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THE RESOLVENT ON IR" , A DEGENERATING METHOD. 

CYNTHIA WILL 

ABSTRACT . L e t  G = S O ( n ,  1 )  and K = SO(n) . We use a c o n t i n u o u s  family o f  

Lie algebras isomorphic to t h e  L i e  algebra of G ,  g ,  t.o degenerat.e the  hyperbolic 
real space Hn c:::' G/K into the Euclidean space IH:n. . This al l ows li S 1.0 recover 
the resolvent of the Laplacian on IH:n from the resolvent of the hyperbol i c  

L aplaci an . 

l .  INTRODUCTION  

8 9  

Let Hn = G/K be the hyperbolic space , where e = S O (n ,  1 )  and K = SO(n) . 
By using the Cartan decomposition of the Lie algebra of e ,  9 = e EB jJ ,  we change 
continuously the Lie bracket on 9 in order to make it vanishes on p ,  and so degen­
erating 9 to the Lie algebra 90 of the group of isometries of IRn . We then have a 
continuous family of Lie algebras 9s ( for s E [O , 1 ] ) ,  from 91 = 9 to 90 = e EB lE.n 
such that for s -¡:. o ,  9 s  is isomorphic to 9 .  For s i- o ,  the t echniques we have in the 
hyperbolic case (see [5] ) are applied to calculatc thc radial part of the Casimir ele­
ment of U (9s ) , and also we characterize the sphericaI functions as certain solutions 
of the following ordinary differential equation (note that i t  also depends on s ) ( d2 d ) . 

dt2 
+ s (n - 1 ) coth(st) 

dt 
- As (V) f ( as ( t ) ) = O .  ( 1 )  

With al! this , we  obtain an express ion for the resolvcnt kernel , given by a solution 
of the aboye equation with appropriate asymptot ic behavior .  Then by looking at 

the limits we obtain an express ion for the kernel in 90 . S t udding the differential 
equation this kernel satisfies , we also can express i t in terms of special functions 
(see ( 1 5 )  and ( 1 6) ) .  

Although an express ion of the kernel of the resolvent of the Laplacian in this case 
is of course known , we think that this rnethod may be used in other cases where one 
knows something about the resolvent , as for example the other rank one symmetric 
spaces of noncompact type ,  or more general!y, the D arnek-R.icci spaces . AIso this 
approach might present sorne interest in considering the heat Kernel instead of the 
resolvent . 

2 .  P RELIMINARIES 
We begin by introducing notation that will be used throughout this papel' . As 

is customary, we will denote a Lie group by an upper case letter and its Lie algebra 
by the corresponding lower case gothic letter . 

Lct G = SO(n ,  1 )  be the Lie group of matrices in SI (n + 1 ,  lE.) leaving the quadratic 
form - xI -x§ - . . .  -x;, +X;,+ l invariant . Consider 9 = e + p  the Cartan decomposition 
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of its Lie algebra g, associated to the Cartan involution e (X ) = JX J ,  where J = [ -¿el � ] . Thus 

e = { [  � � ] :  A E SO (n) } and p = { [  _Obt � ] :  b E �n } . 
AIso, if we put 

Ho = L1 0 1 ] E P 
i t  is easy to see that a = �o is a maximal abelian subalgebra of p .  Let B be a 
multiple of the Killing form of 9 such that B(Ho , Ho )  = 1 ,  and we take the inner 
product ( - ; . ) given by Bo = -B( · , e · ) . Let {a} be the corresponding �ystem of 
positive roots of the pair (g, a) , such that a(Ho ) = 1 ,  and as usual , let p = n21 a. 

We will identify the complexified dual space a� with e under the correspondence 
v = za f--t z. In other words , since a(Ho )  = 1, we are identifying v E a� with 
v (Ho ) .  

For each s E [0 , 1 ]  let eps : 9 f--t 9 b e  defined by 

eps (X + Y) = X + sY X E e, Y E p .  
Define g s  = (g ,  [ ' ,  ' ] s )  the metric Lie algebra with underlying inner product space 
(g , ( - , - ) )  and Lie bracket given by 

[X, Y]s = ep;l [epsX, epsY] , X, Y E g . 
Thus , ep8 : g8 f--t 9 is a Lie algebra isomorphism. It is easy to see that if go = 

lims>-to g8 ' then go � t EB IRn is the Lie algebra of Mo (�n ) , the groQP of isometries 
of �n . 

For each s E [0 , 1 ] ' let Gs denote the connected Lie group with Lie algebra g8 ' 
It is easy to see that 

commute , that is 

�.  d gs -- 9 an 

exp. ! � ! exp 

Gs � G  

ael . ( ) 9s - 9 [  9 s  
exp. l ! e x p  

Gs � Gl ( gs ) 

�s o exps = exps oepa and Ads o exps = e o ad.� . (2 )  

On the other hand, by the definition of gs we have that for H E as ( = a V s ) , 
[H, X]s = ep; l [sH, epsX] . Therefore, if Xa E ga , and we take Xa. = ep; l Xa , then 
we have that [H, Xa. ] s  = sa(H)Xa • .  This implies that as = a o eps = sa is the 
restricted root (system) of the pair (gs , as ) .  We have also that the corresponding 
Ps is given by Ps = s (n2- 1 ) due to our identification of a� . 

If for each s ,  At = {exps (tHo ) : t > O } , we have the polar decomposition of 
Gs , Gs = KCl(At )K .  We take on As , the Lie subgroup of Gs with Lie algebra as , 
the measure da · = dt ; on K we normalize the measure so that the total mass is one, 
and for the measure on Gs we have the following observation . 
Lemma 2 . 1 .  The Haar measure on Gs relative to the polar decomposition is given 
by dx = Js (a )dk1 da dk2 •  More precisely, if f E  Cc (Gs ) , 

¡ f (g)dg = 1 . f (k1 ak2 ) Js (t )dk1 dadk2 
G. KAt K 
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:1 s i n h ( s t )  ( ) n - l  
whp1'e .]s ( o )  = s ' , fo1' a = exps ( tHo ) . 

9 1  

PTOof. The proof o f  this fact is basically given in [ 1 , pp .  73] , and we  wi l l  on ly  need 
the followillg two observatiolls when s appears in the proof. 

• Since Gs = � exps (p s ) , we have that (see [1 )  pp .72 )  

dx = det 
[ sin�

d
�
(
;

)
(Z) ] 

dk dz where x = k exps (z ) . 

• The function X � [X , H) induces an isomorphism from �/m into a; e p .  
l t  i s  easy t o  see that its determinant i s  given by ca (H)n- l

, where e is a 
nonzero constant independent of H.  

Then we  have that .]s (exps (tHo ) )  i s  a multiple of 

det 
[ s inh ads ( Ad (k) tHo ) ] a(tHo )n- l = det [Ad(k)

sinh ads (tHo ) Ad ( k ) - l ] tn- 1 
ads ( Ad(k ) tHo ) ads (tHo ) 

as asserted . o 
For simplicity we will denote Js (t) = Js (exps (tHo ) ) .  

Definition 2.2. A function f on G is called K- biinvariant o r  radial i f  f (kxk' )  = 
f (x )  for all k ,  k' E K.  

Let C ( G  s // K) be the  space of continuous radial functions ,  and we will also 
denote by C= (Gs //K) and Cr;;o (Gs /IK) , the space of smooth radial functions and 
the compactly supported smooth radial functions , respectively. 

Let f - denote the restriction to At of a function f E C( G s // K) . lt follows Trom 
the polar decomposition Gs = KCI (At )K that f is determined by f - . Moreover , 
if D is a differential operator on G s invariant under the right and left action by 
elements of K ,  we can define the radial component of D , as a differential operator 
on At such that (see [ 1 , § 4 . 1) )  

(D 1 )- = 6. (D) f- , v f E C= (Gs // K ) ) .  (3) 
Let C denote the Casimir element of the complexification of 9s , (9s ) e , wi th 

respect to B. We are interested in the radial component of C .  To calculate i t ,  we 
will use arguments analogous to those in [8 , pp.  280) . 

Let X1 , . . . , Xn- 1 , be a basis of 9(}' , such that - B (Xi , B (Xj ) )  = 6i,j , i . e .  or­
thonormal with respect to ( , ) . For i = 1 , . . .  , n - 1 ,  consider Xt = cjJ-; 1 Xi . Thus , 
from the previous observations we have that Xt E 9 (}' ,  for al! 'í , lf we define ,  as 
usual , for j = O, . , . ,  (n - 1 )  

Zj = 2 - � (Xj + B(Xj ) ) ,  1j = 2- � (Xj - B (Xj ) ) ,  
and the corresponding ZJ and Y/ , it is easy t o  see that ZJ = Zj and Y/ = s - l yj . 
On the other hand ,  since the inner product do es not depend on s ,  we have that in 
each 9s tbe Casimir operator is given by 

E U (9s ) . 

Tberefore thc action of Cs on C= (G s // K) is given by the following ordinary 
differential equation . 
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Proposition 2 . 3 .  JI I E C'X (G,, // K) then 

( d2 d ) 
Cs / (a  .. ( t ) )  = 2" + s (n - 1) coth(st) -d f (as (t) ) . 

dt t 

In particular , we have that in the limit 

( d2 n - I d ) 
lim Cs f (as ( t ) )  = 2" + ---d f (tHo ) · S""" o dt t t ( 4 )  

which i s  the action of  the Laplacian on  IRn acting on  radial functions ( see [2 , pp.  
266) ) .  

Proa/. From the definition of the Z¡ and ( 2 )  we have that 

Ads (as ( - t ) )  Zi = Ads (as ( - t) ) Z¡ 

Thus 

cosh(st) Z¡ - sinh (st) Yis 

= cosh (st) Zi - sinh (st) s- l Yi .  

y; = s coth(st)  Zi + s sinh -1 (st) Ads (as (-t ) )  Zi , 

and then we get 

�2 = s2 coth2 ( s t ) zf + ..,2 sinh -2 (st) ( Ads (as ( -t) ) Zi f 
_ S2 coth ( 8t)  sinh - 1 ( st)  ( Zi . Ads (as ( -t ) )  Zi + Ads (as (-t ) )  Zi . Z, ) . 

Note that (5 )  also implies that 

[Zi , Ads (as ( -t ) )  Zi] = _ 8 - 1 sinh (st) [Zi , YiJ ,  
and then we have that 

y? = 82 coth2 (st )  zf - 82 sinh-2 (st) [Ads (as ( -t ) )  Zi] 2 

-282 coth(st)  sinh - 1 (st) Ads (as (-t) ) Zi . Zi + S coth(st )Ho .  

Therefore if f is biinvariant for the action of K ,  we have that 

and then 

as was to be shown . 

d 
Zi f (g) = -

d 
f (g exps (tZi ) )  = O ,  

t I t=o 

Yi2 f (as (t ) = s coth(st)Ho f(as (t) ) ,  

Rev. Un. Mat. A rgentilla, Vol. 44- 1 

( 5 )  

o 



THE RESOLVENT ON ]R1l, A DEGENERATING METHOD. 

3 .  S P H ERI C A L  F U N CT I O N S  AND THE RESOLVENT 
93 

Definition 3 . 1 .  If cp is a complex valued radial continuous function on cs , then cP 
is said to be a K - spherical (or s imp ly sJlhel'ical) function if cp (  e) = 1 and Gs cp = Acp 
for some A E e. 

For each 8 E [0 , 1 ]  ancl lJ E e, let CPs ( IJ, ' ) be the spherical function on Cs with 
eigenvalue As (11) = 112 - p; .  
Remark 3 . 2 .  We note that this eigenvalue is notarbitrary, and in order to calculate 
it for 8 =J 0, sin ce 9s is isomorphic to g ,  one can proceed exactly as in SO(n, 1 ) to 
see that such functions are given by a matrix entry of the spherical principal series 
of Cs associated to the character x� (man) = aV+P• (see [ 1 ,  pp . 103] ) .  

We then have , for each s =J O ,  that CPs (II, · )  is the solution of the following 
differential equation ( d2 d ) 

dt
2 + s (n - 1 )  coth (s t )  dt  - As (11) f(as (t) ) = ° 

continuous at t = O ,  and such that f ( a s ( O ) )  = 1 . 

(6) 

Note that since lim t8 (n - 1 ) coth(st )  = n - 1 , this equation has a regular singular tHa 
point at t = O .  Moreover , i f  we set z = st i t  is easy to see that f (z) satisfies the 
equation (6) if and only if 

or equivalently 

( d2 d ) 8
2 

dz2 + s2 (n - 1 )  coth (z ) 
dz - As (11) f (z)  = 0 ,  

( 7) 

This is a Jacobi equation with parameters A = i � ,  a = n2
2

, f3 = - � ,  and I = P 
(see [3] ) ,  and therefore , we have that for each s =J 0 ,  the spherical functions r!Js are 
given by Jacobi functions in the following way : 

( n - 2 _ 1 ) 
CPs (lI, a8 ( t ) )  = 'P ,;  2 • 2 (st) . 

Equivalently, in terms of the Gauss hypergeometric functions we have that 

( ( ) ) ( PS - 1I  Ps + 1I . ' 2 (  )) cPs 11, as t =2 Fl � ; � ;  nj - smh st . 

It can al so be  seen (see [3 , pp .  7] ) that for s =J ° and 11 ct -sN, a second solution 
of the equation (6)  in (O ,  +(0) is given, in terms of the hypergeometric function, by 

- - ( "- +p) ( ps + 1I 8 (n + 1 ) + 211 11 2 )  Qs (lI, t )  = (2  COsh(8t) ) ' 2 Fl � ; 4s j � + 1 ; cosh- ( s t )  . 

If Re 11 > ° , the asymptotic behavior of these functions as t -7 00, is given by : 

where 

cp(lI, as ( t ) ) = c ( lJ, s ) el ( IJ ..,-p, ) , Qs (lI, t )  '" e- ( v+P. ) t , 

2P- '; r (  � )  r (  � ) c( II S ) = 8 _  ' "  r ( p� + /J ) r( s (n+ l ) +2v ) ' 
2s 4 8  
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, It is proved in [5) (see also [6] ) that fol' s = 1 ,  the function Q 1 (1/, al (t ) ) = ;:�¡�:?) 
is a solution of the equation (6 )  (with s = 1 ) ,  such that 

lim ,Ir ( t) Q I ( v , ([ I ( t ) )  = 0 ,  
t>--tO+ 

, d 
hm JI ( t) -d (J I  ( v, a l  ( t ) )  = 1 , t>--tO+ t 

and moreover ,  it is also proved that the resolvent of the Laplacian on GI l K (in 
certain half plane of <C) is given by convolution with the K-biinvariant function 
on G extending this function. Analogo\lsly we can generalize this , in the following 
theorem, for the other values of s .  
Theorem 3.3 .  For each s E (0 , 1 )  and v E e ,  1/ � -sN, there exists a function 
Q s (1/, . ) E Cco (G s - K // K) with the following properties: 

(a) CsQs (v, ' )  = .-\(v, 8) Qs (l/, . ) , 
d 

(b) lim Js (t) Q s (v, as (t) ) = ° and l im Js (t) -d Qs (l/, as (t) ) = 1 . t>--tO+ t>-4O+  t 
(c) Where defined, Qs (l/, g) E Ltoc (Gs ) ,  and if Re l/ > Ps , Qs (l/, g) E V (Gs ) ' 
(d) Jf f E Cgo (G8// K) and 1/ � - sN then 

r Q8 (1/, X- 1 y ) (C8 - '\ (1/, s ) Id ) f(y) dy = f (x) . (8) Jos 
Proa/. The proof of this theorem is' essentially the same as that of Theorem 2.2 
in [6) (see also the references given there ) and therefore we wil l  just make sorne 
observations . 

Let Q8 (V, · )  be a K-radial function on Gs such that restricted to As is given by 

08 (1/, t ) S2p Qs (l/,  as ( t) )  = - ( ) ' 21/C 1/, S 
It is easy to see from the aboye remarks that this function satisfies (a) . To see 
(b) , recall that this function is a solution of equation (6) and this equation has 
a regular singular point at t = O .  The corresponding indicial equation is given 
by a (a + (n - 2) )  = 0, with solutions a = ° and a = - (n - 2) . It is clear that 
4>s (I/, · ) is the solution corresponding to a = O. If 1/ � -8N, we know that 08 (1/, t) 
is a linearly independent solution , and therefore ,  by the general theory of regular 
singular points ,  we have that , when t f-t ° Os (l/, t) "-' ds (l/)tn-2 1 Iog(t) 1 6 n . 2  where 
ds (l/) is a meromorphic function of v. Hence, lim J8 (t)Q8 (V, as (t ) )  = O .  

t>--tO+ 
J' ( t ) Finally, to prove the second part of (b) , we note that s (n - 1 )  coth(st) = J.tt 

(see Lemnia (2 . 1 ) ) .  This fact gives us an analogue of formula (*) in [5) pp. 669, 
and then we can proceed as in [5 , lemma 1 .3) . O 

4 . T H E  RESOLVENT KERNEL 

We first note that part (d) of the aboye theorem implies that in the limit , for 
Re (l/) > 0 , (� - v2 Id) - 1 is given by convolution with QO (I/, ' ) , where Qo (I/, · )  is a 
radial function on IRn such that Qo (1/ ,  t) is the solution of the following differential 
equation (see (4) ) ( d2 n - 1 d '» ) 

dt2 + -t - dt - 1/- f (t) = 0 , (9) 
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limJo (t)Qo (v, t )  = O and lim Jo (t )  
d
d Qo (v, t )  = 1 .  

tHO 1,>-l O  t 
Here Jo (t )  = (2t )n- 1 . 

95 

In order to have explicit solutions of (9 ) , we will introduce now the Bessel equa­
tions . The following differential equation 

1 
(

7}2

) u" (t) + -¡u' (t) + 1 - t2 u(t ) = O 

is called a Bessel equation . It is easy to see that this equation is equivalent to 

r (t) + 2a: 1 t(t) + (¡.t2 _ r¡2 � a2 ) f (t) = O ,  

where u (t) = tO:  f (¡.t- 1 t) .  

( 10) 

( 1 1 )  

Therefore ,  i f  we take r¡ = a = n;-2 and ¡.t = iv then we have that the equation 
(9) is equivalent to the Bessel equation 

u" (t) + �u' (t) + (1 - ( n ;, 2 ) ') u (t) � 0 , 

where u (t) = t n ;2 f (-Iv ) .  

( 12) 

The solutions of this differential equation are well known .  We will now summarize 
some known results on them, following [7, Ch.3 ,  sec 6] . 

First , let Jr¡ be the Bessel function . It is given by 

Jr¡ (Z) = [r (�) r (r¡ + �)r l 
( �r i

l

1
( 1 - e )r¡- � ez ti dt . 

Note that the integral in the above formula is meromorphic in r¡ with simple 
poles at r¡ + � E - N, and these poles are cancelled by the factor r(r¡ + � ) - 1 . Thus , 
these functions give smooth solutions of the Bessel equation , analytic in r¡. We also 
have that for r¡ = k + � this integral can be calculated explicitly, since it involves 
( 1  - t2 ) 

k , and then Jk+ � is an elementary function for each k E N. 

Other type of solutions of ( 10) are given by the so called Hankel functions , 1{�1 ) 
and 1{�2) .  These functions form a basis of the space of solutions of ( 10) and they 
are linearly independent with Jr¡ . One can see that for Re r¡ > - � and 1m z > O ,  
1{�l ) is given by 

-

11.{ 1 ) (z ) = . - (t2 - 1 ) r¡- � eiz t dt . 2e-71"ir¡ 
(
Z
)
r¡ loo 

r¡ l7l'r(r¡ + � ) 2 1 

We also have that for r¡ = k +  � ,  1{k+ 1 are elementary functions for k E N. . 2 
Finally, if we let 

JCr¡ (r)  = � (� ) '1 100 t- 1 - r¡e f.- - t dt , 

it can be seen that it is a solution of ( 10) , and in fact (see [7] pp . 233) , for r > O 
we have that 

JC'I (r) = �7l'ie71"¡ '1/ 21{�1 ) ( i1' ) .  ( 13 ) 
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We then have that any solution of (9) is given by 

fv (t) = a C �+l  J� - l (ivt) + b C �+l H�� l  ( ivt ) ( 14)  

for some a ,  b ,  E C.  From the properties of Jr¡ and H;/ )  listed aboye , i t  c a n  be seen 
that 1Jo (v , t )  is a constant multiple of 

(vt) l - � J 1!. - 1  (ivt) . 2 
On the other hand, in order to have an explicit expression for the resolvent 

kernel , we first note that since the term in ( 14) corresponding to Jr¡ leads to a Coo 
eigenfunction of .6., \\re could set 

Qo (v, t) = b C �+l H�� l (ivt) . 2 

We also have that the asymptotic behavior of H�� l as ( H  O is given by 2 

'1/ ( 1 )  ( . t )  '" _ .  "2 -
� 2 r( n 1 )  ( ) 1!. - 1 

TL 1!. - 1  I V  1 • , 2 � lvt 
and therefore , by straightforward calculation we have that 

t �+ l  ( 2 ) l - �  �i ( 1 ) • 
Qo (v, t) = - r(� ) iv 2H � - 1 (lVt) .  

It is easy to see fram ( 13) that the aboye formula is equivalent to 

21 - �  ( t ) l - �  
Qo (v, t )  = - r( � ) -;; K� _ l (vt) , t > O . 

Recall that if n is odd, 1-l��1  is an elementar y function. 2 

( 1 5 ) 

Remark 4 . 1 .  We would like to point out that the difference between ( 1 5 )  and the 
corresponding formula [7, (6.49) pp. 232] (see also [4 , ( 1 .26 ) pp .  7] ) , is due to the 
fact that in our case the Haar measure on K is normalized ( i . e .  K has total mass 
1 ) .  It is easy to see that with this normalization , we would have to consider the 
kernel Ro (v, t) = YOldn- l )  Qo (v, t) , where Vol (sn- 1 ) = �(:) ' and then we obtain 

Ro (v, t) = _ (2�) -n/2 (�) l - �  
K� _ l (vt) ( 16)  

as in [7 , (6 .49) pp. 232] . 

REFERENCES 

[ 1 J  G A NGOLLI  R . ,  YARADARAJAN V . ,  Harmonic analysis of spherical functions on real reductive 
groups, Spri nger VerJag, New York, 1 988.  

[2J HELGASON S . ,  Groups and Geometric A nalysis, Pure and Applied M at h  113, Academic 

Press , 1 984 . 

[3J KOORNWINDER T . ,  Jacobi functions and analysis on non compac t  s emisimple Lie groups, 
'Special functions: Group Theore tical A spects and Applications ' pp 1 -8 5 ,  Reidel , Dordrech t ,  

1 98 4 .  
[4 J  M E LROSE M . ,  Geometric Scattering Theory, Stanford Lect . ,  Cambridge U n i versi ty Press , 

1 995 .  
[S J  M I ATELLO R . J . ,  WA LLACH N . R . ,  The resolvent of t h e  Laplacian on negaüvely c u rvcd local/y 

symrnetric spaces of finite volum.e, Jour. Diff. Geometry 36 ( 1 992) , 66:1-698 . 
Rev. Un. Mat. A rgentina, Vol. 44-1 



THE RESOLVENT ON ]R11 , A DEGENERATING METHOD. 

[6] M I ATI·: J . LO  R . ,  WILL e . E . ,  The residues of the resolvent on Damek- Rieei spac�s. P roceecl i tl g� 
o i' ÜI" A 'vI . S ,  vo l .  1 28 , 2000 , 1 221 - 1229.  

[7] TA Y L O H  M . ,  Partial Differential equations l .  Springer Verlag . ,  New Yor k ,  1 996 . 
[8] WA L L A C H ,  N . ,  Harmonie A nalysis on Homogeneous Spaees ,  (Pure and A pp l . ivl at h .  1 9 ) .  

Maree[ Dekker ine . ,  New York ,  1 973 .  
DEPA H' J ' M ENT O F  M AT H E M ATICS , YA LE U N IVERSITY , 1 0  HILLHOUSE B ox 20828 :1 "' EW H AV E N . 

CT 0 6 .520  l ' S A  ( C U H H E N T  A F F I L I AT I O N ) 
E-maíl adrl'ress : cynthia . w illlDyale . edu 

FA M A F  A N D  C I E M , U N IV ERSIDAD NACIONAL DE CÓRDOBA , 5000 C Ó R D O B A , A H G E N T I N A  
E-mail addn�ss : cwilllDmate . uncor . edu 

Recibido : 23 de Agosto de 2002. 

Aceptado : 1 0  de Marzo de 2003 . 

97 

Rev. Un. Mat. A rgentina, Vol. 44- 1  


