

B; B:

[ A | | m(4}?) |
200 < < g2l poilfl-sf < < 1y 2ilBls+8
B! B

UZ(AjJ) _ 772(/4]' 7)

Proof. First we consider the case
Au=0b,Q%u+b_Q%u+ (u)o

where (u)o is the zeroth Fourier coefficient of u. For u € VJ(-:;H), some computations
give
271 . _
(Au)(/cZ") — (U)o + Z e—2m62‘”62m2‘1kl|l|r+1dl (U)l
=1

with (u); = fol dz e~®?ly(z + 2776) (the Fourier coefficients of u are (u),e~2m27)

and!
+o00

di= > e (b, +b_sgn(l +p2’))

p=—o0

|l + p27|P
( + p2i)r+t

Ithe complex numbers d; are the same as in Theorem 7.
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The matrix S defined by
(S = Q2= k=0, . 2 —1

is unitary and diagonalizes the collocation matrix A?j . From this, we find that the
eigenvalues Ax(k = 0,...27 — 1) of A? are

29(u0)o, Ve HmTRW)dlkT K =1,...27 -1

and A
_sup{|M\| : k=0,...27 -1}

ma(A}7) = —
J inf{|\e] + k=0,...27 -1}
Using the result on the behaviour of dy and (ug);C we finally obtain the annouced

result.
Now, we simply consider change of bases in VJ(_T(SH). If C; denotes the matrix used

to change the bases, we get

B, ~ B

A =AY
with 72(C;) bounded uniformly for j € N. In case 7 = 2m — 1, the matrix change
of bases Bj = Bj] to B;-Jrﬁ has a condition number equals to 26tAU-1. the matrix
change of bases B;-“Lﬁ to BJ has a bounded condition number. Hence the conclusion.

For the general expression of the operator, we use the previous result and the one
on the condition number of the Galerkin matrices (Proposition 9). Let us denote
by K, the collocation matrices constructed using the compact operator Ky. We use
the notation A; for any of the collocation matrices constructed in the first part of
this example (i.e. with the particular expression of the operator); finally, G; (resp.
G;) denote the Galerkin matrices corresponding to the particular expression of the
operator (resp.- for the general expression).

Because collocation and Galerkin systems are equivalent (for j large enough),
there are inverse matrices L;, independent of the chosen basis for the collocation
matrices, such that

G, =L;A; (1) Gi=Li(A; + K;) (2).

From the first relations (1) and the fact that the Galerkin matrices G; have a
bounded condition number we obtain that the behaviour of the condition numbers
of the matrices L; and A; are the same. Now, the second relations (2) and the fact
that the Galerkin matrices G} have a bounded condition number show finally that
the behaviour of the condition numbers of the matrices A; and A; + K are the
same. O

3.4 Some numerical examples

We have performed some numerical experiments to test the asymptotic convergence
and stability obtained using the ©,.;x functions. We used these functions because
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they have a very short support; this fact, and also the fact that bases of wavelets
are hierachical ones, lead to computations that are very easy to handle. We do not
try to use the dual space because the functions are obtained from functions that
are not compactly supported, hence the exact computations are rather heavy. The
collocation matrices are preconditioned to get the Galerkin matrices and then a
bounded condition number.

We consider the double layer potential (8 = 0,m > 1) and the single layer
potential (3 = —1,m > 2). For the experiments, we use the same basis for the test
and trial bases although lower order splines can be used as test functions without
great loss of accuracy. We always find a bounded sequence 7(A;) and optimal order
of convergence.

The computation of the elements of the matrices A; can be performed easily
using the Gauss-Legendre method with weights. It allows us to deal with a logarithm
singularity in the case of the single layer potential.

We choose the connected open subset of R? represented on Figure 1.

2.55 7.

Figure 1

Its boundary is smooth, connected and given by
Y(t) = ((cos(67rt) + 8) cos(27t), (sin(47t) + 8) sin(27rt)), te0,1].

To use as efficiently as possible the almost orthogonality of the functions ©, jx
defined on [0, 1], we work with a parameterization by arc length. This requires
to solve an autonomous differential equation. This can be done using a standard
integration method before the computation of the matrices and takes a very short
time since it depends linearly on the number of points.

Figure 2 gives the ¢£2-condition number 7 of the matrix A; for the double and the
single layer potential on «. This figure also gives the L? norm of the error for the
right-hand side f(z) = 2sin(27z) and the estimated exponent of convergence (eoc).

For the double layer potential, we use the Riesz basis {1,Om,jx 7 >0,0< k<
27} and we treat the cases m = 1 (linear splines), and m = 2 (cubic splines).

For the single layer potential, we use the Riesz basis {1,280, : j > 0,0 <
k < 27}. Since the trial and test functions are chosen to be the same, we cannot use

“here the linear splines ©;.;x because they do not satisfy the theoretical conditions
of Proposition 9.
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Double layer Simple layer
potential potential
| j m=1 | m=2 m=2
[ [ n | error [eoc | 7 error | eoc | 7 error | eoc |
5.99 | 7.1 e-01 2.15 | 2.6 e-01 6.04 | 4.4 e-02

6.90 | 2.0e-01 | 1.82 | 33.73|9.0e-02 | 1.55 | 24.68 | 4.1 e-02 | 0.10
7.16 | 5.2 e-02 | 1.96 | 50.29 | 6.0 e-03 | 3.91 | 73.57 | 6.8 e-03 | 2.58
7231 13e02]|1.95|5532|54e-04]|347|81.71|7.1e-04]3.27
7.25|33e03|201|5562]|19e-05|4.83|8266| 2.0 e-05]5.16
725 8.0e-04 | 2.06 | 55.64 | 8.3 e-07 | 4.52 | 82.89 | 7.6 e-07 | 4.70
725 1.7e-04)2.27 | 55.64 | 4.0 e-08 | 4.37 | 82.95 | 4.3 e-08 | 4.13

| O O x| W DD

Figure.2

3.5 Appendix

Céa’s lemma

Let X,Y be Banach spaces, let A € L(X,Y) be bijective and let V; C X (j € N),
T; C Y’ (j € N), be sequences of subspaces such that dim(V;) = dim(T};) < +oo for
every j. Assume that
(i) there are P; € L(Y',T;) (j € N) such that lim; ;o Pj(f) = f in Y’ for every
fey, :
(ii) there are 6 > 0 and a compact operator K € L(X, X) such that, for every j and
ueV;:

sup  |u(Au)| > Sljullx — || Kullx-

veTy,|lvllyr=1

Then there is Ng > 0 such that, for every j > Ny and u € X, the equation
v(Au;) = v(Au), veT;
has a unique solution u; € V;. Moreover, there is C > 0 such that
— s < i — )
e = willx < C inf Jlu—wllx
Here we use this lemma with

per

r+1 2m
‘/J'=V](',6+)a Tj={<'xg>H"‘ (R)IQGV](- )}'
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Symbols

1. Z is the set of integers
2. N is the set of strictly positive integers

3. V(m (j € Z,m € N) is the set of functions on R which are smoothest splines
of degree m — 1 with respect to the mesh {277k : k € Z} and belong to L%(R)

4. VJ(;") (6 € [0,1[,5 € Z,m € N) is the same (as Vj(m)) set of splines but with
respect to the mesh {277 (k + 4) : k € Z}

5. The corresponding sets of 1-periodic splines are respectively denoted by Vj(m)
12K

6. Hpe(]0,1[) (s € R) is the Sobolev space of order s of 1-periodic distributions
on R

7. ¥ is the classical Chui-Wang spline biwavelet (., € Vlm))

8 0, is the spline function in Vl(m) such that D™@,, = %, and supp(0,,) C
[0,2m — 1] '
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