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THE RESOLVENT ON R, A DEGENERATING METHOD.

CYNTHIA WILL

ABSTRACT. Let G = SO(n,1) and K = SO(n). We use a continuous family of
Lie algebras isomorphic to the Lie algebra of G, g, to degenerate the hyperbolic
real space H™ ~ G/K into the Euclidean space R™. This allows us to recover
the resolvent of the Laplacian on R™ from the resolvent of the hyperbolic
Laplacian.

1. INTRODUCTION

Let H™ = G /K be the hyperbolic space, where G = SO(n, 1) and K = SO(n).
By using the Cartan decomposition of the Lie algebra of G, g = & ® p, we change
continuously the Lie bracket on g in order to make it vanishes on p, and so degen-
erating g to the Lie algebra gy of the group of isometries of R*. We then have a
continuous family of Lie algebras gs (for s € [0,1]), from g, = gto go = E® R"
such that for s # 0, gs is isomorphic to g. For s # 0, the techniques we have in the
hyperbolic case (see [5]) are applied to calculate the radial part of the Casimir ele-
ment of U(gs), and also we characterize the spherical functions as certain solutions
of the following ordinary differential equation (note that it also depends on s)

dt

With all this, we obtain an expression for the resolvent kernel, given by a solution
of the above equation with appropriate asymptotic behavior. Then by looking at
the limits we obtain an expression for the kernel in go. Studding the differential
equation this kernel satisfies, we also can express it in terms of special functions
(see (15) and (16)).

Although an expression of the kernel of the resolvent of the Laplacian in this case
is of course known, we think that this method may be used in other cases where one
knows something about the resolvent, as for example the other rank one symmetric
spaces of noncompact type, or more generally, the Damek-Ricci spaces. Also this
approach might present some interest in considering the heat Kernel instead of the
resolvent. ‘

2 . .
(gi-g +s(n—1) coth(st)i - /\s(v)) f(as(t)) = 0. (1)

2. PRELIMINARIES -

We begin by introducing notation that will be used throughout this paper. - As
is customary, we will denote a Lie group by an upper case letter and its Lie algebra
by the corresponding lower case gothic letter.

Let G = SO(n, 1) be the Lie group of matrices in SI(n+1, R) leaving the quadratic

form —z?—z%—...—z%+z2 | invariant. Consider g = t+p the Cartan decomposition
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of its Lie algebra g, associated to the Cartan involution 8(X) = JXJ, where J =
[ 4 9], Thus :

Ez{[g 8]:A€50(n)} and p:{{_obt_ g]»:bERn}.,

Also, if we put
Ho=[_o']er

it is easy to see that a = RH, is a maximal abelian subalgebra of p. Let B be a
multiple of the Killing form of g such that B(Hp, Hp) = 1, and we take the inner
product (-,-) given by Bs = —B(-,0:). Let {a} be the corresponding system of
positive roots of the pair (g,a), such that a(Hp) = 1, and as usual, let p = 251 a.

We will identify the complexified dual space a; with C under the correspondence
v = za — z In other words, since a(Hp) = 1, we are identifying v € a’ with
I/(Ho).

For each s € [0, 1] let ¢ : g — g be defined by
$s(X +Y) =X +sY X€EerYep.

Define gs = (g,[-,"]s) the metric Lie algebra with underlying inner product space
(g,(-,-)) and Lie bracket given by

[X,Y]s = ¢; ' [6s X, 6], X,Y €.

Thus, ¢, : gs — g is a Lie algebra isomorphism. It is easy to see that if go =
limg,,0 g5, then go ~ €@ R™ is the Lie algebra of My(R™), the group of isometries
of R".

For each s € [0,1], let G, denote the connected Lie group with Lie algebra g;.
It is easy to see that

¢.! ad

gs —> 0 and gs —> gl(gs)
exp,l lexp exp,J lexp
. >,
Gs G G, &' Gl(gs)
commute, that is
®, oexp, = exp,0¢; and Adsoexp, =eoad,. (2)

On the other hand, by the definition of gs; we have that for H € as(= a Vs),
[H, X]s = ¢7[sH,¢sX]. Therefore, if Xo € ga, and we take X,, = ¢;! X4, then
we have that [H, Xa,]s = sa(H)X,,. This implies that a; = a o ¢; = sa is the
restricted root (system) of the pair (gs,as). We have also that the corresponding
ps s given by ps = “"T_l) due to our identification of a.

If for each s, AT = {exp,(tHo) : t > 0}, we have the polar decomposition of
Gs, Gs = KCl(AT)K. We take on A, the Lie subgroup of G5 with Lie algebra as,
the measure da = dt; on K we normalize the measure so that the total mass is one,
and for the measure on G we have the following observation.

Lemma 2.1. The Haar measure on G relative to the polar decomposition is given
by dz = Jg(a)dk, da dky. More precisely, if f € C.(Gs),

/ f(g)dg = /  F(kraka)J,(t)dky dadksy
G, KAt K
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- n—1
where Js(a) = (M> , for a = exp,(tHy).

Proof. The proof of this fact is basically given in [1, pp. 73], and we will only need
the following two observations when s appears in the proof.

e Since G = texp,(ps), we have that (see [1] pp.72)
sinh ad;(2)

dz:det[ od.(2)

] dk dz where z = kexp,(z).

e The function X % [X, H] induces an isomorphism from E/m into at C p.
It is easy to see that its determinant is given by ca(H)" !, where cis a
nonzero constant independent of H. '

Then we have that J;(exp,(tHp)) is a multiple of

sinh ads(Ad(k)tHyp) 1 sinh ad;(tHo) -1 ~1
det Hy)" ' =d k)—————= n
| T ad.(Ad(R)tHg) | “(Ho) o | AR =gy AR
as asserted. a

For simplicity we will denote Js(t) = Js(exp,(tHop))-

Definition 2.2. A function f on G is called K-biinvariant or radial if f(kzk') =
f(z) for all k, k¥ € K.

Let C(Gs/K) be the space of continuous radial functions, and we will also
denote by C®°(G;/K) and C® (G K), the space of smooth radial functions and
the compactly supported smooth radial functions, respectively.

Let f~ denote the restriction to A} of a function f € C(G;/K). It follows from
the polar decomposition G; = KCI(A)K that f is determined by f~. Moreover,
if D is a differential operator.on G; invariant under the right and left action by

elements of K, we can define the radial component of D, as a differential operator
on A} such that (see (1, § 4.1])

(Df)” =AD)f~,  VfeC®(Gs/K)). (3)

Let C denote the Casimir element of the complexification of gs, (gs)c, with
respect to B. We are interested in the radial component of C. To calculate it, we
will use arguments analogous to those in 8, pp. 280].

Let X,,...,Xn-1, be a basis of g4, such that —B(X;,0(X;)) = é,;, i.e. or-
thonormal with respect to (,). For i = 1,...,n — 1, consider X = ¢;'X;. Thus,
from the previous observations we have that X} € g,, for all . If we define, as
usual, for j =0,...,(n—1)

Zj =275 (X; +6(X;)), Y; = 273(X; - 0(X))),

and the corresponding Z; and Y}, it is easy to see that Z7 = Z; and Y = s7'Y}.
On the other hand, since the inner product does not depend on s, we have that in
each gs the Casimir operator is given by

n—1 n-—1
Co=Hi+> Y?=3"2Z}  €lU(g,)
j=1 ji=1

Therefore the action of Cs on C®(Gs//K) is given by the following ordinary
differential equation.
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Proposition 2.3. If f € C™(G, )/ K) then

2

Csflags(t)) = (d? +s(n — 1) coth(st)%) flas(t)).

In particular, we have that in the limit

d? n—1d

g ) S, a

lim C. f(as(t) = (

which is the action of the Laplacian on R™ acting on radial functions (see [2, pp. -
266]).

Proof. From the definition of the Z$ and (2) we have that

Ady(as(~t)) Z: = Ads(as(~t)) 28
_ L(ead,(—tHo)X:;, +ead,(—tHo)Xiu,)
V2

= L (X, +etXi,)

= cosh(st) Z{ — sinh(st) Y

= cosh(st) Z; — sinh(st)s™'Y;.
Thus '
Y; = scoth(st) Z; + ssinh ™ (st) Ad,(as(—t)) Zi, (5)

and then we get

2
Y2 = 2 coth®(st) Z2 + & sinh_z(st)(Ads(as(—t)) z,-)

1

—s? coth(st) sinh ™" (5t) (Z: - Ads(as(—1)) Z + Ady(as(—t)) Z: - Z,).
Note that (5) also implies that
(Z:, Ads(as(—t)) Z;) = —s ™' sinh(st)[Z;, Yi],
and then we have that

Y2 = s?coth?(st) Z? — s?sinh~%(st) [Ads(as(—t)) Zi)°

—2s2 coth(st) sinh ™! (st) Ads(as(—t)) Z; - Z; + s coth(st)Hp.

Therefore if f is biinvariant for the action of K, we have that
Zifg) = 5 _ f e, (t20) =0,
and then
Y2 f(as(t) = s coth(st) Ho f (as(#)),
as was to be shown. O
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3. SPHERICAL FUNCTIONS AND THE RESOLVENT

Definition 3.1. If ¢ is a complex valued radial continuous function on Gs, then ¢
is said to be a K-spherical (or simply spherical) function if ¢(e) = 1 and Cs¢ = \¢
for some A € C.

For each s € [0,1] and v € C, let ¢4(v,-) be the spherical function on Gs with
eigenvalue s (v) = v2 — p2.
Remark 3.2. We note that this eigenvalue is not arbitrary, and in order to calculate
it for s # 0, since g5 is isomorphic to g, one can proceed exactly as in SO(n, 1) to
see that such functions are given by a matrix entry of the spherical principal series
of Gs associated to the character x£(man) = a”**+ (see [1, pp.103]).

We then have, for each s # 0, that ¢,(v,-) is the solution of the following
differential equation

ai2
continuous at ¢t = 0, and such that f(as(0)) = 1.
Note that since tlin‘l) ts(n—1)coth(st) = n—1, this equation has a regular singular
—

(f~+An—nwmuwj AW)N%UD=0 (6)

point at t = 0. Moreover, if we set z = st it is easy to see that f(z) satisfies the
equation (6) if and only if

5 d? N d
(s o7 + s%(n — l)coth(z)-gg - /\5(1/)> f(z) =.0,

or equivalently

S

(a(i—22+(n—1)coth(2)%— [(3)2—;)2]) f(2) =0. (7)

This is a Jacobi equation with parameters A =i%, a = 1‘—52, B = -%, and vy = p.
(see [3]), and therefore, we have that for each s # 0, the spherical functions ¢, are
given by Jacobi functions in the following way:

bolvas(t) = o T 7 (st).
Equivalently, in terms of the Gauss hypergeometric functions we have that

¢4u%u»=ﬂa<“‘”-%+”

25 ' 2s
It can also be seen (see [3, pp. 7]) that for s # 0 and v ¢ —sN, a second solution
of the equation (6) in (0, +00) is given, in terms of the hypergeometric function, by

P n; —sinh2(st)> .

Qs(v,t) = (2cosh(st))_(%+p) 2 F Ps +y; sint 1) + 2U Z +1; cosh™2(st) | .
2s 4s
If Rev > 0, the asymptotic behavior of these functions as ¢t = oo, is given by:
v, as(t)) = c(v, s) etlv=rs), Qs(v,t) ~ e~ (wHpalt,
where
c(v,8) = iy (£) I(5)
] F(p’,;;") F( s(n 415) )
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It is proved in [5] (see also [6]) that for s = 1, the function Q(v,a,(t)) = S/‘C((';tl))
is a solution of the equation (6) (with s = 1), such that '

lim ]1( )Ql v, (l|( )) = 0
t—0+

lim J; (¢) fQI(u,al(t)) -1,

t—0t

and moreover, it is also proved that the resolvent of the Laplacian on G;/K (in
certain half plane of C) is given by convolution with the K-biinvariant function
on G extending this function. Analogously we can generalize this, in the following
theorem, for the other values of s.

Theorem 3.3. For each s € (0,1] and v € C, v ¢ —sN, there ezists a function
Qs(v,-) € C'°°(G - KJK) wzth the following properties:

( )—’\(V,S)Qs(ya')' d
1m Js(t)Qs(v,as(t)) =0 and lim+.ls(t) EQS(V, as(t)) = 1.

) C
)
) Where defined, Qs(v,9) € L,OC(Gg), and if Rev > ps, Qs(v,9) € L'(Gy).
Y If f e CP(Gs)K) and v ¢ —sN then

(a
(b
(c
( .

/ Qs 7719)(C. — A, )IA)i(y)dy = f(z). (8)

Proof: The proof of this theorem is essentially the same as that of Theorem 2.2
in [6] (see also the references given there) and therefore we will just make some
observations.

Let Qs(v,-) be a K-radial function on G, such that restricted to A, is given by

Qs (v, t)s*

ue(y,s)

Qs(v,as(t)) = -

It is easy to see from the above remarks that this function satisfies (a). To see
(b), recall that this function is a solution of equation (6) and this equation has
a regular singular point at ¢ = 0. The corresponding indicial equation is given
by a(a+ (n —2)) = 0, with solutions @ = 0 and a = —(n — 2). It is clear that
#s(v,-) is the solution corresponding to a = 0. If v ¢ —sN, we know that Q,(v,t)
is a linearly independent solution, and therefore, by the general theory of regular
singular points, we have that, when t — 0 Qs(v,t) ~ ds(v)t"2|log(t)|*~* where
ds(v) is a meromorphic function of v. Hence, tlir(r)1+ Js(t)Qs(v, as(t)) = 0.
— .
Finally, to prove the second part of (b), we note that s(n — 1) coth(st) = %-I'%
(see Lemma (2.1)). This fact gives us an analogue of formula (%) in [5] pp. 669,
and then we can proceed as in [5, lemma 1.3]. a

4. THE RESOLVENT KERNEL

We first note that part (d) of the above theorem implies that in the limit, for
Re(v) > 0, (A — v?1d)~! is given by convolution with Qq(v,-), where Qo(v,-) is a
radial function on R"™ such that Qo (v, ) is the solution of the following differential
equation (see (4))

2
(G+ 7 g-v)f0=o ©)
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such that
d
- = d limJo(t)— =1.
HmJo(t)Qo(v,t) =0 and  limJo(t)— Qo(v,?) ,

Here Jo(t) = (2¢)"7 1.
In order to have explicit solutions of (9), we will introduce now the Bessel equa-
tions. The following differential equation ’

1 2
u'(t) + ?u'(t) + (1 - %) u(t) =0 (10)
is called a Bessel equation. It is easy to see that this equation is equivalent to
2a +1 . 2~ a?
o+ 2 0+ (- T35 ) s =0, (1)
where u(t) = t*f(u='t).
"~ Therefore, if we take n = a = "T“Q and p = iv then we have that the equation
(9) is equivalent to the Bessel equation
1 -2\°
u(t) + ?u'(t) + (1 - <n2t ) ) u(t) =0, (12)

where u(t) = t"T.zf(iiu).
The solutions of this differential equation are well known. We will now summarize
some known results on them, following [7, Ch.3, sec 6].

First, let J, be the Bessel function. It is given by

‘71,(2)‘= [I‘ (%) F (77+ %)]_1 (g)n/_ll(l — t2)1 et gy,

Note that the integral in the above formula is meromorphic in 7 with simple
poles at n + % € —N, and these poles are cancelled by the factor I'(n + %)‘1. Thus,
these functions give smooth solutions of the Bessel equation, analytic in . We also
have that for n = k + % this integral can be calculated explicitly, since it involves
(1 —¢*)*, and then J, +1 is an elementary function for each k € N.

Other type of solutions of (10) are given by the so called Hankel functions, 'H%I)
and ’Hs,z). These functions form a basis of the space of solutions of (10) and they

are linearly independent with 7;,. One can see that for Ren > —% and Im z > 0,

’Hs,l) is given by
2e—ﬂ‘i'l] Z\ 7 0o L
H(l) = — (- / t2 —1)""z2 izt dt.
) = T D (3) | LT

We also have that for n = k + %, Hk+% are elementary functions for k£ € N.
Finally, if we let

1 n [ £2
Ky(r) == (C) / t~i-med —t d¢,
0
it can be seen that it is a solution of (10), and in fact (see [7] pp. 233), for r > 0
we have that

1., . . .
K, (r) = §7r1e""7/27{§,‘>(n-). (13)
Rev. Un. Mat. Argentina, Vol. 44-1
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We then have that any solution of (9) is given by
fo(t) = at™ 3 Ta_y(ivt) + bt~ EH Y (ivt) (14)

for some a,b, € C. From the properties of .7;, and ’Hf,l) listed above, it can be seen
that @o(v,t) is a constant multiple of

(V)12 Ja_y (ivt).

On the other hand, in order to have an explicit expression for the resolvent
kernel, we first note that since the term in (14) corresponding to J,, leads to a C*
eigenfunction of A, we could set

Qo(v,t) = bt~ FHHY) (i),

We also have that the asymptotic behavior of ’H(;_l)_l as t.— 0 is given by

rz-1)/2\"
(1) . o~ 3 N2 &
Hg——l(”/t) i— (iyt) ,
and therefore, by straightforward calculation we have that
t1'2—+1 2 1-3 i (1) i
QO(V;t) = —_F(g) (i—l;> 57‘{%_1(11/75).
It is easy to see from (13) that the above formula is equivalent to

Qolv,t) = _?FT_;T (%) T Ksawt),  t>o. (15)

Recall that if n is odd, ’H(;_l)_l is an elementary function.

Remark 4.1. We would like to point out that the difference between (15) and the
corresponding formula (7, (6.49) pp. 232] (see also [4, (1.26) pp. 7]), is due to the
fact that in our case the Haar measure on K is normalized (i.e. K has total mass
1). It is easy to see that with this normalization, we would have to consider the

kernel Ro(v,t) = WQ()(V, t)», where Vol(S™1) = I%Z’;), and then we obtain

1-3
Ro(v,) = ~@m) ™" (1) Ka(on) (16)
as in (7, (6.49) pp. 232].
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