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ABSTRACT. Let I be a lattice in R” and A a dilation matrix such that A' C T
Let ¢ be a localized square integrable vector function and assume that the lattice
translates of ( are orthonormal. We give necessary and sufficient conditions on
 in order that it generates a Multiresolution Analysis in R™ with respect to the

- lattice I" and the dilation A. This characterization extends previous results to the
case of regular non-compactly supported functions.

1. INTRODUCTION

The concept of Multiresolution Analysis (MRA) due to Mallat [Mal89] and Meyer
[Mey92] provided the first systematic way to construct orthonormal wavelet bases of
L?(R). The structure of a MRA is generated by a function (the scaling function) that
satisfies a certain self-similarity condition. The problem of constructing orthonormal
wavelets was then shifted to the problem of constructing MRA'’s.

The theory was extended to several variables. To take full advantage of the higher di-
mensionality it is important to consider arbitrary dilation matrices (not only dyadic
dilations). This has proved to be useful in applications to image representation where
the geometry of the picture is better described with matrices that adapt better to
the situation. The side effect is that the theory becomes much more complicated
and the results are not a straightforward generalization of the 1-dimensional case.
Another important generalization is the case in which a finite number of generators
for the MRA are allowed [Alp93] [GLT93] [GHM94] [CH96] [HSS96] [CDP97] [Ald97]
[JRZ99] [Cal99] [CHM99]. This is known in the literature as MRA with multiplicity,
and the associated wavelets as Multiwavelets. The framework of multiple generators
provides much more flexibility to construct bases with predetermined properties.
The characterization of MRA in this generality was done in [CHM99] for compactly
supported functions.

In the present article we work in the following context: let I" be an arbitrary lattice
in R", and A a dilation matrix compatible with the lattice T, (i.e. A(T) C I" and
every eigenvalue A of A satisfies |A| > 1). Let ¢ = (p1,...,¢r), ® € L*R",C")
and @; belongs to the Sobolev space H™(R"™), Ym € N. Assume that the lattice
translates of ¢ are orthonormal. We give necessary and sufficient conditions on
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76 A. BENAVENTE AND C. A. CABRELLI

the vector function ¢ in order that it generates a Multiresolution Analysis of R™.
(Theorem 3.1).

These conditions were obtained by Albert Cohen for the 1-dimensional case, scalar
functions (r = 1) and later extended to the multidimensional setting for the case
that the dilation matrix is 2/ [Coh90]. In [CHM99], Cohen’s theorem was extended
to include the case of arbitrary dilations matrices and a finite number of generators
with compact support.

The contribution of this paper is to show that these conditions can be extended to
a much wider class of generators. We were able to proof that the hypothesis of the
generators to be compactly supported can be relaxed. We assume instead certain
decay of ¢. More precisely we require that for ¢« = 1,...,r, each @; belongs to the
Sobolev space H™(R™), Vm € N.

The proof, as the ones in [Coh90] and [CHM99), is a “time-domain” proof in the sense
that it doesn’t use the Fourier Transform. The main argument is based on a counting
technique related to the geometric properties of the tiling associated with the dilation
matrix. In the case in which the dilation matrix is A = 21, the tile element is a cube;
then the geometry is simple and the integrals that have to be estimated are integrals
over cubes in R™. When one allows arbitrary dilation matrices, the associated tile
can be of a very complicated geometry and also have fractal boundary. This makes
the estimation of the integrals much more involved, and the counting results are
more complicated to obtain. The removal of the assumption of compact support for
the scaling vector, requires a refinement of the techniques in order that the counting
results can be applied to this more general case.

Necessary and sufficient conditions for when a nested sequence of 2*-dilated principal
shift invariant space (PSI), has dense union and zero intersection where obtained in
[BDR93] for the one dimensional case. A PSI is a shift invariant space generated
by a single function. The generator in this case doesn’t need to be an orthonormal
basis neither a Riesz basis of the closure of the span of its integer translates. This
general condition is expresed in terms of the zeroes of the Fourier transform of
the generator. This setting differs from Cohen approach in the sense that Cohen’s
Theorem characterizes exactly orthonormal MRA’s. The PSI here is generated by
a function that has orthonormal translates. Later, Jia and Shen [JS94] formulated
the conditions on [BDRI3|, (see also [Shen98]) for the finitely generated case (FSI),
given some indication of the proof.

The characterization in our paper is in the direction of the approach of Cohen. We
characterize orthonormal MRA’s for the case of a general dilation matrix, compatible
with an arbitrary lattice, in higher dimensions, for several functions.

The organization of the paper is as follows. In Section 2, we briefly review the
concepts of lattices, tiles, Multiresolution Analysis and the relation between them
in terms of the generalized Haar’s MRA. In Section 3 we state our main result in
Theorem 3.1. For a better organization of the proof, in the following subsections,
we discuss and prove in Propositions 3.2, 3.4 and 3.5 the necessary and sufficient
conditions that have to be satisfied by the localized vector scaling function to gen-
erate a MRA. Finally, in subsection 3.4 we combine the results of the Propositions
to prove Theorem 3.1.

Rev. Un. Mat. Argentina, Vol. 44-1



FINETELY GENERATED MULTIRESOLUTION ANALY SIS 77

2. LATTICES, TILES AND MULTIRESOLUTION ANALYSIS

Let I be an arbitrary lattice in R™ (i.e.,, I' = R(Z") with R any invertible n x n
matrix with real entries). Let now /C be a fundamental domain for this lattice e.g.,
K = R([0,1)") and set k = |det(R)|.

Let A be a dilation matriz for T, i.e., A(T') C I and every eigenvalue X of A satisfies .
|A| > 1. The determinant of a dilation matrix for a lattice is always an integer and
its absolute value is the number of cosets of the quotient group I'/A(T"). A digit set
for A and T is any set of representatives of this group.

Let ¢ = |det(A)|. We assume that there exist a digit set D = {dy,...,dq—1} for A
and T such that the set @ = {372 A% : & € D} has n-dimensional Lebesgue
measure «. Without loss of generality we will assume that dp = 0. For a general
dilation matrix it is not always true that such digit set exists. (A counterexample
was found in [Pot97]). If this set of digits exists, we will say that A is an admissible
dilation matriz.

The set @ is compact and tiles the space by I'—translates in the sense that the
I'—translates {Q + k}rer cover R™ with overlaps of measure zero. Moreover, they
satisfy the following self-similar condition (See [GM92],[Hut81]):

q-1
AQ=e+d.
s=0

Given a function g : R® = C", A a dilation matrix, ¢ = |det A|, j € Z and k € T,
we will write g/*(z) = ¢?/?g(A’z — k), to denote a translation of g by A~7k followed
by an L£?-normalized dilation by A7.

2.1. MULTIRESOLUTION ANALYSIS. A Multiresolution Analysis (MRA) of multi-
plicity v associated to a dilation matriz A and a lattice I is a sequence of closed
subspaces {V;};cz of L2(R™) which satisfy:

P1 V; C V;y foreach j € Z,

P2 g(z) € V; < g(Az) € V;41 for each j € Z,

jez
P4 |J V; is dense in £*(R™), and
jez

P5 there exist functions ¢, ...,¢, € L*(R") such that the collection of lattice
translates {¢;(z — k)}ker,i=1,..,» forms an orthonormal basis for V.

If these conditions are satisfied, then the vector function ¢ = (¢, ..., )7 is referred
to as a scaling vector for the MRA.

Grochenig and Madych [GM92] established a connection between self-similar tilings
and multiresolution analysis that have a characteristic function for a scaling function.
They showed that there is a Haar-like multiresolution analysis associated to each
choice of dilation matrix A and a digit set D for which the set Q is a tile. In
particular, they proved that if Q is a tile, then the scalar-valued function X g
generates a multiresolution analysis of £2(R™) of multiplicity 1. Note that the fact
that {Xg(z — k)}ker forms an orthonormal basis for Vy is a restatement of the
assumption that the lattice translates of the tile @ have overlaps of measure zero.
An immediate consequence of Grochenig and Madych’s generalization of the Haar’s
multiresolution analysis is the following:
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Lemma 2.1. The collection
{ng'k}jez,ker: {qj/ZXQ(Aj:v — k)}jez ker
is complete in L*(R") i.e., its finite linear span is dense in L2(R™).

2.2. LOCALIZED VECTOR SCALING FUNCTIONS. We say that a MRA in £*(R") is
localized or regular if the scaling vector ¢ = (1,...,¢,)7 is localized in the sense
that for s = 1,...,7, each §; belongs to the Sobolev space ’H’"(Rn) Vm € N. This
condition is equlvalent to: foreachi=1,. C

ey /(1 2™ |pi(z) 2z < oo.

Using Cauchy-Schwarz’s inequality and taking into account that the function W

belongs to £!(R™) with m > 1, it is easy to prove that if a function f satisfies
feH™(R™) for all m € N, then:

2 Crn
(2.2) /llmlle |f(z)|*dz < (TW’
(2.3) f € LYR™) and
Cm

For simplicity, we shall from now on write that the vector function ¢ has orthonormal
lattice translates when we mean to say that {gol(:v — k) }ker i=1,..r is an orthonormal
system in £*(R™).

Definition 2.2. Assume that ¢ € L£*(R",C") has orthonormal lattice translates.
Let Vo be the closed linear subspace generated by the lattice translates of ¢, i.e.,

(25) V() = span{goi(z - k)}ke[‘,i:l,...,r-
For each j € Z let V; be the set of all the dilations of Vg by A7, i.e.,
(26) v]' = {g(A’z) g€ vO} = m{(pg’k i =1, ...,'I‘}ker‘.

If {V;};z is a MRA for £L*(R"), then we say that the MRA is generated by ¢.

Remark 2.3. In the characterization of MRA due to A. Cohen [Coh90], he uses a
localized generator, but the dilation matrix is the uniform one: A = 2. In the proof,
he uses the essential fact that 2/ maps dyadic cubes into dyadic cubes. This is not
possible in the case of arbitrary dilation matrix.

3. NECESSARY AND SUFFICIENT CONDITIONS.
We now are ready to state the main result in the paper:

Theorem 3.1. Let ¢ = (¢1,-++,0. )7 € L*(R",C") such that for each i =
1,---,r, p; € H™(R") for all m € N and that the set {@i(- — k)}rer, i=1,..r 18
an orthonormal system. Let A be an admissible dilation matriz for the lattice T.
Then ¢ generates a multiresolution analysis with multiplicity r associated to (T, A)
if and only if:
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FINETELY GENERATED MULTIRESOLUTION ANALYSIS 79

a) ¢ satisfies a refinement equation of the form

T) = 2 crp(Az — k)

kel

for some r x r matrices ¢y = (c), such that for eachi,j =1,..,r,
{cfj}kezn, € ¢3(T) and

b) 12(0)]> = 2:|9010)I2 12l

To prove this theorem, in the next propositions we will give necessary and sufficient
conditions on the vector function ¢, in order that the subspaces V; will satisfy
properties P1, P3-and P4 of the definition of MRA. Property P2 is satisfied from
the definition of V; and P5 is assumed.

3.1. PROPERTY (P1): V; C V1.

Proposition 3.2. Let ¢ = (p1,..,¢,)T € L2(R™,C") with orthonormal lattice
translates. Let A be a dilation matriz and define V; as in (2.5) and (2.6). Then,
the following conditions are equivalent:

(1) V; C Vjy forall j € Z.
(2) The vector function ¢ is refinable, i.e. it satisfies the refinement equation:

z) = Z cep(Az — k)

kel

for some T X r—matrices cg, such that for eachi,7 = 1,...,7, the sequence of

coefficients {c¥; }xer is in £%(T).

Proof: If (1) is satisfied, then ¢; € Vo C V; for i = 1,--+ 7. The definition
of the subspaces V; implies that {q*/%p;(AT — k)}reryije1,. » = {(,0J (z)}rer is
an orthonormal basis for Vi, then the representation of each ¢; respect to the
orthonormal basis of V; will be:

(3.1) ZZC”(,OJ (in £2(R")),

j=1 kel

where cfj =< goi,cp}’k > . For 4,7 =1,...,r, the sequence of coeflicients {c”}kep be-
longs to ¢2(T). Let us call ¢; the 7 x 7—matrix whose columns are (c¥, ..., cf.). Consid-
ering that ¢ = (i1, ..., ;)7 then, from (3.1) wehave p = >, . ckp™* in L*(R™,C),
or equivalently
o) =¢"* ) cep(Az — k) in L2(R",C7),
keT

and condition (2) is satisfied.
For the converse, if ¢ is refinable, then ¢; € V1,7 =1, ...,7 so Vg is included in V;.

: O

3.2. PROPERTY (P3): [,z V; = {0}. We shall prove that (P3) is a consequence
of the orthonormal I'—translates of ¢ and the localization of each ;. To do this,
we will use the following lemma (we omit the proof because it is like in the classical
1-dimensional case with dyadic dilations [Woj97]):
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Lemina 3.3. Consider V; asin (2.6). Let P; be the orthogonal projection of L*(R™)
onto V;. Suppose that for all g € L*(R™), hm [IP;gll2 = 0.

Then m vV, = {0}.

jEZ

Proposition 3.4. Let ¢ € L*(R",C") be a localized vector function in the sense of
(2.1). Suppose that @ has orthonormal lattice translates, A is a dilation matriz and

consider the subspaces V; as defined in (2.6). Then ﬂ V; = {0}.

J€Z

Proof: Using Lemma 3.3, it suffices to show that lim; , o || Piglls = 0, Vg € L2
Moreover, it suffices to establish this limit for g contained in a subset whose finite
linear span is dense in £%(R™). We will use the complete set given in Lemma 2.1,
i.e. we will prove that

(3.2) Vs€Z, VLET, lim ||PXg],=0.

Fix any s € Z and ¢ € . Since q = |det(A)|, we have for every j € Z that
AR+ 0= |Q+ 4 =¢IQ].

Since {¢?*}rer,iz1,..» is an orthonormal basis for the subspace V; then,

||PX || == / wi(z — k)dzx
’ ZZ A= ’(Q+£)

i=1 kel
Using Cauchy-Schwarz’s inequality, we therefore compute that

P2 < | q(JQf“ZZ/ lor( — k)|Pda

i=1 kel ¥ A77*(Q+8)

(3.3) Sy Y / i),

i=1 ker VAT (Q+0)-

2

where the last sum is finite. To see this, note that for a fixed s and j < s, using that
Q is a tile for R™ and A~ is contractive, we have that the lattice translates of A7=5Q
have overlaps of measure zero. To simplify the notation, write £ := A~°(Q +¢);
then A7=%(Q + ¢) — k = A’E — k. Choose an integer J < 0 small enough such that
|AVE —kNAE—-kK|=0forall j < J, kk' €T, k+#k'. Then, for j < J,

Y- Xaipk(@)lei(@)]P = Xy, ap-4(@) i)

ke
< loi@)P.
And since |p;(z)|? € L(R™), then

oi(e)Pde = / X 1 54(2) s @) Pdz < co.
Y >

ker ker

Now, using (3.2) and (3.3), it suffices to prove that fori = 1, ..., 7 Y orer Jaip_i l0i(z)]?dz
Rev. Un. Mat. Argentina, Vol. 44-1
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Vgoes to 0 when j — —oo. Consider the same integer J € Z as before and 7 < J; and
define f;(z) := Z X i k(@) pi(2)[*. So fi(z) = 1i(2)*X Uyer a9 Bk (2). Then:

kezZ™

) O RO

kel
=/ fi(z)dz + / fi(z)dz
[-pp™ R™\[-p,p]"

=1 + L.
Write B; := | J(A'E — k) N [-p,p|", then
kel
(3.4) I = / loi() P X5, (z) da.

We can see that |B;| — 0 as j — —oo. In fact: consider t; := card({k € Z" :
A'E — kN[—p,p|™ # 0}) and write §(-) as the diameter of a certain set. Because the
spectral radius p of A~! is less than 1, we have that ||47||cc = 0 when j — —oo (see
[H]]) i.e. ||A%||e < € for j small enough. Then, considering the metric d(z,y) =
||z = Y|loo = maz{|z; — yi| : i =1,...,n} we have that for z, y € ATE:

d(z,y) = || A(A 7z — ATy)|lo
< Aol Az = ATyl
< d(A% iz, ATIy)
< 4(AE).
Taking the supremum over A’ F, we have that §(A’E) < §(AF) and then t; < t,

for all j < 0. Now, for j < J, the overlaps of the lattice translates of A’E have
measure zero, so:

|B;| = t; \AjE —kN [—p,p]"]
<t |AE]|
=t |E|¢
<eEe.

Since |B;| — 0 as j — 0 then f;X[_pp» — 0, moreover |f;X|_p 1 (z)| < |pi(z)|?.
From this fact, equality (3.4) and the Dominated Convergence theorem we have that

(3.5) I, = / fi(z)dz — 0 when j — —o0.
(—p.p]™

For the integral I, take € > 0 and j < J. Then 0 < fj(z) < |@i(z)[?. Using this and
property (2.2) for some m, we have
R [ @l
llzll>p
< Cm
~(L+p)™
Rev. Un. Mat. Argentina, Vol. 44-1
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Considering p large enough such that —#=— < e, we will have I, < . Finally:

(1+ )™
fj(l')d.’l,‘ = Il + IQ < 11 + €.
Rﬂ

Taking limit for j — —oo, from (3.5) we conclude that for all s € Z and ¢ € T,
lim;_,_oo || ;X ||l = 0. Hence ﬂv = {0}.

jeZ

3.3. PROPERTY (P4): UV L3(R™).

JEZ

Proposition 3.5. Let ¢ = (¢1,...,0.)F € L:Z(IR",(CT) a localized vector function.
Suppose that ¢ has orthonormal lattice translates. Let A be a dilation matriz and
let Vo and V; be defined as (2.5) and (2.6) respectively. If

(36) Emm D [ eiast = 1)

Then U;cz V; is dense in L*(R™). Reciprocally, if Ujez Vj is dense in L*(R™) and
@ 1s refinable, then (3.6) is satisfied.

Before proving this proposition, we are going to present some auxiliary results with
respect to the decomposition of R™ by the tiles {Q + k}xer. First, note that the
fact that Q is self-similar together with the fact that the translates of Q tile R"
with overlaps of measure zero, implies that the dilated tile A7Q, j > 1 is a union
of exactly ¢’ translates of @, with each of the translates lying entirely inside A7 Q.
Following the idea in [CHM99)], for j > 1 we are going to split the lattice I' into
a finite set containing those elements that translate Q entirely inside A7Q, and a
finite set containing the elements that translate @ to the boundary of A7Q. More
precisely, for each 7 > 1 let us consider the following finite subsets of I" :

N, = {kel:Q+kcC AQ},
(3.7) Ny = {keN;: Q+kcC (AQ)},
N? = {keN;:(Q+kNoA Q)+ 0}.

These sets satisfy the following relations: 47Q = Q+N;, card(N;) = ¢/, NUN? =
N; and N;NNZ=0.
Let Q= {k €I : (Q+ k)N B # 0}. The following technical lemma (see [CHM99]
for a proof) characterizes those translates @ + v of @ for which it is possible to
translate @ + v by elements of 2 so that one translate @ + v + k with k € Q
lies entirely within A7Q and another translate @ + v + k' with &’ €  lies entirely
outside of A’Q (neglecting its boundary). This lemma also tells us that the ratio
of the number of those translates @ + k that intersect the boundary of A7Q to the
total number lying inside A’Q converges to zero:
Lemma 3.6. Let B, 2, N;, N7 and NJ‘." defined as before, then:
o 17}
a) hmﬂ]—v—z_l and 1imwz
j—ooo q] j—o0 q7
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card(N;\((N? = Q)N Ny))

b) lim

c) Lety € I'. If there exist k, k' € Q such that Q+k+v C A’Q and Q+k'+v C
R™\(A7Q)°, theny € N} —Q={l-w: te N;%weq}.

PROOF OF PROPOSITION 3.5: Suppose that ¢ is refinable, then we have to prove

that | | V; = C2(R™) <= ) 1&:(0))* = |Q].
JEZ =1

Note that if for all g € L*(R™)
(3.8) Jim ||Pjg - gll. =0,

then Property (P4) is satisfied. Further, if ¢ is refinable, then by Proposition 3.2,
V; C Vj;1 and therefore (3.8) is equivalent to Property (P4). Now, by orthogonality,

|P;g — gll3 = ||P;gll5 — |lgll3, then we can rewrite equation (3.8) as:
(3.9) Vg € L(R™), lim || Pigll; = llgll3-
j—oo

This expression is true for all g € L*(R™) if and only if is true in a dense subset of
L*(R™). So we will use the set of functions considered in Lemma 2.1. Then,

(3.10) IPXQIE = Loy / | ple =R

i=1 kel

On the other hand, let s € Z, £ € I, and j > s. By a change of variable and taking
into account that AT' C T', we have

(3.11) 1P (X3 = I1Pi-s(X I3
Comparing (3.10) and (3.11), we conclude that (3.9) is equivalent to the statement:
(312 lim [|P(Xa)[3 = Xl = Q]

Since statements (3.8), (3.9) and (3.12) are equivalent, we conclude that it suffices

to prove that hm | Pj(X Q)3 = Z |@:(0)|*, or equivalently, to prove that for each

=1
(3.13) lim z > / vi(z — k)dz
: ineeo @ i Jaig

To do this, fix i, consider a constant M; > 0 and define K; = {z € R" : ||z|| < M;}.
Using the property of unconditional convergence of orthonormal bases, we will split
the summation over I into three disjoint regions related to the subset K;. The idea
behind this is that the first region should contain only elements & of the lattice I'
such that K; + k is sure to lie in the interior of A’Q, the second region should
contain those k for which this translation will intersect the boundary of A’Q, and
the last region should be the complement of the first' two. More precisely, let B; be
any open ball in R™ which contains both @ and K;, and define

Q={kel:(Q+k)NB; #0}.
Rev. Un. Mat. Argentina, Vol. 44-1
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Note that Q is finite and K; C 2+ Q. For each j > 1, define:
15 = N\((V = Q) N ANy),
Iy, =N -Q,
I3 =T\(I'1; UT2;),

where the sets N;, N7 and N]‘? are as in (3.7). Note that for each j, the sets I'y
I’y ;, I's; partition I'. Further, by Lemma 3.6 a) and b), we have:

d(T';; )
(3.14) tim 24) g i 24029)
j—00 q’ j—oo @
Now define )
1
Ry = — / vi(z —k)dz| , s=1,2,3
q AiQ .

kel ;
We will show that: lim Ry; = |$;(0)|?, lim Ry; = 0 and lim R; = 0.
J—o0 Jj—o00

j—oo
Ry; < 1 E
% —(;7-

o, (/AJ-Q e k)ldm>2

sql > ([ i)’

kGF'z’j
_ C card(I'y;)
=—
By (3.14), the last term is arbitrarily small for j large enough. Then Ry; — 0 when
j — oo.
To analyze Rj;, let us write ¢i(z) = X k,(z)@i(x). Then pi(z) = Gi(z)+X ke(z)i(z).
Note that ¢; has compact support.

Rs; < ?11; Zj (/Ajg|95i($ - k)ldm‘*‘/AjQWKf(y— k)pi(y — k)|dy>2

Let us begin with Ry;.

where

A= ;117,@3.], (/AJ'Q I,@(x - k)|dx>2 ’
p=2 % (f 1ate—bi) ([ 1% - e - bid) o

T
q kEFa'j

C=- ( /A jglxxg<y—k>wi(y—k)|dy)2.

¢ kerls ;
We will show that A = B =0 and C — 0 as j — oo. Suppose that A # 0, then
J1ig |Gi(z —7)|dz # O for some y € T’y ;. Then (K;+7) N A’Q has to have positive
Lebesgue measure. Since K; C B; C @ + , then (K; +17) C (Q + 2 + v) and
(Q+Q +v) N A7Q will have positive measure. Because A’Q is the exact union of
Rev. Un. Mat. Argentina, Vol. 44-1
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¢’ translates of @ that do not overlap, then the only translates of Q that intersects
A’Q in sets of positive measure, are the translates that are completely inside of
A7Q. Hence:

(3.15) Q+k+vyC AQ for somek € Q.

Since 0 € Q and N? C Nj, then N? C (N? — Q) N N;. Hence N; = Ny UN? C
Fl,j U Fg’j. Since v € Fg,j = F\(Fl,] U Fz,j), then ~ Z Fg’j, so vy ¢ Nj. This implies
that Q@ + v is not contained in A7Q. Then Q + v C R™\(47Q)°. Consequently

(3.16) Q+ 04y CR*\(47Q)°,

and since 0 € , then from Lemma 3.6 c), applied to (3.15) and (3.16) we have
v € N]‘? — Q =T, and this is a contradiction. Then A = 0. By a similar reason,
B =0.

To prove that C — 0 as j — oo, we write I's ; as the union of disjoint sets as follows:

(3.17) Iy; = DI
. s=1

where for each j € Z, DI :={k €3, :s < dist(A7Q — k,0) < s+ 1}.
After the change of variable z = y — k, we have:

2
1
c=— </ | lsoi(r)ldm>
q 5\ AT Q-kNK

.S %Z 2 </AJ‘Q—k l(pi(xﬂdw)z

For a purpose that will become clear later consider m > ”T" Using that‘@ €
H™(R™) and property (2.4), then

1 00 em 1 [ . en
. < — e Dy—
(3.18) C< 7 Z Z 1ts)m = ¢ ;card( s)(1 FRAEEY

s=1 keD]

‘with ¢, a constant that depends on m. Let us find an upper bound for card(D?).
Let us note that if v € DJ then s < dist(A’Q —v,0) < s + 1. Since A7Q — v
is compact, then there exists z € 9(A7Q — v) where the distance is attained. On
the other hand A7Q — « is the union of exactly ¢’ tiles that do not overlap, hence
z € Q—tforsomet Then @Q—tC A7Q—~vand Q- (t+7)NI(A’Q) # (. Finally
t+~€ N2 and DI C {y €Ts;:3t € DY, such that v+t € N} Tt follows that

(3.19) card(D?) < card(D?) - card(Nf).

Moreover card(D?) < ¢(s + 1 + d), with d = diam(Q). To see that, take v € D?
then @ — v C B(0,s+ 1+ d) (the open ball centered at zero, and radius s + 1 + d).
Then D C L:={yeTl:Q—-~CB(0,s+1+d)} and card(D?) < card(L). Now,
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since the lattice translates of @ do not overlap, we have:

(3.20) card(L)|Q| =) [ -] =

YEL

Je-7|

YeL

On the other hand

Uwe-

YEL

From (3.20) and (3.21) we have card(L) < ¢(s + 1 + d)*, and finally card(D?) <
" ¢(s+1+d)" By (3.19) it follows that card(D?) < card(N )-c(s+14d)", with ¢
a constant that does not depend on j. Then, from (3.18) we have
| )

(3.21) <|B(0,s+1+d)|=¢és+1+d)".

card(N?) f: Cm(s+14+d)"

<
¢ (14 s)2m

¢

s=1

rd(N?
Here, the summation is finite because m > 1%, then C < E—da(jN—’)C (m), with C(m)
a constant that depends on m. Finally, by Lemma 3.6, C — 0 when j — oo.
It only remains to prove that for each i =1,--- ,r, Ry; — |@:(0)|2. Fix 7, then

/Ajg%'(x — k)dz /]R" wi(z)dr — /(Ajg)c—k.wi(a;)dm
<(moi+ [ intolas)

= |@:(0)” + 2|@(0)l/ . lpi(x)|dz+
(A1 Q)e—k

¥ ( /(Ajg)c_k |goi(x)1dz)2 |

Summing over I'; ; and dividing by ¢’, we have:

2

2

1 2 card(l'y,) -
3| w(w—k)dZI < @) 5 o)
q kel 1/ AT q
2ApOI; Y [ el
kel (A1 Q)°—k
1 2
(3.22) + = </ (T d:L‘)
7 2 ([yen 0@

kel‘l,,-

Now, by definition of I'; ; and Lemma 3.6 c), it can be shown that K;+k C (47Q)° C
AQforke I"l,]- Hence (A7Q)° — k C K?¢. From this and property (2.4), we have:

d<—— i d
; /AJQ)C 2)\de Z/ lpi(2)ldz

kel
< card(Fl,j) Cm
ST e
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FINETELY GENERATED MULTIRESOLUTION ANALY SIS 87

Now, consider € > 0, using (3.14) we have that 5@’1—) <e+1forj large enough.

Moreover, in the definition of K, we can choose a constant M; such that m <e
(for a fixed m). Then, we will have: — Z / |ps(z)|dz < €. Using this in
keI‘l (A1Q)e—k

(3.22) we can conclude that for £ > 0 and j large enough:

1

L / o — k)dz
AIQ

2

2

(3.23) <|@:(0)* + ¢

q] kel

On the other hand:

/ QDZ(I - k))dil)
AiQ

2

;i(z)dr — / oi(z)dz
(ATQ)e—k

R
> <|@(0)| - ‘/(Ajg)c_ksoi(x)dm )2

> 130 = 213:(0)] /(jg)c_kgoi(m)dx .

Remember that from (3.14) we have that 1 — e < Ed—gﬂ— and

%’Zker‘u f(AjQ)c_k lpi(z)|dz < €. Then, summing over Ty ; and dividing by ¢’ :

/ vi(z — k)dz
AIQ

1

2 5, card(l;) card(I‘l card(I'y;)

|2:(0)[?

J
g kel ;

RZUDS

/ vi(z)dz
kel ; 1/ (A7Q)—k

> (1-¢)[2:(0)]* - 2|@:(0)le
(3.24) > |3:(0)]* —e.

Finally, from (3.23) y (3.24), we conclude that for i = 1,...,m, Ry; — |$:(0)|> when
Jj — oo. :

O

3.4. PROOF OF THEOREM 3.1. The proof of this result, is a direct consequence of
Propositions 3.2, 3.4 and 3.5.

Suppose that ¢ generates a MRA (V;);cz. Then Properties (P1)-(P5) of the mul-
tiresolution analysis are satisfied. Statement a) of the theorem is an immediate
consequence of Property (P1) and Proposition 3.2. Using Properties (P4), (P1) and
Proposition 3.5, then b) is verified.

Now, suppose that ¢ verifies a) and b) of the theorem. To prove that ¢ gener-
ates a MRA, define Vo = span{y;(- — k)}xez», i=1..r and V; = {g(A7z)/ g € Vy}.
Then Property (P1) is a consequence of a) and Proposition 3.2. Properties (P2)
is trivial due to the definition of V, and V;, and (P5) is assumed. Property (P3)
is a consequence of the hipothesis of orthonormal lattices translates and the local-
ization property of each ¢; as was proved in Proposition 3.4. Finally from b) and
Proposition 3.5, Property (P4) is satisfied. Hence, ¢ generates a multiresolution
analysis with multiplicity r associated to the dilation matrix A and the lattice I'.
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