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SPECTRAL PROPERTIES OF ELLIPTIC OPERATORS
ON BUNDLES OF Zk

2-MANIFOLDS

RICARDO A. PODESTÁ

Abstract. We present some results on the spectral geometry of compact
Riemannian manifolds having holonomy group isomorphic to Zk

2 , 1 ≤ k ≤
n − 1, for the Laplacian on mixed forms and for twisted Dirac operators.

Introduction

This expository article is based on a homonymous talk I gave during the “II
Encuentro de Geometŕıa” which took place in La Falda, Sierras de Córdoba, from
June 6th to 11th of 2005. It summarizes previous results from [MP], [MP2],
[MPR], and [Po], answering standard questions in spectral geometry by using a
special class of compact Riemannian manifolds.

Spectral Geometry. It is a kind of mixture between Spectral Theory and Rie-
mannian Geometry. The general situation is to consider (pseudo) differential oper-
ators acting on sections of bundles of Riemannian manifolds. However, one usually
considers a compact Riemannian manifold M , a vector bundle E → M and an
elliptic self-adjoint differential operator D acting on smooth sections of E, i.e.
D : Γ∞(E) → Γ∞(E). Since M is compact, D has a discrete spectrum, denoted
by SpecD(M), consisting of real eigenvalues of finite multiplicity which accumulate
only at infinity. In symbols, we have

• SpecD(M) = {{ λ ∈ R : Df = λf, f ∈ Γ∞(E)}} ⊂ R,

• 0 ≤ |λ1| ≤ |λ2| ≤ · · · ≤ |λi| ↗ ∞, λi ∈ SpecD(M), i ∈ N.
• dλ = dim(Hλ) < ∞, Hλ = {f : Df = λf} = λ-eigenspace.

We can also think of SpecD(M) as being the set {(λ, dλ)} ⊂ R × N0.
Two manifolds M, M ′ are called isospectral with respect to D, or simply D-

isospectral, if SpecD(M) = SpecD(M ′). That is, if M, M ′ have the same set of
eigenvalues with the same corresponding multiplicities. It is a general fact that
the spectrum determines the dimension and the volume of M . In other words, if
M, M ′ are D-isospectral, then dim(M) = dim(M ′) and vol (M) = vol (M ′). The
spectrum is said to be asymmetric if dλ �= d−λ for some λ ∈ SpecD(M) � {0}.
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136 RICARDO A. PODESTÁ

Main Aim. The goal of Spectral Geometry is to study the spectrum of Mand
the interrelations between this object and the geometry or topology of M . That
is, knowing the spectrum, what can be said geometrically about M? Conversely,
which spectral data can be deduced provided that we know the geometry of M?
This can be summarize in the following diagram

SpecD(M)

Geom(M) Top(M)

�����
� �����

�

� � � � � � � � � � � � � � � � � � � � � � � ���������������������������

Incidentally, by using the diagonal “maps” one could say something about the
horizontal “map”.

Main Problems. There are several different ways of studying the spectrum. In my
opinion, the following are the three most important and interesting ones. In this
paper we shall collect results concerning all of them.

• Computation of SpecD(M). The problem is to determine the eigenvalues λ
and their multiplicities dλ. This is in general a difficult task in the sense that this
cannot always be done. Indeed, there are few classes of manifolds with explicitly
known spectrum for some given operator. The simplest case is the Laplacian ∆
acting on smooth functions on the torus Tn = Zn\Rn.

• Isospectrality. Physically, it is a problem with more than a century old and
inquires about the possibility of changing shape while sounding the same. Mathe-
matically, it begun in 1964 with the famous Kac’s question Can one hear the shape
of a drum? ([Ka]) and the negative answer given by Milnor to a related question
([Mi]). There are basically two antagonistic approaches to this problem: criteria
vs. counterexamples. In the first case, one seeks sufficient conditions ensuring that
two manifolds are isospectral. This is what some people have called Optimistic
Spectral Geometry. On the contrary, in the second case, one tries to produce ex-
amples of pairs of isospectral manifolds which are very similar to each other but
differing in some geometrical or topological property P . In this case, we say that
this particular property P cannot be heard or that we cannot hear property P .
This has been fairly called Pessimistic Spectral Geometry, but I would faintly call it
Deafferential Geometry. One interesting challenge here is to construct big families
(the bigger the best) with respect to the dimension n, of isospectral n-manifolds
which are topologically very different (the more different the best) to each other.
One purpose of this might be to tightly highlight the fact that if some property
cannot be heard, it is not merely an isolated casualty but a concrete reality we
cannot ignore.

• Spectral asymmetry : following the acoustic jargon before, one studies now
when our drum (the manifold) is out of tune. That is, when the positive and the
negative spectra differ. The usual devices designed to detect this phenomenon are
the eta series and the eta invariant. One wants to compute them explicitly.

Summary of results. Here we give a list of the principal results obtained for
Zk

2-manifolds (that is, compact flat manifolds having holonomy group isomorphic
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to Zk
2) relative to the problems mentioned before. The results will be properly

stated and explained in the body of the paper.

A. Full Laplacian ∆F : (1) all Zk
2-manifolds covered by the same torus (or by

isospectral tori) are isospectral on differential forms of mixed degree; (2) There
are big families of ∆F -isospectral manifolds.

B. Spin structures: (3) we give necessary and sufficient conditions for their exis-
tence; (4) there are families of Zk

2-manifolds which are spin while there are others
which are not spin; (5) we answer Webb’s question: “Can one hear the property
of being spin on a compact Riemannian manifold?”.

C. Dirac spectrum: (6) we compute the multiplicities of the eigenvalues of twisted
Dirac operators Dρ for an arbitrary spin Zk

2 -manifold.

D. Dirac isospectrality: (7) we obtain several examples of pairs M, M ′ of
Dρ-isospectral manifolds having different topological, geometrical or spectral prop-
erties; (8) there are big families of Dρ-isospectral manifolds.

E. Spectral asymmetry. (9) we give a characterization of those manifolds having
asymmetric Dirac spectrum; (10) explicit expressions for the eta series and the
η-invariant are given; (11) we answer Schueth’s question: “Can one hear the η-
invariants of a compact Riemannian manifold?”.

1. Zk
2-manifolds

What are we talking about? A Bieberbach group is a crystallographic group
without torsion. That is, a discrete, cocompact, torsion-free subgroup Γ ⊂ I(Rn) of
the isometries of Rn. Such Γ acts properly discontinuously on Rn, thus MΓ = Γ\Rn

is a compact flat Riemannian manifold having fundamental group Γ. Any element
γ ∈ I(Rn) = O(n) � Rn decomposes uniquely as γ = BLb, where B ∈ O(n) and
Lb denotes translation by b ∈ Rn.

By the classical Bieberbach’s theorems we have the following two basic results:
(i) the translations in Γ form a normal maximal abelian subgroup LΛ of finite
index, with Λ a lattice in Rn which is B-stable for each BLb ∈ Γ (as usual, one
identifies LΛ with Λ) and (ii) the restriction to Γ of the canonical projection
r : I(Rn) → O(n) given by BLb �→ B is a group homomorphism with kernel Λ
and F := r(Γ) is a finite subgroup of O(n). It turns out that Γ satisfies the exact
sequence of groups

0 → Λ → Γ r→ F → 1.

The group F 	 Λ\Γ is called the holonomy group of Γ and it is isomorphic to the
linear holonomy group of the Riemannian manifold MΓ. The action of F on Λ by
conjugation defines an integral representation F → GLn(Z) which is usually called
the integral holonomy representation of Γ. Note that this representation does not
determine the group Γ, i.e. there may be many non-isomorphic Bieberbach groups
with the same holonomy representation.

A compact Riemannian manifold with holonomy group isomorphic to F will be
called an F -manifold (see [Ch]). We shall only be concerned with Zk

2-manifolds
which, by the Cartan-Ambrose-Singer theorem, are necessarily flat.
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138 RICARDO A. PODESTÁ

Compact flat manifolds. A flat manifold is a closed, connected, Riemannian man-
ifold M , whose curvature identically vanishes. Notably, by the Killing-Hopf theo-
rem any compact flat manifold M is isometric to a quotient MΓ = Γ\Rn, with Γ
a Bieberbach group. Putting the Bieberbach theorem’s into Riemannian language
(see [Wo] or [Ch]) we get that: (i) MΓ is covered by the associated flat torus
TΛ = Λ\Rn and the covering π : TΛ → MΓ is a local isometry, (ii) MΓ is affinely
equivalent to MΓ′ if and only if Γ 	 Γ′ and (iii) there is a finite number of classes
of affine equivalence of compact flat manifolds, in each dimension.

Up to equivalence, in dimension 1 there is only one compact flat manifold, the
circle S1 = Z\R, while in dimension 2 there are two, the torus T 2 and the Klein
bottle K2:

T 2 = 〈Le1 , Le2〉\R2, K2 = 〈[−1 0
0 1

]
L e2

2
, Le1 , Le2〉\R2.

The number of compact flat manifolds grows rapidly with the dimension and a
classification is unfortunately known only up to dimension 6.

There are two nice results concerning compact flat manifolds. One says that
there are a plethora of them while the other says that all these manifolds bound:
(1) Every finite group F can be realized as the holonomy group of a compact flat
manifold ([AK]) and (2) If M is a compact flat n-manifold then there is a compact
(n+1)-manifold M̃ such that ∂M̃ = M ([HR]).

Into the jungle. A Zk
2-manifold is just a compact flat n-manifold whose ho-

lonomy group is isomorphic to Zk
2 , with 1 ≤ k ≤ n − 1. Thus, it is of the

form MΓ = Γ\Rn where Γ = 〈γ1, . . . , γk, Λ〉, with Λ = Zλ1 ⊕ · · · ⊕ Zλn and
γi = BiLbi satisfying Bi ∈ O(n), BiΛ = Λ, bi ∈ Rn and B2

i = Id, BiBj = BjBi

for 1 ≤ i, j ≤ k.

Some friendly tribes. We now introduce some particularly interesting classes of
Zk

2-manifolds that will be used in the rest of the paper.

◦ Z2-manifolds. They generalize the Klein Bottle in the sense that they are quo-
tients of tori divided by a Z2-action. They are determined by the integral holonomy
representation which can be parametrized by the block matrices

Bj,h = diag(J, . . . , J︸ ︷︷ ︸
j≥0

,−1, . . . ,−1︸ ︷︷ ︸
h≥0

, 1, . . . , 1︸ ︷︷ ︸
l≥1

), J = [ 0 1
1 0 ] ,

with 2j + h + l = n and j + h �= 0. The corresponding diffeomorphism classes
are represented by Mj,h = 〈Bj,hL en

2
, Λ〉\Rn, Λ the canonical lattice. One can

compute their first integral homology groups and their Betti numbers. Indeed,
H1(Mj,h, Z) 	 Zj+l ⊕ Zh

2 and βp(Mj,h) =
∑[p/2]

i=0

(
j+h
2i

)(
j+l

p−2i

)
, for 0 ≤ p ≤ n. (See

[MP]).
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◦ Primitive Z2
2-manifolds. We recall that primitive means that β1(MΓ) = 0, that is

F has trivial center. By a construction due to Calabi (see [Ca], [Wo]), any compact
flat manifold can be obtained from a primitive one. Primitive Z2

2-manifolds are
also determined by the integral holonomy representation, which decomposes as a
sum of integral representations of rank ≤ 3 ([Ti]).
◦ Diagonal type. A compact flat manifold MΓ is of diagonal type if there is an
orthonormal Z-basis {ei, . . . , en} of Λ satisfying Bei = ±ei, 1 ≤ i ≤ n, for every
BLb ∈ Γ. In this case we say that Γ have diagonal holonomy representation. One
can assume that Λ is the canonical lattice and that b ∈ 1

2Λ. They necessarily have
holonomy group F 	 Zk

2 . (See [MR3]).
◦ Hantzsche-Wendt manifolds. (Or, HW-manifolds, for short). They are the ori-
entable Zn−1

2 -manifolds in odd dimension n. Any such manifold MΓ is given by
Γ = 〈B1Lb1 , . . . , BnLbn , Λ〉 where Bi fixes ei, Biej = −ej for 1 ≤ i ≤ n, if j �= i,
and Λ = Ze1⊕. . .⊕Zen (note that Bn = B1B2 · · ·Bn−1). They generalize the only
orientable Z2

2-manifold existing in dimension 3, historically called the Hantzsche-
Wendt manifold, and were studied in [MR]. They are primitive, of diagonal type
and, furthermore, they are rational homology spheres, i.e. H∗(M, Q) = H∗(Sn, Q)
for every HW-manifold M . Also, one can associate certain directed graphs to
them.
◦ Generalized Hantzsche-Wendt manifolds. (Or GHW-manifolds). They are sim-
ply the Zn−1

2 -manifolds in dimension n. They share many properties with HW-
manifolds but they are not primitive in general. There are [n+1

2 ] different integral
holonomy representations, all of diagonal type. (See [RS]).
A little bit of numerology. As we have seen, we have the following natural inclusions
HW ⊂ GHW ⊂ Diagonal type ⊂ Zk

2-manifolds. In the table below we compare
the cardinality of these families. We see that, at least in low dimensions, the class
of Zk

2-manifolds represents more than half of the compact flat manifolds.

# manifolds dim 1 dim 2 dim 3 dim 4 dim 5 dim 6
compact flat 1 2 10 74 1.060 38.746

Zk
2 - 1 6 43 650 27.515

GHW - 1 3 12 123 2.536
HW - - 1 - 2 -

2. The full Laplacian

Consider the Laplacian on p-forms ∆p. It is a first order elliptic differential
operator acting on smooth sections of the p-exterior bundle Λp(TM) of M . The
spectrum of this operator on compact flat manifolds was studied in [MR2] (see also
[MR3], [MR4]). The multiplicity of the eigenvalue 4π2µ of ∆p has the expression

dp,µ(Γ) = 1
|F |

∑
γ=BLb∈Λ\Γ

χp(B) eµ,γ

where eµ,γ =
∑

v∈Λ∗
µ:Bv=v e−2πiv·b, with Λ∗

µ = {v ∈ Λ∗ : ‖v‖ = µ}, and χp is the
character of the p-exterior representation. For Γ of diagonal type, this character
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140 RICARDO A. PODESTÁ

is given by integer values of certain polynomials. In fact, for BLb ∈ Γ, we have

χp(B) = Kn
p (n − nB) with Kn

p (x) :=
p∑

t=0

(−1)t
(
x
t

)(
n−x
p−t

)
where nB = dim (Rn)B and Kn

p (x) is the (binary) Krawtchouk polynomial of order
n and degree p. They are discrete orthogonal polynomials (see [KL]). The first
ones have the expressions Kn

0 (x) = 1, Kn
1 (x) = −2x+n, Kn

2 (x) = 2x2−2nx+
(
n
2

)
,

Kn
3 (x) = − 4

3x3 + 2nx2 − (n2 − n + 2
3 )x +

(
n
3

)
, etc.

From now on in this section we refer to [MPR]. One can simply define a
Laplacian on arbitrary forms by considering the p-Laplacians altogether, that is,
we can take

∆F := ⊕
n∑

p=0

∆p.

This full Laplacian is again a first order elliptic differential operator which acts on
sections of the full exterior bundle Λ(TM) =

⊕n
p=0 Λp(TM) of M . The eigenval-

ues are still of the form 4π2µ, but their multiplicities are now given by the sum
dF ,µ(Γ) =

∑n
p=0 dp,µ(Γ). Clearly, p-isospectrality (i.e. isospectrality with respect

to ∆p) for all p implies ∆F -isospectrality, but the converse is far from being true,
as will be shown in Example 2.2 below.

We have the following curious “optimistic” result from [MPR]:

Theorem 2.1. Let Γ be a Bieberbach group of dimension n with translation lattice
Λ and holonomy group Zk

2 . Then, the eigenvalue 4π2µ of ∆F has multiplicity
dF ,µ(Γ) = 2n−k|Λ∗

µ| where Λ∗
µ = {v ∈ Λ∗ : ||v|| = µ}.

Thus, two Zk
2 -manifolds MΓ, MΓ′ are ∆F -isospectral if and only if the transla-

tion lattices Λ, Λ′ are isospectral. In particular, for fixed Λ and k, all Zk
2-manifolds

with covering torus TΛ are ∆F -isospectral.

Sketch of proof. Let F = 〈B1, . . . , Bk〉 	 Zk
2 . Then, the Bi’s diagonalize si-

multaneously with eigenvalues ±1. Thus, every Bi is conjugate in GLn(R) to
the diagonal matrix DB := diag(−In−nB , In

B
) where Im is the identity matrix

in Rm. Thus χp(B) = χp(DB) = Kn
p (n − nB). Hence, we have dp,µ(Γ) =

2−k
((

n
p

)|Λ∗
µ| +

∑
γ∈Λ\Γ�{Id} Kn

p (n − nB) eµ,γ

)
and, adding over p

dF ,µ(Γ) = 2n−k|Λ∗
µ| + 2−k

∑
γ∈Λ\Γ�{Id}

( n∑
p=0

Kn
p (n − nB)

)
eµ,γ .

Now, for j �= 0, one can show that
∑n

p=0 Kn
p (j) = 0 (�). Since n−nB = 0 if and

only if B = Id, we finally get that dF ,µ(Γ) = 2n−k|Λ∗
µ|, as asserted.

Note 1. The proof seems to be of an entirely combinatorial nature since it only
depends on (�), and the Krawtchouk polynomials at integer values Kn

p (j) have
some combinatorial interpretations in the literature.

Example 2.2 (Z2-manifolds of dim 3 ). We illustrate the theorem in the simplest
non-trivial case, i.e. when n = 3 and k = 1. Up to diffeomorphism, there are only
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three Z2-manifolds in dimension 3 (see [Wo]). They are M1,0, M0,2 and M0,1, in
the notation of page 138.

In the tables below we give the multiplicities for ∆p, with 0 ≤ p ≤ 3, and also
for ∆F , of the 2 lowest non trivial eigenvalues.

µ = 1 d0 d1 d2 d3 dF
M1,0 2 8 10 4 24
M0,2 2 10 10 2 24
M0,1 3 9 9 3 24

µ =
√

2 d0 d1 d2 d3 dF
M1,0 7 19 17 5 48
M0,2 6 18 18 6 48
M0,1 4 16 20 8 48

The values in the tables show that the manifolds are not p-isospectral to each
other for any 0 ≤ p ≤ 3. However, we can see how all these multiplicities balance,
that is how they manage to distribute themselves in order to have equal sums for
each eigenvalue, in each case.

We really need the hypothesis F 	 Zk
2 in the theorem. The “magical”

averaging phenomenon, present when considering all the p-Laplacians ∆p simul-
taneously, only seems to work in the case considered. The result does not hold, in
general, for holonomy groups different from Zk

2 . There is a pair of 6-dimensional
orientable Z4-manifolds, MΓ, MΓ′ , which are not ∆F -isospectral ([MPR, Ex. 3.5]),
even though they are isospectral on functions. In fact, let Λ = Ze1 ⊕ · · · ⊕ Ze6

and take Γ = 〈B1Lb1 , Λ〉 and Γ′ = 〈B′
1Lb′1 , Λ〉 where B1 = diag(J̃ , J̃ , 1, 1), b1 = e5

4 ,
B′

1 = diag(J̃ , 1,−1,−1, 1), b′1 = e6
4 with J̃ =

[
0 1−1 0

]
. Following [MR2] one can

prove that MΓ, MΓ′ are 0-isospectral (and hence 6-isospectral, by orientability)
but they are not p-isospectral for 1 ≤ p ≤ 5. Since dp,0(Γ) = βp(M) we have that
dF ,0(M) =

∑6
p=0 βp(M). By [Hi], the Betti numbers βp, 0 ≤ p ≤ 6, for M and

M ′ are respectively given by 1,2,5,8,5,2,1 and 1,2,3,4,3,2,1. In this way we get that
dF ,0(M) = 24 while dF ,0(M ′) = 16, hence M, M ′ are not isospectral on forms.
Note 2. One can also consider the Laplacian on even/odd forms given by ∆e =∑

p even ∆p and ∆o =
∑

p odd ∆p. The results in Theorem 2.1 hold mutatis

mutandis but now with do,µ(Γ) = de,µ(Γ) = 1
2dF ,µ(Γ). In particular, χ(MΓ) =∑n

p=0(−1)p βp(MΓ) = do,0(Γ) − de,0(Γ) = 0.

Big families of ∆F -isospectral manifolds. As a straight consequence of the re-
sult in the previous theorem, we can exhibit several big families of ∆F -isospectral
Zk

2-manifolds in arbitrary dimension n. Here, big alludes to the fact that the car-
dinality of the family grows polynomially —or even exponentially— with respect
to n and, also, that all the manifolds in each family are not homeomorphic to
each other. It is worth noting that for the Laplacian on functions, or on p-forms,
there are not known examples of such exponential families. In the famous isospec-
tral deformations of Gordon and Wilson (see [GW]), the manifolds have different
metrics but they are all homeomorphic to each other.

Consider the following families: F1 = {Z2-manifolds}, F2 = {primitive Z2
2-

manifolds} and F3 = {HW-manifolds}. For simplicity, we assume that all the
groups have the canonical lattice of translations Λ = Zn. Thus, by Theorem 2.1,
all manifolds belonging to each family are mutually isospectral on forms. We now
indicate the order of the cardinality of each family. We have that #F1 = o(n2)
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and #F2 = o(n5) (see [MP], [Ti]). By using a small subfamily of HW-manifolds
it is proved in [MR] that #F3 > 2n−3

n−1 . Furthermore, based on an example given
in [LS], Rossetti constructed a very big family F4 of GHW-manifolds with #F4 =
o((

√
2)n2

) (see [MPR]).

3. Spin structures

Spin structures play a role in geometry and physics. One relevant fact is that
they allow to define Dirac operators. On an arbitrary Riemannian manifold M ,
the Laplacian on functions and the Laplacian on p-forms are always defined. On
the other hand, for the Dirac operator to be defined, M needs to have an extra
geometric structure. More precisely, to each spin structure on M one can construct
the so called spinor bundle and a Dirac operator acting on sections of it. However,
one needs to have some care here, since not every Riemannian manifold admits a
spin structure (see [LS]).

Let M be an oriented Riemannian n-manifold and let B(M) π→ M be the SO(n)-
principal bundle of oriented frames. Inside the group of units of the Clifford algebra
Cl(n) of Rn lies the compact connected Lie group

Spin(n) = {v1 · · · v2k : vj ∈ S1(Rn), j = 1, . . . , 2k}
where S1(Rn) = {x ∈ Rn : ||x|| = 1}. This group satisfies the exact sequence

0 → Z2 → Spin(n)
µ→ SO(n) → 1

where µ(g)(x) = gxg−1. Thus, µ is a double covering and since Spin(n) is simply
connencted, for n ≥ 3, it is the universal covering of SO(n).

A spin structure on an orientable manifold M is an equivariant 2-fold covering
B̃(M)

p→ B(M) such that π ◦ p = π̃, where B̃(M) π̃→ M is a Spin(n)-principal
bundle. A manifold endowed with a spin structure is called a spin manifold.

Fortunately, for compact flat manifolds we can get rid of this complicated
geometrical–topological definition by using the following result. The spin struc-
tures of MΓ are in a 1–1 correspondence (see [LM] or [Fr2]) with the group
homomorphisms ε commuting the diagram

Spin(n)

Γ SO(n)
	
µ

��������
ε

�
r

(3.1)

This gives a purely algebraic alternative definition, simpler than the original one,
which is in fact a criterion to decide the existence of spin structures. It can be
used not only to construct such structures, but also to count them.

Spin structures on Zk
2-manifolds. In this subsection we refer to [MP]. Let

MΓ = Γ\Rn be a Zk
2-manifold and ε a spin structure as in (3.1). Since r(Λ) = Id,

then ε(Lλ) ∈ {±1} for any λ ∈ Λ. Let λ1, . . . , λn be a Z-basis of Λ and put
δi = ε(Lλi). For λ =

∑
i miλi ∈ Λ, with mi ∈ Z, we have ε(Lλ) = δm1

1 δm2
2 · · · δmn

n .
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For any γ = BLb ∈ Γ we fix a distinguish (though arbitrary) element uB ∈ µ−1(B).
Then,

ε(γ) = σB uB (3.2)

where σB ∈ {±1} depends on γ and on the choice of uB.
The map ε is determined by its action on the generators of Γ, and so we can

identify it with the (n + k)-tuple ε ≡ (δ1, . . . , δn, σ1, . . . , σk) ∈ {±1}n+k. Since
ε is a group homomorphism it must satisfy, for every γ = BLb, the following
conditions

(�1) ε(γ2) = uB
2, (�2) ε(LBλ) = ε(Lλ) (λ ∈ Λ).

Note that, since B2 = Id, these are conditions for ε over Λ, i.e. for the character
δε = ε|Λ ∈ Hom(Λ, {±1}). We define the set

Λ̂(Γ) :=
{
χ ∈ Hom(Λ, {±1}) : χ satisfies (�1) and (�2)}.

The following theorem says that the above necessary conditions (�)’s for the
existence of spin structures on Zk

2-manifolds, are also sufficient .

Theorem 3.1. Let Γ = 〈γ1, . . . , γk, Λ〉 be an n-dimensional Bieberbach group with
holonomy group F = 〈B1, . . . , Bk〉 	 Zk

2 , F ⊂ SO(n), and let σ1, . . . , σk be as in
(3.2). Then, the map

ε �→ (ε|Λ, σ1, . . . , σk)

defines a bijective correspondence between the spin structures of MΓ and the set
Λ̂(Γ) × {±1}k. Hence, the number of spin structures of MΓ is either 0 or 2r for
some r ≥ k.

Applications. By applying Theorem 3.1 we can: (1) study the existence of spin
structures in particular families of Zk

2-manifolds, (2) give a simple method to
obtain spin manifolds and (3) determine the audibility of the spin structures, that
is, whether spin structures can be heard or not.

Spin structures in families. (i) Every orientable Z2-manifold is spin and orientable
Z2-manifolds of diagonal type have 2n spin structures (see [MP]), the same as for
any n-torus (see [Fr]). (ii) Orientable primitive Z2

2-manifolds are spin. (iii) The
3-dimensional HW-manifold is spin. HW-manifolds of dimension n, n ≥ 5, are not
spin. See [Po] for the case n = 4k + 1. The general case, i.e. n odd, was proved
independently by J. P. Rossetti ([Ro], by using a criterion in [MP]) and by S.
Console ([Co], by computing the second Stiefel-Whitney classes ω2).

How to get spin manifolds easily? By using the doubling procedure in [JR] or
[BDM]. Let Γ be an n-dimensional Bieberbach group with translation lattice
Λ and holonomy group F . The double of Γ is the Bieberbach group defined by
dΓ = 〈dB L(b,b), L(λ1,λ2) : BLb ∈ Γ, λ1, λ2 ∈ Λ〉, with dB = [ B 0

0 B ]. It follows that
dΓ has translation lattice Λ⊕Λ and holonomy group F . The associated manifold
MdΓ has dimension 2n and is Kähler (see [DM]). Now, doubling an orientable
manifold of diagonal type gives a spin manifold (see [MP2]). If the manifold is
not orientable, then one has to double twice.
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Spin structures are not audible. Take Λ = Ze1 ⊕ · · · ⊕ Ze6 and consider the
manifolds M = Γ\R6 and M ′ = Γ′\R6 where Γ = 〈B1Lb1 , B2Lb2 , Λ〉 and Γ′ =
〈B1Lb′1 , B2Lb′2 , Λ〉 are Bieberbach groups of diagonal type given, in diagonal nota-
tion (see [MR2], [MP]), in the following table. For example, the 1/2 in the first
column means that Lb1 = e3

2 . Also, B3 = B1B2 and b3 = B2b1+b2, b′3 = B2b
′
1+b′2.

B1 Lb1 Lb′1 B2 Lb2 Lb′2 B3 Lb3 Lb′3
1 1 1/2 1/2 1 1/2 1/2

1 1/2 1 1/2 1 1/2 1/2

1 1/2 -1 -1 1/2

-1 1 1/2 -1 1/2

-1 1 -1
1 -1 -1

It is easy to see that M, M ′ are orientable Z2
2-manifolds of dimension 6 and that

they are p-isospectral for every p, 0 ≤ p ≤ 6. Note that they are not primitive since
β1(M) = β1(M ′) = 2. Using Theorem 3.1 we can check that M has no spin struc-
tures while M ′ has 25 spin structures of the form ε = (−1,−1, δ3, 1, δ5, δ6; σ1, σ2),
with δi, σj ∈ {±1}. Thus, we cannot hear the spin structures of Riemannian
manifolds!

4. Dirac spectrum

We begin with the ingredients necessary to define twisted Dirac operators on
Riemannian manifolds. Let MΓ be an orientable compact flat manifold endowed
with a spin structure ε as in (3.1), denoted by (MΓ, ε) from now on. Let Ln :
Spin(n) → GL(Sn) be the spin representation, that is the restriction to Spin(n) of
any irreducible complex representation of the complexified Clifford algebra Cl(n)⊗
C. It is wellknown that dimC(Sn) = 2[n/2] and that Ln is irreducible if n is
odd while, if n is even, Ln splits into two inequivalent irreducible representations
(L±

n , S±
n ) of the same dimension, called the half-spin representations. Let ρ :

Γ → U(V ) be a unitary representation such that ρ|Λ = 1. As usual, we take
χρ(γ) = Tr ρ(γ) and dρ = dim(V ).

Now, the morphism ε allows to construct the spinor bundle twisted by ρ

Sρ(MΓ, ε) := Γ\(Rn × (Sn ⊗ V )) → Γ\Rn

with action given by γ · (x, w⊗ v) = (γx, Ln(ε(γ))(w)⊗ρ(γ)(v)). One can identify
the space of smooth sections of this bundle, Γ∞(Sρ(MΓ, ε)), with the set {f :
Rn → Sn ⊗ V smooth : f(γx) = (Ln ◦ ε ⊗ ρ)(γ)f(x)}.

With the above identification, the Dirac operator twisted by ρ on compact flat
manifolds is Dρ : Γ∞(Sρ(MΓ, ε)) → Γ∞(Sρ(MΓ, ε)) given by

Dρ f(x) =
n∑

i=1

ei · ∂f
∂xi

(x)

where ei acts by Ln(ei) ⊗ Id in Sn ⊗ V and e1, . . . , en is an orthonormal basis of
Rn. If (ρ, V ) = (1, C) we have the classical Dirac operator D. Dρ is a first order
elliptic differential operator, symmetric and essentially self-adjoint. It does not
depend on the choice of the orthonormal basis of Rn. Also, it is a formal square
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root of the Laplacian, that is D2
ρ = −∆s,ρ, called the twisted spinor Laplacian. If

f ∈ kerDρ, f is called a harmonic spinor.
Dρ has a discrete spectrum consisting of real eigenvalues ±2πµ, µ ≥ 0, of finite

multiplicity d±ρ,µ. Explicit expressions for d±ρ,µ for an arbitrary pair (MΓ, ε) were
obtained in [MP2]. We now recall this result.

Let F1 = {B ∈ F = r(Γ) : nB = 1} where nB = dim ker(B − Id). Put
Λ∗

ε = {u ∈ Λ∗ : ε(λ) = e2πiλ·u, λ ∈ Λ}, with Λ∗ the dual lattice of Λ, and

Λ∗
ε,µ = {u ∈ Λ∗

ε : ‖u‖ = µ}.
Now, for each γ = BLb ∈ Γ, let (Λ∗

ε,µ)B denotes the set of elements fixed by B in
Λ∗

ε,µ, that is (Λ∗
ε,µ)B = {u ∈ Λ∗

ε,µ : Bv = v}. Furthermore, for γ ∈ Γ, let xγ be a
fixed (though arbitrary) element in the maximal torus of Spin(n − 1), conjugate
in Spin(n) to ε(γ). Finally, define a sign σ(u, xγ), depending on u and on the
conjugacy class of xγ in Spin(n − 1), in the following way. If γ = BLb ∈ Λ\Γ
and u ∈ (Λ∗

ε)
B � {0}, let hu ∈ Spin(n) such that hu u h−1

u = ‖u‖en. Hence,
huε(γ)h−1

u ∈ Spin(n − 1). Take σε(u, xγ) = 1 if huε(γ)h−1
u is conjugate to xγ

in Spin(n − 1) and σε(u, xγ) = −1 otherwise. As a consequence, σ(−u, xγ) =
−σ(u, xγ) and σ(αu, xγ) = σ(u, xγ) for every α > 0 (see Definition 2.3, Remark
2.4 and Lemma 6.2 in [MP2] for details).

For n odd, the multiplicity of the eigenvalue ±2πµ, for µ > 0, is given by

d±ρ,µ(Γ, ε) = 1
|F |

( ∑
γ ∈ Λ\Γ
B �∈ F1

χρ(γ)
∑

u∈(Λ∗
ε,µ)B

e−2πiu·b · χ
L
±
n−1

(xγ) +

∑
γ ∈ Λ\Γ
B ∈ F1

χρ(γ)
∑

u∈(Λ∗
ε,µ)B

e−2πiu·b · χ
L
±σ(u,xγ )
n−1

(xγ)
)

,

(4.1)

while for n even, it is given by the first term in (4.1), where the sum is taken
over all γ ∈ Λ\Γ, with L±

n−1 replaced by Ln−1. For µ = 0, with n even or odd,
we have that d0(Γ, ε) = 1

|F |
∑

γ∈Λ\Γ χρ(γ)χLn
(ε(γ)) = dim SF , if ε|Λ = 1, and

d0(Γ, ε) = 0, otherwise.

Dirac spectrum of Zk
2-manifolds. In the particular case when F 	 Zk

2 , the
formula (4.1) becomes more tractable and allows one to give shorter expressions
for the multiplicities. Also, one can characterize all the spin Zk

2-manifolds (MΓ, ε)
having asymmetric twisted Dirac spectrum. To wit

Theorem 4.1. Let (MΓ, ε) be an n-dimensional spin Zk
2-manifold.

(i) If F1 = ∅, then the spectrum SpecDρ(MΓ, ε) is symmetric and the non-zero
eigenvalue ±2πµ of Dρ has multiplicity

d±ρ,µ(Γ, ε) = 2m−k−1 dρ |Λ∗
ε,µ|. (4.2)

(ii) If F1 �= ∅, then SpecDρ(MΓ, ε) is asymmetric if and only if: n = 4r +3 and
there exists γ = BLb ∈ Γ with nB = 1 and χ

ρ
(γ) �= 0 such that B|Λ = −δεId. In
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this case, the asymmetric spectrum is the set

A = {±2πµj : µj = (j + 1
2 )‖f‖−1

, j ∈ N0}
where ΛB = Zf and, if we put σγ := σ(〈f, 2b〉f, gm), we have:

d±ρ,µ(Γ, ε) =

{
2m−k−1

(
dρ |Λ∗

ε,µ| ± 2σγ(−1)r+jχ
ρ
(γ)

)
µ = µj ,

2m−k−1 dρ |Λ∗
ε,µ| µ �= µj .

Also, by (iii), MΓ has no non-trivial harmonic spinors.
If SpecDρ(MΓ, ε) is symmetric then d±ρ,µ(Γ, ε) is given by (4.2).

(iii) The number of independent harmonic spinors is given by

dρ,0(Γ, ε) = 2m−kdρ

if ε|Λ = 1, and by dρ,0(Γ, ε) = 0, otherwise. If k > m then MΓ has no spin
structures of trivial type, hence, MΓ has no harmonic spinors. Furthermore, if
MΓ has exactly 2mdρ harmonic spinors then MΓ = TΛ and ε = 1.

5. Dirac isospectrality

We now deal with the isospectral problem for twisted Dirac operators Dρ. We
claim the existence of twisted Dirac isospectral manifolds having different spectral,
geometrical or topological properties. We will compare Dρ-isospectrality with
other notions of isospectrality such as isospectrality with respect to the spinor
Laplacian ∆s and the p-Laplacian ∆p. We will also look at the spectrum of closed
geodesic with and without multiplicities, that is the so called [L]-spectrum and
L-spectrum, respectively.

By using Zk
2-manifolds one can obtain the following results from [MP2].

Theorem 5.1. There are families F of Riemannian n-manifolds, pairwise non
homeomorphic, which are mutually Dρ-isospectral for each ρ, but they are neither
isospectral on functions nor L-isospectral. Furthermore, F can be chosen satisfying
any of the following extra properties:

(i) Every M ∈ F has (or has no) harmonic spinors.

(ii) All M ’s in F have the same p-Betti numbers for 1 ≤ p ≤ n and they are
p-isospectral to each other for any p odd.

Theorem 5.2. There are pairs of non-homeomorphic spin manifolds which, for
each ρ, are:

(i) ∆s,ρ-isospectral but not Dρ-isospectral; or
(ii) p-isospectral for 0 ≤ p ≤ n and [L]-isospectral such that they are Dρ-

isospectral, or not, depending on the choice of the spin structure; or
(iii) Dρ-isospectral and p-isospectral for 0 ≤ p ≤ n, which are L-isospectral but

not [L]-isospectral.

We can summarize the previous results in the table below
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D-isospectrality vs. other types of isospectrality

Dρ ∆s,ρ ∆p [L] L dim. F [MP2]

Yes Yes No (generically) No No n ≥ 3 Z2 Ex. 4.3 (i)

Yes Yes Yes (if p odd) No No n = 4t Z2 Ex. 4.3 (iii)

No Yes No No No n ≥ 7 Z2 Ex. 4.4 (i)

Yes/No Yes/No Yes (0 ≤ p ≤ n) Yes Yes n ≥ 4 Z2
2 Ex. 4.5 (i)

Yes/No Yes/No Yes (0 ≤ p ≤ n) No Yes n ≥ 4 Z2
2 Ex. 4.5 (ii)

Theorem 5.3. There are big families of Dρ-isospectral manifolds. More precisely,
there exists a family F of pairwise non-homeomorphic Riemannian n-manifolds
that are all mutually Dρ-isospectral, for many different choices of spin structures,
with the cardinality of F depending exponentially on n or, even better, on n2.

6. eta series and eta invariants

Let A be a self-adjoint elliptic differential operator of order d on a compact
n-manifold M . To study the spectral asymmetry of A, Atiyah, Patodi and Singer
introduced in [APS] the so called eta series defined by

ηA(s) =
∑

0�=λ∈SpecA

sign(λ) |λ|−s.

This series converges for Re(s) > n
d and defines a holomorphic function ηA(s)

which has a meromorphic continuation to C with simple poles (possibly) at s =
n − k, k ∈ N0. It is a non trivial fact that this function is really finite at s = 0
(See [APS2] for n odd, [Gi] for n even, and [Wod] using different methods).
The number ηA(0) is a spectral invariant, called the eta invariant, which does not
depend on the metric, although ηA(s) does. It gives a measure of the spectral
asymmetry of A and it is important because it appears in the “correction term”
of some Index Theorems for manifolds with boundary. For example, if A = D, the
classical Dirac operator, and M is a compact spin manifold with N = ∂M , under
certain global boundary conditions, the index of D is given by

Ind(D) =
∫

M

Â(p) − d0 + ηN

2

where Â(p) is the Hirzebruch Â-polynomial in the Pontrjagin forms pi, ηN is the
eta-invariant associated to D|N , and d0 = dim kerD|N (see [APS2]). Note the
beauty of the above expression relating topological, geometrical and spectral data!

For A = Dρ, the twisted Dirac operator, we have the following result:

Theorem 6.1 ([MP2]). Let (MΓ, ε) be a spin Zk
2-manifold of dimension n =

2m + 1 = 4r + 3. If SpecDρ
(MΓ, ε) is asymmetric then:
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η(Γ,ρ,ε)(s) = (−2)r σγ χρ(γ) 2m−k ‖f‖s

(4π)s

(
ζ(s, 1

4 ) − ζ(s, 3
4 )

)
where ζ(s, α) =

∑∞
j=0

1
(j+α)s , with Re(s) > 1 and α ∈ (0, 1], denotes the Hurwitz

zeta function and f and σγ are as defined in Theorem 4.1. In particular, η(Γ,ρ,ε)(s)
has an analytic continuation to C that is everywhere holomorphic.

Furthermore, the eta invariant is given by η(Γ,ρ,ε) = (−1)r σγ χ
ρ
(γ) 2m−k.

Eta invariants are not audible. There are 7-dimensional Z2
2-manifolds M, M ′

which are p-isospectral for 0 ≤ p ≤ 7 such that η(M) = 0 but η(M ′) = 2 (see
[Po]). The trick is to pick one manifold having symmetric spectrum while the
other not. It turns out that 7 is the minimum dimension in which this can be
done. The moral is that we cannot hear the η-invariant of compact Riemannian
manifolds!
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[MPR] Miatello, R. J., Podestá, R. A., Rossetti, J. P., Zk
2-manifolds are isopectral on forms.

arXiv:math.DG/0408285.

[MR] Miatello, R. J., Rossetti, J. P., Isospectral Hantzsche-Wendt manifolds, J. Reine Angew.
Math. 515 (1–23), 1999.

[MR2] Miatello, R. J., Rossetti, J. P., Flat manifolds isospectral on p-forms, Jour. Geom. Anal.
11 (647–665), 2001.

[MR3] Miatello, R. J., Rossetti, J. P., Comparison of twisted Laplace p-spectra for flat mani-
folds with diagonal holonomy, Ann. Global Anal. Geom. 21 (341–376), 2002.

[MR4] Miatello, R. J., Rossetti, J. P., P -spectrum and length spectrum of compact flat mani-
folds, Jour. Geom. Anal. 13, 4, (631–657), 2003.
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