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GEODESICS AND NORMAL SECTIONS ON REAL FLAG

MANIFOLDS

CRISTIÁN U. SÁNCHEZ, ANA M. GIUNTA AND JOSÉ E. TALA

Abstract. In the present paper we study Riemannian and canonical geodesics
in a real flag manifold M , considered as curves in the ambient Euclidean space
of the natural embedding of M .

1. Introduction.

In this paper we present some results concerning an interesting problem in the
geometry of submanifolds of Euclidean spaces. Our note originated in a paper
by Ferus and Schirrmacher [8] where those authors considered the problem of de-
termining all the submanifolds of Euclidean space whose geodesics (considered as
curves in the Euclidean space) are W-curves i.e. Frenet curves with constant cur-
vatures along the curve, see next section for definitions. Ferus and Schirrmacher
obtained an important result which we will describe.

W. Strübing [13] had shown earlier that symmetric R-spaces (a particular case
of real flag manifolds) have the property that all their geodesics, considered as
curves in the Euclidean space, are W-curves. Ferus and Schirrmacher obtained the
following characterization of symmetric R-spaces based on the behavior of their
geodesics as curves in the Euclidean space.

Theorem 1.1. [8]Let M be a closed connected Riemannian manifold and f : M →
RN an isometric immersion. Then the following properties are equivalent:

(i) For almost every unit-speed geodesic γ : R → M , the image curve c = f ◦ γ
is a generic W-curve (definition in the next section).

(ii) M is an extrinsic symmetric submanifold in the sense of [7].�

Here the phrase almost every unit-speed geodesic means that the tangent vec-
tors of these geodesics fill the unit-tangent bundle up to a closed set of measure
zero. Recall that by [7], extrinsic symmetric submanifold is equivalent to naturally
embedded symmetric real flag manifold.

This result has an immediate consequence which suggests some interesting ques-
tions namely:
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• For those real flag manifolds which are not symmetric, the geodesics which
are generic W-curves must have their tangent vectors contained in a subset
of the unit-tangent bundle whose complement does not have measure zero.

This suggests studying Riemannian geodesics on general real flag manifolds (or
other submanifolds of Euclidean spaces) trying to consider the following problems:

(i) Determine some subset of the unit-tangent bundle which contains the tangent
vectors to those geodesics which are generic W-curves and

(ii) Determine, if possible, some subset of the unit tangent bundle which contains
the tangent vectors to all those geodesics which are W-curves.

The present paper is devoted to these problems and contains some information
concerning problem (i) for every compact submanifold of an Euclidean space, in
particular, for real flag manifolds (Theorem 6.1). It contains also a result about
generic canonical geodesics (Theorem 6.2) and an answer to problem (ii) in the case
of isoparametric submanifolds of rank 2 in an Euclidean space, (Corollary 7.2).

In every real flag manifold there exists an affine connection naturally associated
to its homogeneous structure which is the so called “canonical connection” (see
Subsection 3.1). It has proven to be useful to characterize these submanifolds of
Euclidean spaces [10]. It is known, [11], that all the geodesics of this canonical
connection, considered as curves in the Euclidean space, are W-curves. This sug-
gests to start by studying the set of “coincidence” of the two types of geodesics.
This is an easy task in terms of the difference tensor D of the two connections (see
Proposition 4.2). This may lead one to think that this set contains all the unit
vectors generating Riemannian geodesics which are W-curves but this may not be
the case.

In the present paper we introduce the subset of the unit tangent bundle con-
taining all the tangent vectors to Riemannian geodesics that are generic W-curves.
This subset, which we shall denote by Ξ [M ], is that whose fibre at each point

p ∈ M is the real algebraic variety X̂p [M ] (definition in Section 5). This variety
has been introduced in [4] and many of its properties studied also in [12], [6] and
[5].

It seems hard to determine which is the subset of the unit tangent bundle of
a general real flag manifold that contains the tangent vectors to all Riemannian
geodesics which are W-curves. So it seems surprising that if our real flag manifold is
a homogeneous isoparametric submanifold of rank 2 in an Euclidean space Mm →
Rm+2, then the unit tangent vectors to all Riemannian geodesics that are W-curves
are contained in Ξ [M ] (see Corollary 7.2).

If our real flag manifold M is symmetric then Ξ [M ] coincides with the unit
tangent bundle. But if M is not symmetric then Ξ [M ] is a set of measure zero in
the unit tangent bundle of M and this seems to be a nice identification of the set
mentioned in the above consequence of Theorem 1.1. The complement of this set
is, in this case, open in the unit tangent bundle of M .

The paper is organized as follows. In the next section we have the definition of
W-curves. In Section 3 we recall the definition of real flag manifold and include a
subsection recalling also the definition of the canonical connection. In Section 4 we
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GEODESICS AND NORMAL SECTIONS ON REAL FLAG MANIFOLDS 19

study the coincidence of Riemannian and canonical geodesics. Section 5 contains

the definition of the varieties X̂ [M ] and D [M ] and in Section 6 we include the
results concerning generic Riemannian and canonical geodesics. Finally Section 7
contains Proposition 7.1 and Corollary 7.2 which concern the question (ii) indicated
above.

The authors express their appreciation to the anonymous referee whose com-
ments lead to a considerable improvement of the present paper.

2. W-curves.

Following Ferus and Schirrmacher [8] we shall say that a regular curve c : J ⊂
R → RN is a W-curve of rank r if, for all s ∈ J , the derivatives c′ (s) , . . . , c(r) (s)
are linearly independent, the derivatives c′ (s) , . . . , c(r+1) (s) are linearly dependent
and if the (therefore well defined) Frenet curvatures k1,k2, . . . , kr−1 : J → R+ =
{u ∈ R : u > 0} are constant (independent of the parameter but depending on the
geodesic).

We reproduce now a result from [8] which we need.

Lemma 2.1. Let c : J ⊂ R → RN be a W-curve of infinite length and parameter-
ized by arc length. If the image c (J) is bounded, then the rank of c is even, r = 2m.
Furthermore, there are m pairs of positive constants (a1, r1) , (a2, r2) , . . . , (am, rm)
(unique up to order) and a set of 2m orthonormal vectors {ej : 1 ≤ j ≤ 2m} in
Rn+q such that

c (s) = co +

m∑

i=1

ri (e2i−1 sin (ais) + e2i cos (ais)) .

Also following [8], we shall say that a W-curve in Rn+q is generic if the real
numbers {ai : 1 ≤ i ≤ m} are independent over the rationals. This is equivalent to

say that the closure c (R) of the image of c in Rn+q is a torus S1 (r1) × S1 (r2) ×
. . . × S1 (rm) ⊂ Rn+q.

3. Real Flag Manifolds.

Real flag manifolds can be informally defined as follows: Let N be an irreducible
symmetric space (compact or noncompact) p a point in N and Tp (N) its tangent
space at that point. The corresponding isotropy group K at p acts on Tp (N) by
the derivatives (at p) of its elements and its orbits on Tp (N) are the so called
R-spaces or real flag manifolds. By their definition, these spaces are compact
homogeneous and have a natural embedding in the Euclidean space Tp (N). The
Riemannian metric that is usually considered on them is the induced one. We
shall denote by 〈X, Y 〉 the inner product in Tp (N) and by ∇E the Levi-Civita
connection associated to the Euclidean metric in Tp (N).

In the homogeneous space M we also have the “canonical” connection which
we describe briefly. To that end we “formalize” the definition of real flag manifold
given above. The necessary ingredients to construct the arbitrary real flag manifold
M and its canonical embedding are the following. Let g be a real semisimple Lie
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algebra without compact factors, k a maximal compactly embedded subalgebra of
g and g = k⊕p the Cartan decomposition of g relative to k. Let B denote the
Killing form of g; then p can be considered an Euclidean space with the inner
product defined by the restriction of B to p. Let G = Int(G) be the group of inner
automorphisms of g. The Lie algebra of G may be identified with g. Let K be the
analytic subgroup of G corresponding to k ; K is compact and acts on p as a group
of isometries. The real flag manifold M is, by definition, the orbit of a non zero
vector E ∈ p i.e. M = Ad(K)E.

This defines also the natural embedding j̇ : M → p of the real flag manifold M in
the Euclidean space (p, B). We take on M the Riemannian metric induced by the
embedding. Furthermore we shall assume that the embedding is “substantial” or
“full” that is, j (M) is not contained in any affine hyperplane of p. Let us denote
by KE the isotropy subgroup of E. Then, as a homogeneous space, M = K/KE.

In general the group KE is not connected and we shall denote by [KE]e the
connected component of the identity. Let kE be the Lie subalgebra corresponding
to [KE ]e in k. Let m be the orthogonal complement of kE with respect to the
restriction of B to k (it is negative definite in k). Then k=kE⊕m is a reductive
decomposition, that is, it satisfies Ad(KE)m ⊂ m. We also have

TE(M) = [m, E] = [k, E] (1)

and ad(E) is one to one from m onto TE(M).

3.1. The two connections. We recall the following fundamental facts.

Theorem 3.1. [9, p. 43]Let K/KE be a reductive homogeneous space with a fixed
decomposition of the Lie algebra k = kE⊕m , Ad (KE)m ⊂ m . Then there exists a
one to one correspondence between the set of all the invariant affine connections ∇
over K/KE and the set of all the bilinear functions ω : m ×m → m which satisfy

Ad (h)ω (X, Y ) = ω (Ad (h)X, Ad (h)Y )

for each X, Y ∈ m and h ∈ KE .

Let π : K −→ K/KE be the natural projection and assume that we have an
invariant affine connection ∇ over K/KE. We require the following properties for
the connection ∇:

(A1) Let exp(tX) be the one parameter subgroup of K generated by X ∈ m.
Then π (exp(tX)) = (exp(tX))E is a regular curve such that the family of its
tangent vectors is parallel along the curve itself.

(A2) Let us consider the curve π (exp(tX)) = (exp(tX))E in K/KE. Let Y ∈ m

; then the parallel translation of the vector Y, tangent at E, along this curve
coincides with translation of Y by the one parameter subgroup exp(tX).

If the affine connection ∇ has property (A2) then it also satisfies (A1).

Proposition 3.2. [9] The invariant affine connection defined by the function ω
has property (A2) if and only if ω (X, Y ) = 0 for each X, Y ∈ m. Then, over
the reductive homogeneous space, there exists one and only one affine connection
∇c which satisfies (A2). It is the one defined by the connection function which is
identically zero on m × m.
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This invariant affine connection ∇c is called the canonical affine connection of
second class over K/KE with respect to the fixed decomposition of the Lie algebra
k = kE⊕m, We call it the canonical connection. We denote by ∇ the Levi-Civita
connection associated to the induced metric on M from p and by D the difference
tensor defined by D (X, Y ) = ∇XY − ∇c

XY . The canonical connection is metric
and satisfies ∇cD = 0. A modern view of the canonical connection can be found
in [1, p.203-205].

4. Canonical and Riemannian Geodesics.

It is very difficult to determine the Riemannian geodesics of the real flag man-
ifolds which are not symmetric. However, in these spaces the geodesics of the
canonical connection ∇c are well known. Their geometric properties as curves in
the Euclidean space of the natural embedding, were studied in [11]. From that
paper we recall

Proposition 4.1. Let i : Mn → Rn+q be a canonical embedding of the real flag
manifold M . For each point p ∈ Mn and each unitary vector X ∈ Tp (M), if γ is
the ∇c-geodesic defined by X, then c (s) = i (γ (s)) is a W-curve in Rn+q.

Then we immediately have the following Proposition which is valid for any real
flag manifold.

Proposition 4.2. Let i : Mn → Rn+q be a canonical embedding of the real flag
manifold. If X ∈ TE (M) is a unitary vector then DE (X, X) = 0 if and only if
the Riemannian and canonical geodesics passing through E defined by the vector X
coincide for all values of their parameter.

Then all these Riemannian geodesics are W-curves.

5. The varieties X [M ] and D [M ].

Let j : M → RN be an isometric immersion and p a point in M. We may identify
a neighborhood of p with its image by j and consider, in the tangent space Tp (M) ,

a unitary vector X. If Tp (M)⊥ denotes the normal space to M at p, we may define
an affine subspace of RN by

S (p, X) = p + Span
{
X, Tp (M)

⊥
}

.

If U is a small enough neighborhood of p in M, then the intersection U∩S (p, X)
can be considered the image of a C∞ regular curve γ (s), parametrized by arc-
length, such that γ (0) = p, γ′ (0) = X . This curve is called a normal section of
M at the point p in the direction of X. In a strict sense, we ought to speak of
the “germ” of a normal section at p determined by the unit vector X because a
change in the neighborhood U will change the curve. However, this new curve will
coincide with γ in the proximity of s = 0. Since our computations with the curve γ
are done at the point p, we may take any one of these curves. We may also assume
that j is an embedding. Following B.Y. Chen, we say that the normal section γ of
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M at p in the direction of X is pointwise planar at p if its first three derivatives
γ′ (0) , γ′′ (0) and γ′′′ (0) are linearly dependent.

We say that the submanifold j : M → RN is extrinsically homogeneous [1, p.35]
if for any two points p, q ∈ M there is an isometry g of R

n+k such that g (M) = M
and g(p) = q.

Given a point p in the submanifold M we shall denote, as in [4],

X̂p [M ] =
{
X ∈ Tp (M) : ‖X‖ = 1,

(
∇Xα

)
(X, X) = 0

}
. (2)

Since Y ∈ X̂p [M ] clearly implies −Y ∈ X̂p [M ] , we may take the image Xp [M ] of
this set in the real projective space RP (Tp (M)) .

If M is extrinsic homogeneous in the ambient space Rn+k, it is clear that X̂p [M ]

does not ”depend” on the point p and we may denote it by X̂ [M ]. In this case
X [M ] is a real algebraic variety of RP (Tp (M)). Its natural complexification
Xc [M ], is a complex algebraic variety of CPn−1. Clearly real flag manifolds are
extrinsically homogeneous in their canonical embeddings.

In general for any submanifold of RN we may define the subset Ξ [M ] of the unit
tangent bundle mentioned above as:

Ξ [M ] =
{
X ∈ T (M) : ‖X‖ = 1,

(
∇Xα

)
(X, X) = 0

}

In [4] the variety X [M ] of directions of pointwise planar normal sections, of a
natural embedding of a real flag manifold M was introduced. We refer the reader
to [4], [12] and [5] for the description of diverse properties of this variety. Here we
need essentially the definition (2).

If the submanifold M at hand is a naturally embedded real flag manifold then
we may also define

D [M ] = {X ∈ T (M) : ‖X‖ = 1, D (X, X) = 0} .

which is the set of coincidence of the canonical and Riemannian geodesics. The set

Dp [M ] = {X ∈ Tp (M) : Dp (X, X) = 0}

is in fact a real algebraic set intersection of the unit sphere in Tp (M) and the
affine algebraic variety in Tp (M) defined by the finite set of quadratic polynomials

implicit in the condition Dp (X, X) = 0. Clearly Dp [M ] ⊂ X̂p [M ] because, for
real flag manifolds, one has the identity

(
∇Xα

)
(X, X) = −2αp (X, Dp (X, X)) (3)

proved in [4].

6. Generic geodesics in M .

Let i : Mn → Rn+q be an isometric embedding of a compact connected manifold
Mn. For each point p ∈ Mn and each unitary vector X ∈ Tp (M), let us consider
the ∇-geodesic γ (s) defined by γ (0) = p, γ′ (0) = X . We are going to study the
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curve c (s) = i (γ (s)) in Rn+q considering i as the inclusion. We easily compute

c′ (0) = γ′ (0) = X
c′′ (0) = ∇E

Xγ′ = ∇R
Xγ′ + αp (X, X) = αp (X, X)

c′′′ (0) = −Aαp(X,X)X +
(
∇Xα

)
(X, X)

(4)

We have now the following general result.

Theorem 6.1. Let i : Mn → Rn+q be an isometric embedding of a compact
connected manifold. If γ (s) is a Riemannian geodesic and c (s) = i (γ (s)) is a

generic W-curve in Rn+q then, for each s ∈ R, c′ (s) = γ′ (s) ∈ X̂γ(s) [M ] .

Proof. Since c (s) is a generic W-curve we have that c (R) is a dense set in the

torus given by Lemma 2.1. Then the torus is c (R) and since c (R) ⊂ M = M we
see that the whole torus is contained in M . Now it follows from Lemma 2.1 that
c′′′ (0) is tangent to the torus c (R) and hence tangent to M at p. Then (4) yields
that

(
∇Xα

)
(X, X) = 0. Since the same thing can be proved for any point in the

geodesic γ (s) we have that γ′ (s) ∈ X̂γ(s) [M ] as claimed. �

A similar result can be proved for the canonical geodesics namely.

Theorem 6.2. Let i : Mn → Rn+q be a canonical embedding of the real flag
manifold. If β (s) is a canonical geodesic and c (s) = i (β (s)) is a generic W-curve

in Rn+q then, for each s ∈ R, c′ (s) = γ′ (s) ∈ X̂γ(s) [M ] .

Proof. Again c (R) is a dense set in the torus given by Lemma 2.1 and set p = c (0)
then

c′ (0) = X
c′′ (0) = ∇E

Xβ′ = Dp (X, X) + αp (X, X)
c′′′ (0) = ∇E

X (D (β′, β′)) + ∇E
Xα (β′, β′) =

= Dp (X, Dp (X, X)) + αp (X, Dp (X, X))−
−Aαp(X,X)X + ∇⊥

X (α (β′, β′)) .

(5)

Now, since M is a real flag manifold,

∇⊥

X (α (β′, β′)) = (∇c
Xα) (X, X) + 2αp (∇c

Xβ′, X) = 0

and because also in this case c′′′ (0) is tangent to the torus c (R) and hence tangent

to M at p, we must have (by (5)) αp (X, Dp (X, X)) = 0 and by (3) X ∈ X̂p [M ] .
�

This theorem corrects [11, p.300,14].

Corollary 6.3. In a non-extrinsically symmetric canonically embedded R-space,
the vectors of the unit-tangent bundle that generate canonical geodesics which are
generic W-curves are contained in Ξ [M ] . �.

This Corollary could be rephrased as “in a non-extrinsically symmetric canon-
ically embedded R-space, canonical geodesics are generically non-generic”. This
is in fact also true for the Riemannian geodesics of any non extrinsic symmetric
compact embedded submanifold of RN as Theorem 6.1 shows. On the other hand,
for extrinsic symmetric submanifolds (symmetric R-spaces) the Theorem of Chen
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[3] (see also [4]) says that Ξ [M ] coincides with the unit-tangent bundle and, one
may think, this is the reason why on these last spaces generic geodesics are generic
W-curves.

7. The case of isoparametric submanifolds of rank two.

In this section we assume that M is isoparametric submanifold of rank 2 in an
Euclidean space Mm → Rm+2. These submanifolds can be considered isopara-
metric hypersurfaces in the unit sphere Sn+1. Many of them are extrinsically
homogeneous, but there are examples which are known to be non-homogeneous.
A reference for the present section is [1] and references there. Recall that for a
regular curve in M parametrized by arc-length considered as curve in the ambient
Euclidean space the first Frenet curvature is given by kR

1 (s) = ‖α (γ′, γ′)‖. The
objective here is to indicate the following

Proposition 7.1. Let Mm be a compact isoparametric submanifold of rank 2 in a
Euclidean space Rm+2 and γ (s) a regular curve parametrized by arc-length in Mm.

Then kR
1 (s) = ‖α (γ′ (s) , γ′ (s))‖ is constant, if and only if, γ′ (s) ∈ X̂γ(s) [M ] for

each s ∈ dom (γ).

Proof. Due to codimension two, ‖α (γ′ (s) , γ′ (s))‖ is constant along γ if and only
if α (γ′ (s) , γ′ (s)) is parallel in the normal connection and this is equivalent to

0 =
(
∇γ′α

)
(γ′, γ′) .

�

We get then, as a corollary in this particular case, an answer to problem (ii)
presented in the Introduction.

Corollary 7.2. Let γ (s) be a Riemannian geodesic in Mm which is a W-curve in

Rm+2. Then for each s ∈ dom (γ) we have γ′ (s) ∈ X̂γ(s) [M ] . �

Unfortunately we cannot prove that there are on Mm any geodesics γ (s) such

that γ′ (s) ∈ X̂γ(s) [M ] (besides those tangent to the eigendistributions), neither
that, if there is one, it is a W-curve.
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5000, Córdoba, Argentina
csanchez@mate.uncor.edu

Ana M. Giunta

Departamento de Matemática,
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