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ABSTRACT . Let r be a lattice in ]Rn and A a dilation matrix such that Ar e r .  
Let 'P be a localized square integrable vector function and assume that the lattice 
translates of 'P are orthonormal. We give necessary and sufficient conditions on 
'P in order that it generates a Multiresolution Analysis in ]Rn with respect to the 

. lattice r and the dilation A. This characterization extends previous results to the 
case of regular non-compactly supported functions. 

1 . INTRODUCTION 

75 

The concept of Multiresolution Analysis (MRA) due to Mallat [Ma189] and Meyer 
[Mey92] provided the first systematic way to construct orthonormal wavelet bases of 
.c2 (lR) . The structure of a MRA is generated by a function (the scaling junction) that 
satisfies a certain self-similarity condition. The problem of constructing orthonormal 
wavelets was then shifted to the problem of constructing MRA's .  
The theory was extended to several variables . To take full advantage of the higher di­
mensionality it is important to consider arbitrary dilation matrices (not only dyadic 
dilations) .  This has proved to be useful in applications to image representation where 
the geometry of the picture is better described with matrices that adapt better to 
the situation . The side effect is that the theory becomes much more complicated 
and the results are not a straightforward generalization of the 1-dimensional case. 
Another important 'generalization is the case in which a finite number of generators 
for the MRA are allowed [Alp93] [GLT93] [GHM94] [CH96] [HSS96] [CDP97] [Ald97] 
[JRZ99] [Ca199] [CHM99] . This is known in the literature as MRA with multiplicity, 
and the associated wavelets as Multiwavelets .  The framework of multiple generators 
provides much more flexibility to construct bases with predetermined properties . 
The characterization of MRA in this generality was done in [CHM99] for compactly 
supported functions . 
In the present article we work in the following context : let r be an arbitrary lattice 
in lRn , and A a dilation matrix compatible with the lattice r, ( i . e .  A(r) e r and 
every eigenvalue ,x, of A satisfies l ,x, 1  > 1 ) .  Let <P = (<Pl , . . .  , <Pr ) ,  <P E .c2 (lRn , e) 
and <Pi belongs to the Sobolev space 1lm(Rn) ,  'l/m E N. Assume that the lattice 
translates of <P are orthonormal . We give necessary and sufficient conditions on 
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the vector function <p in order that it generates a Multiresolution Analysis of ne . 
(Theorem 3 . 1 ) . 
These conditions were obtained by Albert Cohen for the l-dimensional case, scalar 
functions (r = 1 ) and later extended to the multidimensional setting for the case 
that the dilation matrix is 21 [Coh90] . In [CHM99] , Cohen's theorem was extended 
to include the case of arbitrary dilations matrices and a finite number of generators 
with compact support. 
The contribution of this paper is to show that these conditions can be extended to 
a much wider class of generators. We were able to proof that the hypothesis of the 
generators to be compactly supported can be relaxed . We assume instead certain 
decay of <p. More precisely we require that for i = 1, . . .  , r, each <Pi belongs to the 
Sobolev space 1-lm(Rn) , '7m E N.  
The proof, as  the ones in  [Coh90] and [CHM99] , i s  a "time-domain" proof in the sense 
that it doesn 't use the Fourier Transform. The main argument is based on a counting 
technique related to the geometric properties of the tiling associated with the dilation 
matrix. In the case in which the dilation matrix is A = 21, the tile element is a cube; 
then the geometry is simple and the integrals that have to be estimated are integrals 
over cubes in ]Rn . When one allows arbitrary dilation matrices , the associated tile 
can be of a very complicated geometry and also have fractal boundary. This makes 
the estimation of the integrals much more involved , and the counting results are 
more complicated to obtain. The removal of the assumption of compact support for 
the scaling vector , requires a refinement of the techniques in order that the counting 
results can be applied to this more general case. 
Necessary and sufficient conditions for when a nested sequence of 2k-dilated principal 
shift invariant space (PSI) , has dense union and zero intersection where obtained in 
[BDR93] for the one dimensional case. A PSI is a shift invariant space generated 
by a single function . The generator in this case doesn't need to be an orthonormal 
basis neither a Riesz basis of the closure of the span of its integer translates . This 
general condition is expresed in terms of the zeroes of the Fourier transform of 
the generator . This setting differs from Cohen approach in the sense that Cohen's 
Theorem characterizes exactly orthonormal MRA's .  The PSI here is generated by 
,a function that has orthonormal translates . Later , Jia and Shen [JS94 ] formulated 
the conditions ort [BDR93] , (see also [Shen98] )  for the finitely generated case (FSI) , 
given some indication of the proof. 
The characterization in our paper is in the direction of the approach of Cohen. We 
characterize orthonormal MRA's for the case of a general dilation matrix, compatible 
with an arbitrary lattice, in higher dimensions , for several functions . 
The organization of the paper is as follows . In Section 2 ,  we briefly review the 
concepts of lattices , tiles , Multiresolution Analysis and the relation between them 
in terms of the generalized Haar's MRA. In Section 3 we state our main result in 
Theorem 3 . 1 .  For a better organization of the proof, in the following subsections, 
we discuss and prove in Propositions 3 . 2 ,  3 .4 and 3 . 5  the necessary and sufficient 
conditions that have to be satisfied by the localized vector scaling function to gen­
erate a MRA. Finally, in subsection 3 .4  we combine the results of the Propositions 
to prove Theorem 3 . 1 .  
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2. LATTICES , TILES AND MULTIRESOLUTION ANALYSIS 

Let r be an arbitrary lattice in ]Rn ( i . e . ,  r = R(zn) with R any invertible n x n 
matrix with real entries ) . Let now 1C be a fundamental domain for this lattice e .g . , 
1C = R( [O, I )n ) and set K, = Idet(R) I . 
Let A be a dilation matrix for r,  i .e . , A(r) e r and every eigenvalue A of A satisfies 
IA I > 1 .  The determinant of a dilation matrix for a lattice is always an integer and 
its absolute value is the number of cosets of the quotient group r / A(r ) . A digit set 
for A and r is any set of representatives of this group . 
Let q = I det (A) I . We assume that there exist a digit set D === {do ,  . . .  , dq-d for A 
and r such that the set Q === n:=:l A-k�k : �k E D} has n-dimensional Lebesgue 
measure K,. Without Joss of generality we will assume that do = O. For a general 
dilation matrix it is not always true that such digit set exists . (A counterexample 
was found in [Pot97] ) .  If this set of digits exists , we will say that A is an admissible 
dilation matrix. 
The set Q is compact and tiles the space by r -translates in the sense that the 
r-translates {Q  + khEf cover ]Rn with overlaps of measure zero .  Moreover, they 
satisfy the following self-similar condition (See [GM92] , [Hut8 1] ) :  

q- l 
A(Q) = U Q + d8 •  

8=0 
Given a function g : ]Rn -7 Cr , A a dilation matrix, q = I det A l ,  j E Z and k E r, 
we will write gj,k (x) = qj/2g(Ajx - k) , to denote a translation of g by A -j k followed 
by an .c 2 -normalized dilation by Aj . 

2 . 1 .  MULTIRESOLUTION ANALYSIS . A Multiresolution Analysis (MRA) of multi­
plicity r associated to a dilation matrix A and a lattice r is a sequence of closed 
subspaces {Vj }jEZ of .c2 (]Rn) which satisfy: 
P I  Vj e Vj+l  for each j E Z, 
P2 g(x) E Vj � g (Ax ) E Vj+l for each j E Z, 
P3 n Vj = {O} ,  jEZ 
P4 U Vj is dense in .c2 (]Rn) ,  and jEZ 
P5 there exist functions 'Pl , " " 'Pr E .c2 (]Rn) such that the collection of lattice 

translates {'Pi (X - k)hEf, i=l ,  ... ,r forms an orthonormal basis for Va . 
If these conditions are satisfied, then the vector function 'P = ('Pl , . . .  , 'Pr? is referred 
to as a scaling vector for the MRA. 
Gréichenig and Madych [GM92] established a connection between self-similar tilings 
and multiresolution analysis that have a characteristic function for a scaling function. 
They showed that there is a Haar-like multiresolution analysis associated to each 
choice of dilation matrix A and a digit set D for which the set Q is a tile . In 
particular , they proved that if Q is a tile, then the scalar-valued function X Q 
generates a multiresolution analysis of .c2 (]Rn ) of multiplicity 1 . Note that the fact 
that {X Q (x - k) hEf forms an orthonormal basis for Va is  a restatement of the 
assumption that the lattice translates of the tile Q have overlaps of measure zero . 
An immediate consequence of Gréichenig and Madych's generalization of the Haar's 
multiresolution analysis is the following: 

Re\'. Un. Mat. A rgentina. Vol. 44- 1  



78  A .  BENAVENTE AND C .  A .  CABRELLI 

Lemma 2 . 1 .  The collectíon 

{X{t}iEz.kEr = {qi/2XQ(Aix - k) }iEz.kEr 
is complete in .c2 (lRn) i . e . ,  its finite linear span is dense in .c2 (lRn) .  
2 .2 . LOCALIZED VECTOR SCALING FUNCTIONS . We say that a MRA in .c2 (lRn) is 
localized or regular if the scaling vector ep = (epi , . . .  , epr f is localized in the sense 
that for i = 1 , .  , . ,  r, each <Pi belongs to the Sobolev space 1lmCJ?;1-), Vm E N. This 
condition is equivalent to: for each i = 1 , . . . , r, 

(2 . 1 ) 

Using Cauchy-Schwarz 's inequality and taking into account that the function ( l+ l�l )m belongs to .c 1 (lRn)  with m > 1 , it is easy to prove that if a function I satisfies 
¡ E 1lm(Rn) for all m E N, then: 

(2 . 2) { I l (xWdx ::; ( 1 
c

�)m ' 
JI I:z: I I�M + 

(2 .3) 

(2 .4) 
, , 

For simplicity, we shall from now on write that the vector function ep has orthonormal 
lattice translates when we mean to say that {epi (X - k) her.i= l ,  . . .  ,r i s  an orthonormal 
system in .c2 (lRn ) .  
Definition 2 .2 .  Assume that ep E .c2 (lRn , ccr) has orthonormal lattice translates . 
Let Vo be the closed linear subspace generated by the lattice translates of epi , i . e . ,  

(2 .5 ) Vo = span{epi (x - k)hEr,i=l ,  . . . .  r . 
For each j E Z let Vi be the set of all the dilations of Vo by Ai , i . e . , 

. ' k  (2 .6) Vi = {g (AJx) : 9 E Vo}  = span{epi ' : i = 1 , . . . , rhEr . 

If {Vi};a is a MRA for .c2 (lR") , then we say that the MRA is generated by ep.  
Remark 2 .3 . In the characterization of MRA due to A.  Cohen [Coh90] , he uses a 
localized generator , but the dilation matrix is the uniform one : A = 21. In the proof, 
he uses the essential fact . that 2I maps dyadic cubes into dyadic cubes . This is not 
possible in the case of arbitrary dilation matrix. 

3 .  NECESSARY AND SUFFICIENT CONDITIONS . 

We now are ready to state the main result in the paper :  

Theorem 3. 1 .  Let ep = (epI , " · , eprf E L2 (Rn , cr)  such that lor each i = 
1 , ' "  , r, <Pi E 1lm(Rn) for all m E N and that the set {epi ( '  - k) hEr. i= l . . . .  ,r is 
an orthonormal system. Let A be an admissible dilation matrix for the lattice r.  
Then ep generates a multiresolution analysis with multiplicity r associated to (r ,  A) 
if and only if: 
Rev. Un. Mat. A rgentina, Vol. 44- 1 
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a) 'P satisfies a refinement equation of the form 

'P(x) = L ck'P(Ax - k) 
kEr 

for some r x r matrices Ck = (c�j ) , su eh that for eaeh i , j = 1 , . . .  , r, 
{ ct hEZn , E e2 (r ) and 

r 
b) 1 1<p(O) 1 1

2 
= L l <Pi (O

W = I Q I · 
i=l 

79  

To prove this theorem, in the next propositions we will give necessary and sufficient 
conditions on the vector function 'P, in order that the subspaces V j will satisfy 
properties P I , P3 and P4 of the definition of MRA. Property P2 is satisfied from 
the definition of Vj and P5 is assumed . 

3 . 1 . PROPERTY ( P I ) : Vj e Vj+1 ' 
Proposition 3 .2 .  Let 'P = ('PI , . . .  , 'Prf E .c2 (IRn , cr) with orthonormal lattice 
translates. Let A be a dilation matrix and define Vj as in (2. 5) and (2. 6) . Then, 
the following conditions are equivalent: 

(1) Vj e Vj+l for all j E Z. 
(2) The vector funetion 'P i s  refinable, z.  e . i t  satisfies the refinement equation : 

'P(x) = L Ck'P(Ax - k) 
kEr 

for some r x r- matriees Ck , sueh that for eaeh i ,  j = 1 ,  . . . , r, the sequenee of 
coefficients {c7,j hEr is in e2 (r) . 

Proof: If ( 1 )  is satisfied, then 'Pi E Vo e VI for i = 1 , ' "  , r. The definition 
of the subspaces Vj implies that {ql/2'Pj (Ax - k) }kEr ,i ,j= I , .  . . ,r = {'PY (x) }kEr is 
an orthonormal basis for VI , then the representation of each <Pi respect to the 
orthonormal basis of VI will be: 

r 
(3 . 1 )  'Pi = L L c7,j'PY (in .c2 (IRn) ) , 

j=1 kEr 
where C�j := < 'Pi , 'PY > . For i , j = 1 , . . . , r, the sequence of coefficients {C�,JkEr be­
longs to e2 (r) . Let us call Ck the r x r-matrix whose columns are (C�I ' . . .  , c� ) .  Consid­
ering that 'P = ('PI , . . . , 'Pr )T then, from (3 . 1 )  we have 'P = ¿kEr Ck'P1 ,k in .c2 (lRn , cr ) ,  
or equivalently 

kEr 
and condition (2 ) is satisfied. 
For the converse, if 'P is refinable, then 'Pi E VI , i = 1, . . . , r so Vo is included in VI . 

O 

3 . 2 . PROPERTY ( P3) : njEz Vj = {a} . We shall prove that (P3) is a consequence 
of the orthonormal r-translates of 'P and the localization of each 'Pi . To do this , 
we will use the following lemma (we omit the proof because it is like in the classical 
l-dimensional case with dyadic dilations [Woj97] ) : 
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Lemina 3.3 .  Consider Vj as in (2. 6) . Let Pj be the orthogonal projectiori of .c2 (lRn) 
onto Vj . Suppose that for all 9 E .c2 (lRn) ,  , lim I IPjg l 1 2 = O .  J -4 - oo  
Then n Vj = {O} . 

JEZ 
Proposition 3.4. Let ep E .c2 (lRn, Cr) be a localized vector function in the sense of 
(2. 1) .  Suppose that ep has orthonormal lattice translates, A is a dilation matrix and 
consider the subspaces V j as defined in (2. 6) . Then n V j = {O} . 

JEZ 
Proof: Using Lemma 3 .3 ,  it suffices to show that limj-4-oo I I Pjg l 1 2 = O ,  '<:/g E .c2 . 
Moreover, it suffices to establish this limit for 9 contained in a subset whose finite 
linear span is dense in .c2 (lRn) . We will use the complete set gíven in Lemma 2 . 1 ,  
i .e .  we will prove that 

(3 .2 )  

Fix any s E Z and e E f .  Since q = I det(A) I , we have for every j E Z that 

I Aj-S ( Q  + e) 1  = qj-s l Q + e l = qj-s I Q I . 
Since {cp{,khEr,i=l ,  . . . ,r is an orthonormalbasis for the subspace Vj then, 

I I PjX�e l l � = j�S t z= I r . epi (X - k)dx l 2 q i=l kEr J AJ- S (QH) 
Using Cauchy-Schwarz's inequality, we therefore compute that 

I l PjX�e l l � :::; IAj-S��s 
+ e)1 t z= 1 .  lepi (X - kWdx q i=l kEr J AJ-' (QH) 

(3 .3) = I Q I tz= l l ep; (xWdx, 
i=1 kEr J AJ- s (Q+e)-k 

where the last sum is finite . To see this, note that for a fixed s and j < s ,  using that 
Q is a tile for lRn and A - 1  is contractive, we have that the lattice translates of Aj - s Q 
have overlaps of measure zero . To simplify the notation, write E : = A-S ( Q  + e); 
then Aj-s ( Q  + e) - k = Aj E - k . Choose an integer J < O small enough such that 
I Aj E - k n Aj E - k' l = O for all j :::; J; k, k' E f, k ¡:. k' . Then, for j :::; J, 

z= XAjE-k (X) lepi (XW = XUkEr AjE-k (X) l epi (X) 1 2 
kEr 

And since l epi (X) 1 2  E .c1 (lRn) ,  then 

z= r l epi (XWdx = r Z= XAjE_k (X) I c¡Ji (X) 1 2dx < oo . 
kEr J Aj E-k J'Rn kEr 

Now, using ( 3 . 2 )  and (3 .3 ) , it suffices to prove that for i = 1 ,  . . . , r ¿kEr JAj E_k l epi (X)1 2 dx 
Rev. Un. Mat. A rgentina, Vol. 44- 1 
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goes to O when j -+ - oo .  Consider the same integer J E Z as before and j ::; J; and 
define fj (x) : =  L XAjE-k (X) \ IPi (XW · So fj (x) = \ IPi (X) \ 2XukHAjE-k (X) , Then: 

kEZn 

L { \ IPi (X) \ 2dx = { Ji(x)dx 
kEf J Aj E-k JRn 

= ( fj (x)dx 
J[-p,pln 

= h + h 

Write Bj : =  U (AjE - k) n [-p, pt, then 
kEr 

(3.4) 

We can see that \ Bj \ --7 O as j -+ - oo .  In fact: consider tj : =  card ( {k E zn : 
Aj E - k n  [_p, p]n i- 0} ) and write ó ( · )  as the diameter of a certain set o Because the 
spectra1 radius p of A-I is 1ess than 1 ,  we have that I IAj \ \oo  -+ O when j -+ - 00  (see 
[HJ] ) i .e .  \ \Aj \ \ oo  < E for j small enough. Then, considering the metric d(x, y) = 
\ \ x  - y \ \oo  = max{ \ xi - Yi \ : i = 1 ,  . . . , n} we have that for x ,  y E AJE: 

d(x , y) = \ \Aj (A1-jx - AI-jy) \ \00  
::; \ \Aj \ \00 \ \A 1-J X - AI-jy \ \oo  
< d(A1-jx ,  AI-jy) 
::; ó (AE) . 

Taking the supremum over Aj E, we have that ó(Aj E) ::; ó(AE) and then tj < tI , 
for all j < O . Now, for j ::; J, the overlaps of the 1attice trans1ates of AjE have 
me asure zero , so: 

\Bj \ = tj I Aj E - k n [-p, pt l 

::; tI IAj E l 
= tI IE \  qj 
< C .  

Since \ Bj \ -+ O as j -+ O then fjX [-p
,
pln -+ O ,  moreover \ JiX[-p,pl n (X) \  ::; \ IPi (X) \ 2 . 

From this fact , equa1ity (3 .4) and the Dorninated Convergence theorern we have that 

(3 . 5)  h = ( fAx)dx -+ O when j -+ - oo .  
J[-p

,
pln 

For the integral h ,  take e > O and j ::; J. Then O ::; Ji (x) ::; \ IPi (x ) 1 2 . U sing this and 
property (2 . 2) for sorne m, we have 

12 ::; { \ IPi (xWdx 
J1 1x l l ?p 

< Cm 
- ( l + p)m ' 

Rev. Un. Mat. A rgentina, Vol. 44-1 
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Considering p large enough such that ( l;;;)m < e, we will have 12 < e .  Finally : 

r fi (x)dx = Il + h ::; Il + e . JlRn 
Taking limit for j -+ - 00 ,  from (3 . 5) we conclude that for all s E Z and f E r,  
limj--+_oo I I PjX:{ 1 1 2 = O .  Hence n Vj = {O} . 

jeZ 

3 .3 .  PROPERTY (P4) : U Vj = .c2 (]Rn) . 
jEZ 

o 

Proposition 3.5 .  Let cP = (CPl , . . . , CPr)T E .c2 (]Rn , cr) a localized vector function. 
Suppose that cP has orthonormal lattice translates . Let A be a dilation matrix and 
let Vo and Vj be defined as (2. 5) and (2. 6) respectively. If 
(3 .6) t l<Pi (OW = t i  J CPi (x)dx I 2  = I Q I i= l i=l 
Then UjEz Vj is dense in .c2 (]Rn) . Reciprocally, if UjEz Vj is dense in .c2 (]Rn ) and 
cP is refinable, then (3. 6) is satisfied. 

Before proving this proposition, we are going to present sorne auxiliary results with 
respect to the decomposition of ]Rn by the tiles { Q  + k hEr .  First , note that the 
fact that Q is self-similar together with the fact that the translates of Q tile ]Rn 
with overlaps of measure zero , implies that the dilated tile Aj Q, j 2:: 1 is a union 
of exactly qj translates of Q, with each of the translates lying entirely inside Aj Q.  
Following the idea in  [CHM99] , for j 2:: 1 we are going to  split the lattice r into 
a finite set containing those elements that translate Q entirely inside Aj Q, and a 
finite set containing the elements that translate Q to the boundary of Aj Q .  More 
precisely, for each j 2:: 1 let us consider the following finite subsets of r : 

(3 . 7) 

Nj = {k E r : Q + k e Aj Q} ,  
N? J {k  E Nj : Q + k e (Aj Qt} ,  

N? J {k E Nj : ( Q  + k) n 8(Aj Q) -I 0} . 

·These sets satisfy the following relations : Aj Q = Q+Nj , card(Nj ) =  qj , NiUNa = 
Nj and Ni n Ny = 0 .  
Let n = {k E r : ( Q  + k) n B -1 0} .  The following technical lemma (see [CHM99] 
for a proof) characterizes those translates Q + 'Y of Q for which it is possible to 
translate Q + 'Y by elements of n so that one translate Q + 'Y + k with k E n 
lies entirely within Aj Q and another translate Q + 'Y + k' with k' E n lies entirely 
outside of Aj Q (neglecting its boundary) .  This lemma also tells us that the ratio 
of the number of those translates Q + k that intersect the boundary of Aj Q to the 
total number lying insid!'l Aj Q converges to zero : 

Lemma 3.6 .  Let B,  n,  Ni > Ni and NJ defined as befo re, then: 
card(NJ) card(NJ) 

a) lim . . = 1 and lim . = O. j--+oo qJ j--+oo qJ 

Rev. Un. Mat. A rgentina, Vol. 44- 1  
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. eard(Nj\ ( (NJ - O) n Nj ) )  
b)  hm , = 1 .  j-+oo qJ 

83 

e) Let "Y E r, Ji there exist k, k' E O su eh that Q + k + "Y e Aj Q and Q + k' + "Y e 
�n\ (Aj Q)O , then "Y E NJ - O = {t' - w :  e E N/, w E O} . 

PROOF OF PROPOSITION 3 . 5 :  Suppose that <p is refinable, then we have to prove 
r 

that U Vj = .c2 (�n) <=> L I tPi (0) 1 2 = I Q I ·  
jEZ i=l 

Note that if for all 9 E .c2 (�n) 
(3 .8 )  
then Property (P4) i s  satisfied . Further , i f  <p i s  refinable , then by Proposi"tion 3 .2 ,  
Vj e Vj+1 and therefore (3 ,8) i s  equivalent to Property (P4) . Now, by orthogonaHty, 
I I Pjg - g l l � = I l Pjg l l � - l l g l l � ,  then we can rewrite equation ( 3 . 8) as : 

(3 , 9) \lg E .c2 (�n) ,  lim I l Pjg l l � = I l g l l � . J-+OO 
This express ion is true for all 9 E .c2 (l�n) if and only if is true in a dense subset of 
.c2 (�n) . So we will use the set of functions considered in Lemma 2 . 1 .  Then, 

(3 . 10) Il Pj (X Q) I I � = 
1
j t L I r , <Pi (X - k)dX l 2 q i=l kEf JAJ Q 

On the other hand, let s E Z, e E r, and j 2: s .  By a change of variable and taking 
into account that Ar e r, we have 

(3 . 1 1 )  
Comparing (3 . 10) and (3 . 1 1 ) ,  we conclude that (3 .9)  i s  equivalent t o  the statement : 

(3 . 1 2) lim I I Pj (X Q) I I � = I IX  Q I I � = I Q I · J-+OO 
Since statements (3 .8) , (3 .9) and (3 . 12) are equivalent , we conclude that it suffices 

r 
to prove that lim I l Pj (X Q) I I � = L I tPi (OW , or equivalently, to prove that for each J-+OO ' 
i = 1 ,  . . .  , r  : 

(3 . 1 3) 

i=l 

lim � L I r <Pi (X - k)dX l 2 = I tPi (0) 1 2 . J-+OO qJ J Aj Q kEI' 
To do this , fix 'i , consider a constant Mi > O and define Ki = {x E �n : I l x l l  ::; M;} .  
Using the property o f  unconditional convergence of orthonormal bases , we will split 
the summation over r into three disjoint regions related to the subset Ki . The idea 
behind this is that the first regio n should contain only elements k of the lattice r 
such that Ki + k is sure to He in the interior of Aj Q, the second region should 
contain those k for which this translation will intersect the boundary of Aj Q, and 
the last region should be the complement of the firsf two . More precisely, let Bi be 
any open ball in �n which contains both Q and Ki , and define 

O = {k E r : ( Q  + k) n Bi -=1= 0} . 
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Note that n is finite and Ki e n  + Q. For each j 2:: 1, define: 

r1 ,j = N'j\( (N; - n) n Nj ) ,  
r2 3· = NI! - n , . 3 ' 
r3,j = f\ (r1 ,j U r2 ,j ) ,  

where the sets Nj , Njo and NJ are as in (3 .7) . Note that for each j, the sets f l,j ,  
r2,j , r3 ,j partition r .  Further , by Lernrna 3 . 6  a) and b) , we have: 

(3 . 14) lirn 
card(�l ,j ) = 1 and lirn 

card(�2 ,j ) 
= O . j-HXJ q3 j-4oo q3 

Now define 

Rsj = 1
j 2: I f . 'Pi (X - k)dx I 2 , S = 1 , 2 , 3  

q kEr . JA1 Q . 
8 ,1 

We will show that : �irn Rlj = l cí?i (OW , lirn R2j = O and �irn R3j = O .  
)-+00 3-400 3-+00 

Let us begin with R2j . 

R2j ::; 
1
j 2: ( f . l 'Pi (X _ k) l dX) 2 

q kEr2,j J A1 Q 
::; � 2: ( f l 'Pi (X) l dx) 2 

q3 Jan kEr2,j . 
C card(r 2 ,j ) 

= ---;-'-"':::":" 
qj 

. By (3 . 14) , the last terrn is arbitrarily srnall for j Jarge enough. Then R2j 4- O when 
j 4- oo .  
To analyze R3j , Jet us  write ¡Pi (X) = X K¡ (X)'Pi (X) , Then 'Pi (X  ) = ¡Pi (X )+X K¡ (X)'Pi (X) ,  
Note that ¡Pi has cornpact support . 

R3j ::; 
1
j 2: ( l  l ¡Pi (X - k) l dx + l IXKf (Y _ k)'Pi (Y _ k) l dY) 2 

q kEr3,j JA1 Q JA1 Q 
= A + B + C, 

We will show that A = B = O and C 4- O as j 4- oo. Suppose that A =1 O ,  then 
JAjQ l ¡Pi (X ,.c.. 'Y) l dx =1 O for sorne 'Y E r3,j ' Then (Ki + 'Y) n Aj Q has to have positive 
Lebesgue rneasure . Since Ki e Bi e Q + n, then (Ki + 'Y) e (Q + n + 'Y) and 
( Q + n + 'Y) n Aj Q will have positive rneasure. Because Aj Q is the exact union of 

Rev. Un. Mat. A rgentina, Vol. 44- 1  



FINETELY GENERATED MULTIRESOLUTION ANALYSIS 85 

qj translates of Q that do not overlap , then the only translates of Q that interseets 
Aj Q in sets of positive measure, are the translates that are eompletely inside of 
Aj Q.  Henee: 

(3 . 15 )  Q + k + 1 e Aj Q for somek E n.  
Sinee o E n and Ny e Nj , then Ny e (Ny - n) n Nj . Henee Nj = Nj U Ny e 
f1 ,j u f2 ,j . Sinee 'Y E f3,j = f\ (f1 ,j U f2 ,j ) ,  then 1 � f2,j , so 1 � Nj . This implies 
that Q + 1 is not eontained in Aj Q. Then Q + 1 e ]Rn\(Aj Q)o . Consequently 

( 3 . 16) 

and sinee O E n, then from Lemma 3 .6  e) , applied to (3 . 1 5 ) and (3 . 16 )  we have 
1 E Ny - n = f2 ,j , and this is a eontradietion . Then A = O .  By a similar reason, 
B = O.  
To prove that e � O as j -+ 00 ,  we writeT3,j as the union of disjoint sets as follows : 

(3 . 17 )  
00 

f3 ' = U Dj ,J • 
• =1 

where for eaeh j E Z, Dt := {k E f3,j : s ::; dist (Aj Q. - k ,  O) < s + 1 } .  
After the ehange of variable x = y - k ,  we have : 

e = � L ( r l 'Pi (X) l dX) 2 
qJ kEr3j J Aj Q-knKf 

::; 
1
j f L ( r . l 'Pi (X) l dX) 2 

q 1 . JAJ Q-.k . .= kEm 

::; 
1
j f L (1 l 'Pi (x) l dX) 2 

q .=1 kED� . IIxll;:O:,  

For a purpose that will beeome clear later eonsider m > 11n .  Using that <Pi E 
1{m(]Rn) and property (2 .4) , then 

(3 . 18 )  

·with Cm a eonstant that depends on m .  Let us  find an upper bound for eard(D� ) .  
Let us note that if 'Y E Dt then s ::; dist (Aj Q - 1 ,  O )  < s + 1 .  Sinee Aj Q - 1 
is eompaet, then there exists x E 8(Aj Q - 1) where the distanee is attained . On 
the other hand Aj Q - 1 is the union of exaetly qj tiles that do not overlap , henee 
x E Q - t for sorne t. Then Q - t  e Aj Q - 1 and Q - (t + 'Y) n 8(Aj Q) i- 0. Finally 
t + 1 E Ny and D� e b E f 3,j : :Jt E D� , such that 1 + t E Nf} . 1t follows that 

(3 . 19 )  eard(D� )  ::; eard(D� )  . eard(Ny ) .  

Moreover eard(D�) ::; c(s + 1 + d) , with d = diam(Q) .  To see that , take 1 E D� 
then Q - 1 e B (O ,  s + 1 + d) (the open ball eentered at zero, and radius s + 1 + d) . 
Then D� e L := b E f : Q - 1 e B(O,  s + 1 + d) } and eard(D� )  ::; eard(L) . Now, 
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since the lattice translates of Q do not overlap, we have : 

(3 . 20) card(L) I Q I = 'L I Q - , I = U ( Q - ,) 
""(eL 

On the other hand 

(3 .2 1 ) U ( Q - ,) :::; I B (O , s + l + d) 1 = c(s + l + dt· 
""(eL 

From (3 .20) and (3 .2 1 ) we have card(L) :::; c(s + 1 + d)n , and finally card(D� )  :::; 
c(s + 1 + d)n . By (3 . 19) it follows that card(D� ) :::; card(Nf ) . c(s + 1 + d)n , with c 
a constant that does not depend on j. Then, from (3 . 18) we have 

card(NJ ) 'Loo cm(s + 1 + d)n C < .  ( ) 2 ' - q3 
8=1 1 + s m 

Here, the summation is finite because m > 1tn , then C :::; car:�Nf) C(m), with C(m) 
a constant that depends on m .  Finally, by Lemma 3 .6 ,  C -t O when j -t oo . 
It only remains to prove that for each i = 1 , ' "  , T, R1; -t 1 <A (0) l 2 .  Fix i ,  then 

I r  'Pi (X - k)dX l 2 = I f 'Pi (x)dx - f . 'Pi (X)dX I 2 J Ai Q. Jan J(AJ Q.)c-k 

:::; ( l $i (O) 1 + f l 'Pi (X) l dX) 2 
J(AiQ.)C-k 

= l$i (O) 1 2 + 2 1$i (O) 1 f l 'Pi (X) l dx+ 
" J(AjQ.)C-k 

+ ( ( . l 'Pi (X) l dX) 2 
J(AJQ.)C-k 

Summing over f 1 ,; and dividing by q; , we have: 

(3 .22) 

1
; 'L I l 'Pi (X - k)dX l 2 :::; card�l ,; )  l$i (O) 1 2 

q kerl ,i 
J AJ Q. q 

+ 2 1$i (O) I �  L f l 'Pi (X) l dx 
q3 

kerl ,j J(Ai Q.) C-k 

+ � 'L ( f l 'Pi (x ) l dX) 2 
q3 

ker . J(Ai Q.)C_k 1 ,J 
Now, by definition of f1 ,i and Lemma 3.6 c) , it can be shown that Ki +k e (Ai Q)O e 
Ai Q for k E f1 ,i ' Hence (Ai Q)c - k e Kf. From this and property (2 .4) , we have: 

1
; L f .  . 1 'Pi (X) l dx :::; � L f l 'Pi (X) l dx 

q ker . J(AJ Q.)c-k q ker . J Kf 1 ,3 1 ,] 
< card(f1 ,j ) Cm 

qi ( l + Mi)m ' 
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Now, consider e > O , using (3 . 14) we have that card�;,,j) < e + 1 for j large enough. 
Moreover, in the definition of Ki , we can choose a constant Mi such that ( 1+cM; )m < e 

(for a fixed m) . Then, we will have: � L 1 l 'Pi (X ) l dx < c .  Using this in qJ kEr' ,j (Aj Q)C_k  

(3 . 22) we can conclude that for e > O and j large enough: 

(3 .23) lj L 1 r . 'Pi (X - k)dX l 2 < Icí\ (OW + c . q kEr'j J AJ Q 

On the other hand: 

I r . 'Pi (X - k)dX l 2 = 1 r 'Pi (x)dx - 1 . 'Pi (x)dX I 2 
JAJ Q JITtn (AJ Q) C-k  

2': ( liPi (0) 1 - 11 . 'Pi (X)dX I ) 2 
(AJ Q)c-k 

2': l iPi (OW - 2 IiPi (0) 1 1 1 . 'Pi (x) dx l · 
(AJ Q) c -k 

Remember that from (3 . 14) we have that 1 - e < 
car�;" j ) and 

� L,kEr" j f(Aj Q) C-k l 'Pi (X) l dx < c . Then, summing over fl ,j and dividing by qj : 
lj L 1 r . 'Pi (X - k)dX l 2 2': card�l ,j ) liPi (OW 
q kEr' ,j JAJ Q q 

- 2 IiPi (0) 1 � L 1 1 . 'Pi (X )dx l qJ ka',j  (AJ Q) C-k  

> ( 1 - C) liPi (OW - 2 IiPi (0) l c 
(3 .24) > l iPi (OW - c. 
Finally, from (3 . 23) y (3 . 24) , we conclude that for i = 1 ,  . . .  , r, Rlj � liPi (0) 1 2 when 
j � oo . 

D 

3 .4 .  PROOF OF THEOREM 3 . 1 .  The proof of this result , is a direct consequence of 
Propositions 3 .2 ,  3 .4  and 3 .5 .  
Suppose that 'P generates a MRA (Vj )jEZ .  Then Properties (P 1 )- (P5 ) of the Íllul­
tiresolution analysis are satisfied. Statement a) of the theorem is an immediate 
consequence of Property (PI ) and Proposition 3 .2 .  Using Properties (P4) , (PI ) and 
Proposition 3 . 5 ,  then b) is verified . 
Now, suppose that 'P verifies a) and b) of the theorem. To prove that 'P gener­
ates a MRA, define Va = span{'Pi ( ' - k) }kEZn , i= l . . .T and Vj = {g(Ajx) j 9 E Va} · 
Then Property (PI ) is a consequence of a) and Proposition 3 . 2 .  Properties (P2 ) 
is trivial due to the definition of Va and Vj , and (P5 ) is assumed .  Property (P3 ) 
is a consequence of the hipothesis of orthonormal lattices translates and the local­
ization property of each 'Pi as was proved in Proposition 3 .4 .  Finally from b) and 
Proposition 3 .5 ,  Property (P4) is satisfied . Hence, 'P generates a multiresolution 
analysis with multiplicity r associated to the dilation matrix A and the lattice f. 
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