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1. Introduction

The purpose of this note is to announce some results which extend those in [6]
about the series of differences of ergodic averages and the series of the differences of
differentiation operators along lacunary sequences.

In order to state the problem, we consider a non atomic probability measure space
(X,F , µ) and an invertible ergodic measure preserving transformation τ : X → X.
One of the aims in Ergodic Theory is the study of the behavior of the ergodic averages

Rnf(x) =
1
n

n−1∑
j=0

f(τ jx),

where f is a measurable function. The basic results about convergence of the averages
are von Neumann’s Theorem and Birkhoff’s Theorem (see [11]). These results assert
that for all f ∈ Lp(µ), 1 ≤ p < ∞, the sequence Rnf converges in Lp(µ)-norm and
a.e. Furthermore, since τ is ergodic, the limit is the constant function

∫
X

f dµ. It is
known that there is no rate of convergence (see [7], pages 14–15 or [11], pages 94–98).
For instance, we have the following result due to Kakutani and Petersen (see [11],
page 94).

Theorem 1.1. Let (X,F , µ) be a non atomic probability measure space and let τ :
X → X be an invertible ergodic measure preserving transformation. If bn ≥ 0 and∑

n bn = ∞ then there exists f ∈ L∞(µ) such that
∫

X
f = 0 and

sup
l

∣∣∣∣∣
l∑

n=1

bnRnf(x)

∣∣∣∣∣ = ∞ a.e..

Therefore,
∞∑

n=1

bnRnf(x) diverges a.e.
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We observe that for that function we have that Rnf(x) → 0. Consequently, Rnf(x)
is small but it is not small enough compared to bn since the series

∑∞
n=1 bnRnf(x)

diverges.

Now we notice that the study of the convergence of Rnf is the same as the study
of the convergence of the series

∑∞
k=2(Rkf(x)−Rk−1f(x)) since

n∑
k=2

(Rkf(x)−Rk−1f(x)) = Rnf(x)− f(x).

Therefore, in order to obtain information about how the convergence of Rnf occurs
we may try to study the properties of convergence of the series

∞∑
k=2

(Rkf(x)−Rk−1f(x)).

We begin studying the absolute convergence of that series. The next example shows
that there is not absolute convergence (it is adapted from the example in [6], pages
526–527).

Example 1.1. Let X = [0, 1), θ ∈ (0, 1), θ irrational, τ(x) = x + θ (mod1). If
f = χ(0,1/2) then the series

∑∞
n=2 |Rnf(x)−Rn−1f(x)| does not converge a.e.

Observe that

|Rnf(x)−Rn−1f(x)| = 1
n

∣∣f(τn−1x)−Rn−1f(x)
∣∣ .

Since

lim
n→∞

Rnf(x) =
∫

X

fdµ = 1/2

then there exists n0 such that
1
4
≤ Rn−1f(x) ≤ 3

4

for every n ≥ n0. Now observe that f(τn−1x) is 0 or 1. Then∣∣f(τn−1x)−Rn−1f(x)
∣∣ ≥ 1

4
for every n ≥ n0. Therefore

∞∑
n=n0

|Rnf(x)−Rn−1f(x)| =
∞∑

n=n0

1
n

∣∣f(τn−1x)−Rn−1f(x)
∣∣ ≥ 1

4

∞∑
n=n0

1
n

= ∞,

as we wished to prove.

Now we may wonder about the convergence of
∞∑

n=2

vn(Rnf(x)−Rn−1f(x)), where sup
n
|vn| < ∞.
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It is worth noting that if the convergence is understood in the sense of Lp(µ) then
our question is equivalent to ask about the unconditional convergence of the series

∞∑
k=2

(Rkf(x)−Rk−1f(x)).

The answer to this question is negative as the example in [6] (pages 526–527) shows.

Instead of working with the complete sequence of the natural numbers we can
think of working with a subsequence. Given a lacunary sequence nk, i.e., a sequence
of natural numbers such that nk < nk+1 and nk/nk+1 > ρ > 1 (let us say nk = 2k),
we consider

Akf(x) =
1
nk

nk−1∑
j=0

f(τ jx).

As before, it is clear that
∞∑

k=1

(Akf(x)−Ak−1f(x))

converges. An example given by Akcoglu, Jones and Schwartz [1] shows that this
series is not absolutely convergent in general. In this way, Jones and Rosenblatt [6]
arrived to the problem of the study of the convergence of the series

∞∑
k=1

vk(Akf(x)−Ak−1f(x)), sup
n
|vn| < ∞.

They proved the following:
• If 1 < p < ∞ then the series converges a.e. and in the Lp(µ) norm for all

f ∈ Lp(µ).
• If f ∈ L1(µ) then the series converges a.e and in measure.

Jones and Rosenblatt obtained their results using transference methods (see [2]). That
means that they start solving the problem in the case X = Z, µ the counting measure
and τ(x) = x + 1. Observe that in this particular case the averages are

Akf(x) =
1
nk

nk−1∑
j=0

f(x + j).

Actually, Jones and Rosenblatt prefer to work in the continuous case, i.e., in the real
line, changing sums by integrals. In the continuous case we have that the averages
are defined by

Dkf(x) =
1
εk

∫ εk

0

f(x + t) dt

and εk is lacunary sequence of positive numbers. In what follows we make more pre-
cise statements for the problem in R, establish some of the results in [6] and inform
about the extensions obtained in [3].
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2. The case of the real line

Let ρ > 1 and let {εk}k∈Z be a ρ-lacunary sequence of positive numbers, that is,

εk+1/εk ≥ ρ > 1 for all k ∈ Z.

That condition implies clearly that limk→−∞ εk = 0 and limk→∞ εk = ∞. Therefore
if f ∈ Lp(R), 1 ≤ p < ∞, and

Dkf(x) =
1
εk

∫ εk

0

f(x + t) dt (2.1)

then limk→−∞ Dkf(x) = f(x) and limk→∞ Dkf(x) = 0 a.e. As in the ergodic case, in
order to give some information about how the convergence occurs, we may consider
the series

∞∑
k=−∞

(Dkf(x)−Dk−1f(x))

which obviously converges a.e. by the above remark. Arguing as before, it is natural
to ask about the convergence properties of

∞∑
k=−∞

vk(Dkf(x)−Dk−1f(x)), (2.2)

where vk is a bounded sequence of real or complex numbers. In other words, we wish
to study the convergence of the partial sums

TNf(x) =
N2∑

k=N1

vk(Dkf(x)−Dk−1f(x)), N = (N1, N2),

as N1 → −∞ and N2 → ∞. We observe that TN is a convolution operator since
TNf(x) = KN ∗ f(x), where

KN (x) =
N2∑

k=N1

vk(ϕk(x)− ϕk−1(x)) and ϕk(x) =
1
εk

χ(−εk,0)(x)

In order to prove the a.e. convergence, we consider the maximal operator

T ∗f(x) = sup
N
|TNf(x)|.

We have studied the convergence of TNf and the boundedness of T ∗ in weighted Lp

spaces:

Lp(w) = {f : ‖f‖Lp(w) =
(∫

R
|f |pw

)1/p

< ∞}.

and not only in the case of the Lebesgue measure. That implies that our strategy
would be different than the one by Jones and Rossenblatt. In order to explain some
of the differences, we shall sketch briefly the argument in [6].
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First of all, Jones and Rosenblatt worked with the case εk = 2k. Then they write

vk(Dkf(x)−Dk−1f(x)) = vk(Dkf(x)− Ekf(x))

+ vk(Ekf(x)− Ek−1f(x))

+ vk(Ek−1f(x)−Dk−1f(x))

where

Ekf(x) =
∑

|I|=2k:I dyadic

(
1
|I|

∫
I

f

)
χI(x).

The behavior of the series associated to the second term is well known [14], while the
series associated to the other terms are essentially the same. Therefore, the problem
is reduced to study the series∑

k

vk(Dkf(x)− Ekf(x)).

Clearly, since Ek is not a convolution operator we have that the partial sums

T̃Nf(x) =
N2∑

k=N1

vk(Dkf(x)− Ekf(x))

are not convolution operators. In order to study the boundedness of the maximal
operator

T̃ ∗f(x) = sup
N
|T̃Nf(x)|

Jones and Rosenblatt obtain the uniform boundedness of the operators T̃Nf(x). They
establish the following steps:

1. The operators T̃Nf(x) are uniformly bounded in L2(dx). Since T̃Nf(x) is not
a convolution operator, they do not use the Fourier transform. They apply
Cotlar’s Lemma and a lemma due to Carbery [4].

2. The operators T̃Nf(x) are uniformly of weak type (1, 1). That is done using
standard technics of the theory of singular integrals.

3. By interpolation, it follows that the operators T̃Nf(x) are uniformly bounded
in Lp(dx), 1 < p < ∞.

4. Finally (we do not go into the details), they study the maximal operator T̃ ∗f(x) =
supN |T̃Nf(x)| controlling it by the Hardy–Littlewood maximal operator

Mf(x) = sup
η,ε>0

1
η + ε

∫ ε

−η

|f(x + t)| dt.

In this way, they prove that T̃ ∗f is of weak type (1, 1) and of strong type (p, p),
1 < p < ∞.

3. Our approach: the weighted case

In order to study the problem in weighted spaces, we have to change the approach.
We notice that the modified operators T̃N and the partial sums

SNf(x) =
N2∑

k=N1

vk(Ekf(x)− Ek−1f(x))
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are two-sided operators in the sense that for fixed x the value of T̃Nf(x) depend on
the values of f(y) for y < x and y > x. Consequently, the maximal operator that
controls T̃N and SN is the two-sided Hardy-Littlewood maximal operator M . In this
way, if we follow the approach in [6] to study the good weights for TN , we are led
to consider Muckenhoupt Ap weights, i.e.,the good weights for the two-sided Hardy-
Littlewood maximal operator M . However, if we look at the original operator TN

we realize that they are one-sided operators in the sense that for fixed x the values
of the series depend only on the values of f(y) for y > x. Therefore, the one-sided
Hardy-Littlewood maximal operator

M+f(x) = C sup
h>0

1
h

∫ h

0

|f(x + t)| dt

is the natural candidate to control the operators TN and the natural weights for our
problem are the good weights for M+ which constitute a class of weights wider than
the Muckenhoupt Ap weights. Following these remarks, our idea in [3] is to study
directly the convergence of TNf without going through the conditional expectations.
In what follows, we give an idea about the approach in [3].

As we indicated above, instead of studying the modified operators T̃N , we go
directly to the operators TN = KN ∗f . We start obtaining the uniform boundedness of
the operators TN in the unweighted case, giving a different proof which is independent
of the results in [6]. An easy computation shows that

sup
N
|K̂N (x)| ≤ C,

where K̂N stands for the Fourier transform of the kernel. It follows that the operators
TN are uniformly bounded in L2(dx), i.e.,

sup
N
‖TNf‖L2(dx) ≤ C‖f‖L2(dx).

Another property, less evident, is the condition Dr, 1 ≤ r < ∞: If 1 ≤ r < ∞ an
εi−1 < x ≤ εi then

∞∑
j=i+α

ε
1/r′

j

(∫ εj+1

εj

|KN (x− y)−KN (−y)|r dy

)1/r

< ∞,

where α is a natural number depending on ρ. It is easy to see that if εi−1 < |x| < εi

then there exists Cρ such that

{y : |y| > Cρ|x|} ⊂ ∪∞j=i+α(εj , εj+1).

That relation and condition D1 imply Hörmander’s condition:∫
{y:|y|>Cρ|x|}

|KN (x− y)−KN (−y)| dy ≤ C.

Hörmander’s condition and the uniform boundednes of the Fourier transform give
(see [5])

sup
N
|{x : |TNf(x)| > λ}| ≤ C

λ

∫
|f |
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and

sup
N

∫
|TNf |p ≤ Cp

∫
|f |p, 1 < p < ∞.

Our next step is to study the uniform boundedness of TN in weighted spaces. In
order to do that, we use the one-sided sharp maximal function defined by

f+,#(x) = sup
h>0

1
h

∫ x+h

x

(
f(y)− 1

h

∫ x+2h

x+h

f

)+

dy,

where z+ = 0 if z < 0 and z+ = z if z ≥ 0. Clearly, f+,# is dominated by the
one-sided Hardy-Littlewood maximal function. More precisely:

f+,#(x) ≤ CM+f(x) = C sup
h>0

1
h

∫ x+h

x

|f |.

Notice that the opposite inequality is not true since for f increasing we have that
f+,#(x) = 0. The sharp function f+,# is related to the good weights for M+. Let us
recall the characterizations of the good weights for M+ [13].

• The operator M+ satisfies the weak type (1, 1) inequality∫
{x:M+f(x)>λ}

w ≤ C

λ

∫
|f |w

if and only if w ∈ A+
1 , i.e., there exists C such that M−w(x) ≤ Cw(x) a.e.

• The operator M+ satisfies the strong type (p, p) inequality, 1 < p < ∞,∫
|M+f |pw ≤ C

∫
|f |pw

if and only if w ∈ A+
p , i.e., there exists C such that

A+
p :

(∫ b

a

w

) 1
p (∫ c

b

w1−p′
) 1

p′

≤ C(c− a), (p + p′ = pp′)

for all a < b < c.

As in the case of the usual sharp maximal function, it can be shown [10] that if
w ∈ ∪pA

+
p then ∫

|M+f |rw ≤ C

∫
|f+,#|rw, 0 < r < ∞,

under the assumption that the left hand side is finite.

The uniform boundednes of TN and condition Dr give the following lemma.

Lemma 3.1. Let s > 1. There exists C such that

|TNf |+,#(x) ≤ C (M+|f |s)1/s(x).

This lemma and the above relation between M+f and f+,# allows to get the
uniform boundedness of TN in weighted spaces.

Rev. Un. Mat. Argentina, Vol 45-1



86 F.J. MARTÍN-REYES

Theorem 3.2. Let 1 < p < ∞ and w ∈ A+
p . There exists C such that∫

|TNf |pw ≤ C

∫
|f |pw

Proof. We sketch the proof of the lemma. Since w ∈ A+
p , there exists s > 1 such that

w ∈ A+
p/s [13]. Therefore∫

|TNf |pw ≤
∫
|M+(TNf)|pw ≤ C

∫
(|TNf |+,#)pw.

By the lemma, the last term is dominated by

C

∫
(M+|f |s)p/sw.

The proof finishes using that w ∈ A+
p/s and the characterization of the strong type

inequality for M+.

Remark 3.3. We notice that if we use the classical sharp maximal function then we
obtain the last result only for weights in the Muckenhoupt classes which are a subclass
of A+

p (we remind that the increasing weights belong to the A+
p classes).

In order to get the boundednes of the maximal operator, the key result is the
following inequality: If

T ∗
Mf(x) = sup

|N1|,|N2|≤M

|TN1,N2f(x)|

then for every s ∈ (1,∞) there exists a constant C such that

T ∗
Mf(x) ≤ C

[
M+(|T−M,Mf |)(x) +

(
M+|f |s

)1/s (x)
]
.

Combining this inequality and the uniform boundedness of the operators TN in
weighted spaces, we easily obtain the following theorem.

Theorem 3.4. If 1 < p < ∞ and w ∈ A+
p then there exists C such that∫

R
|T ∗f |pw ≤ C

∫
R
|f |pw, f ∈ Lp(w),

and TNf converges a.e. and in Lp(w) for all f ∈ Lp(w).

The result about the convergence follows from the strong type inequality for for
T ∗ and the convergence for the functions in the Schwartz class.

If p = 1 we obtain the following result.

Theorem 3.5. If w ∈ A+
1 then∫

{x:T∗f(x)>λ}
≤ C

λ

∫
R
|f |w

and TNf converges a.e and in measure for all f ∈ L1(w).

Rev. Un. Mat. Argentina, Vol 45-1



SERIES OF DIFFERENCES OF AVERAGES IN WEIGHTED SPACES 87

The proof of this theorem is unified in the sense that we do not need to do first
the case of the Lebesgue measure (w = 1).

In order to finish this section we point out that we are able to obtain the behavior
in BMO. More precisely, if f ∈ BMO then there exists C such that

sup
N
‖TNf‖BMO ≤ C‖f‖BMO

and TNf converges in the weak ∗ topology of BMO.

4. Final remark

Using transference arguments as in [9], the weighted results in the real line can be
used to obtain convergence results in Ergodic Theory. In what follows, we state one
of them.

Assume that {Tt : t ∈ R} is a strongly continuous group of positive linear operators
in Lp(dµ), 1 < p < ∞. For ε > 0 the average Aεf is defined by

Aεf(x) =
1
ε

∫ ε

0

Ttf(x) dt.

Let {εk}k∈Z be a lacunary sequence and let us consider the operators

RNf(x) =
N2∑

k=N1

vk(Aεk
f(x)−Aεk−1f(x))

where vk is a bounded sequence. Under these assumptions we can prove the following
theorem.

Theorem 4.1. Assume that the averages are uniformly bounded in Lp(dµ), i.e.,

sup
ε>0

‖Aεf‖p ≤ C‖f‖p.

Then RNf converges a.e. and in Lp( dµ) for all f ∈ Lp(dµ).

The details will appear in a forthcoming paper.
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