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Abstract. The structure of cluster categories [BMRRT] is well suited for the
combinatorics of cluster algebras [FZ1] with the main correspondence being
between tilting objects and clusters. Furthermore it was shown in [IOTW]
that there is a close relation between domains of virtual semi-invariants and
simplicial complexes associated to cluster categories. Also the same simplicial
complexes associated to cluster categories are related to the Igusa-Orr pictures
in the homology of nilpotent groups.

0. Introduction

The purpose of this paper is to define and relate several, quite different notions,
and therefore the paper is mostly a survey paper, including many results without
proofs and also some indications about work in progress. With this in mind, the
paper is divided in the following way.

In Section 1 we define and state main properties of cluster categories. The results
are mostly from [BMRRT].

In Section 2, cluster algebras with no coefficients are defined (2.1) and several
results about their relation to cluster categories are given . We consider only
acyclic case; in (2.2) the main bijection theorem between cluster variables and
indecomposable objects of the cluster category is stated; in (2.3) the denominators
of nonpolynomial cluster variables are described in terms of dimension vectors of
exceptional indecomposable representations; in (2.4) weak positivity condition of
cluster variables is stated as a consequence of the quite technical proposition, and
the proof of the bijection theorem is given. Also, Cluster determines seed conjecture
is proved in 2.5.

Section 3 is mostly survey section, where we first recall definitions and theorems
about classical semi-invariants, and then give definition and properties of virtual
representation spaces and virtual semi-invariants. We only state the main theorems
and for proofs refer to [IOTW].

Finally, Section 4 contains a short summary of the results about homology of
nilpotent groups and the relation to the simplicial complex of tilting object in the
corresponding cluster category.
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28 GORDANA TODOROV

1. Cluster Categories

1.1. A motivation. The categories of finitely generated modules over hereditary
artin algebras, together with their derived categories, are very well understood.
Since there were clear indications (e.g.[FZ1]) that there was close relation between
the indecomposable modules and cluster variables of the cluster algebras, at least
in the finite representation type, via root systems, it was quite natural to study
and develop the theory of certain orbit categories of the derived categories which
perfectly reflect the combinatorics of cluster algebras.

1.2. Derived category. We recall the standard definitions and notation: Let Q
be a quiver with n vertices and no oriented cycles and k a field. Then Λ = kQ, the
associated path algebra is hereditary. Let mod Λ be the category of finitely gener-
ated Λ-modules, and Db := Db(mod Λ) the derived category of bounded complexes
in modΛ. Since Λ is hereditary the derived category is easy to describe: the objects
in Db are finite direct sums of the objects in ∪i{(mod Λ[i])} and the morphisams
in Db can be described in the following way:

HomDb(M,N) = HomΛ(M,N) for M,N in mod Λ,
HomDb(M,N [1]) = Ext1Λ(M,N) for M,N in mod Λ,
HomDb(M,N [i]) = 0 for M,N in mod Λ and all i 6= 0, 1,
HomDb(X [i], Y [i]) = HomDb(X,Y ) for X,Y in Db and all i ∈ Z.

1.3. Cluster category. In order to define the corresponding cluster category, we
consider the endofunctor: F = τ−1[1] = [1]τ−1 : Db → Db, where [1] : Db → Db is
the suspension functor, and τ : Db → Db is the Auslander-Reiten functor. Then,
the cluster category CΛ is defined to be the orbit category, i.e. the objects in CΛ

are F -orbits, and the morphisams in CΛ are HomCΛ(X̃, Ỹ ) :=
∐

i HomDb(X,F iY ),

where X̃ and Ỹ are F -orbits of X and Y .
From the above definition it is easy to see that a set of representatives of the

orbits may be chosen in add(ind Λ∪{Pi[1]}ni=1). Often we will use the same symbol
for the objects in Db and their orbits in CΛ.

1.4. An example. Let Q be the Dynkin diagram of type A3 with the following
orientation and labeling of the vertices: 1 ← 2 ← 3. Let S1, S2, S3 be the non
isomorphic simple Q representations, or simple kQ-modules, let P1 = S1, P2, P3 be
the nonisomorphic indecomposable projectiveQ representations (kQ-modules), and
let I1, I2, I3 = S3 be the nonisomorphic indecomposable injective Q representations
(kQ-modules). Consider the Auslander-Reiten quiver of modΛ and Db:

S3[−1] P3 P1[1] S2[1] S3[1] P3[2]

P2 I2 P2[1] I2[1] P2[2]

P1 S2 S3 P3[1] P1[2] S2[2]

s QQs s s s��3

QQs

��3

QQs

3

s

3

s

3

s��3 ��3 3 3 3

A set of representatives for the F -orbits may be chosen to be the following 9
objects: {P1, P2, P3, S2, I2, S3, P1[1], P2[1], P3[1]}.
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1.5. Tilting objects. Tilting objects are defined in a similar way as tilting mod-
ules. First we define Ext1CΛ

(X̃, Ỹ ) :=
∐

i Ext1Db(X,F iY ) =
∐

i HomDb(X,F iY [1]).

Then, we define X̃ to be an exceptional object in CΛ if ExtCΛ(X̃, X̃) = 0. Define a
tilting object (basic) to be a maximal exceptional object in CΛ without multiplic-
ities. As stated in 1.3 we will usually use the same symbol for the objects in Db

and their orbits in CΛ.

1.6. Tilting seeds. The notion of tilting seed is introduced for the sake of setting
up a good correspondence between “cluster category” terminology and “cluster
algebra” terminology, in order to be able to write rigorous proofs. A tilting seed is
defined to be a pair (T,QT ), where T is a basic tilting object and QT is the quiver
of EndCΛ(T )op. Notice that the tilting object T determines the quiver QT .

1.7. Exchange pairs. The following theorems give precise conditions when an
indecomposable summand of a tilting object can be replaced by another indecom-
posable object, i.e. they “can be exchanged”.

Theorem 1.7.1. [BMRRT] Let T = M
∐
T̄ be a basic tilting object with M inde-

composable. Then, there exists exactly one object M∗ not isomorphic to M , such
that T ′ = M∗

∐
T̄ is also a basic tilting object.

Definition 1.7.2. Using the notation from Theorem 1.7.1 we call the indecom-
posable objects M and M∗ an exchange pair with respect to T (or T ′).

Theorem 1.7.3. [BMRRT] Two exceptional indecomposable objects M and M∗

form an exchange pair if and only if dimDM Ext1CΛ
(M,M∗) = 1 = dimDM∗ Ext1CΛ

(M,M∗),
where DM = EndCΛ(M)op and DM∗ = EndCΛ(M∗)op.

1.8. Tilting objects in the cluster category for A3. We will use the same
example and the same notation as in 1.4. In the following figure the vertices are la-
beled by representatives of indecomposable objects in the cluster category. Vertices
are connected by a line segment if there are no extensions between the two corre-
sponding objects. Consequently, each small triangle defines a tilting object and all
tilting objects are given that way. There are 14 tilting objects in this example, e.g.
(S1

∐
P2

∐
P3), (S2

∐
P2

∐
P3), (S1[1]

∐
S2

∐
P3[1]), (S1[1]

∐
P2[1]

∐
P3[1]) etc.

1.9. Tilting mutations. Throughout the paper we will use 3 different ways to
express the situation from the Theorem 1.7.1:

(1) Tilting mutation of an indecomposable object M is M∗, with respect to T :
ν(M) = M∗ or more precisely νT (M) = M∗ e.g. νT (S1) = S2 with
respect to the tilting object T = S1

∐
P2

∐
P3.

(2) Tilting mutation of the tilting object T = M
∐
T̄ at M is T ′ = M∗

∐
T̄ :

ν̄(T ) = T ′, or ν̄M (T ) = ν̄M (M
∐
T̄ ) = νT (M)

∐
T̄ = M∗

∐
T̄ = T ′ e.g.

ν̄S1(S1

∐
P2

∐
P3) = S2

∐
P2

∐
P3.

(3) Tilting mutation of the tilting seed (T,QT ) at M is the new seed (T ′, QT ′):
ν̃M (T,QT ) = (ν̄M (T ), Qν̄M(T ))
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30 GORDANA TODOROV

e.g. ν̃S1((S1

∐
P2

∐
P3), QT ) = (S2

∐
P2

∐
P3), QT ′), with the extra infor-

mation that QT = 1← 2← 3 and QT ′ = 1′ → 2← 3.

All examples refer to the cluster category in 1.8.

1.10. A construction of exchange pairs, i.e. tilting mutation. This con-
struction uses the notion of minimal right approximation by a subcategory. Let
T = M

∐
T̄ be a tilting object, where M is an indecomposable summand. Let

f : B → M be a minimal right add T̄ -approximation of M . This approximation
exists, since add T̄ is additively generated by a finitely generated module T̄ . Let

→M∗ g
−→ B

f
−→M →

be the associated triangle in Db.

1.11. Some facts about exchange pairs. Here we state some of the facts (with-
out proofs) and draw the commutative diagrams from [BMRRT].

(1) M∗ is indecomposable and exceptional,

(2) M∗ g
−→ B is a minimal left add T̄ - approximation of M∗,

(3) dimDM Ext1CΛ
(M,M∗) = 1 = dimDM∗ Ext1CΛ

(M,M∗),
(4) M and M∗ form an exchange pair with respect to T (or T ′).
(5) Consider the AR-triangle for M∗:

→M∗ → AM∗ → τ−1M∗ → .

• S3

• S1

• I2

• P2

• P3 • S2

• S1[1]

• P3[1]

• P2[1]

Figure 1. Tilting objects in the cluster category of A3
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Together with the triangle from 1.10, we get the following commutative
diagram:

Kh

∐
Lh[−1]

M∗ AM∗ τ−1M∗

M∗ B M

B′

τ−1M∗[1] = FM∗ ∼=
CΛ
M∗.

? ?
-

?
=

- -

? ?h

-

- -
g

-
f

-

?g
′

?f
′

(6) dim HomDb(τ−1M∗,M) = 1,
(7) B′ = Coker(h)

∐
Ker(h)[1] := Lh

∐
Kh[1],

(8) h is an isomorphism if and only if B′ = 0,
(9) M∗ ∼= τM if and only if M∗ → B →M is AR triangle if and only if B′ = 0.

(10) The vertical maps M -
g′

B′ and B′ -
f ′

M∗ are left and right add T̄ -
approximations of M and M∗ (respec).

(11) By considering AR triangle for M we get a similar commutative diagram.

2. Cluster Algebras and Cluster Categories

In this section we want to indicate what correspondences exist between the cat-
egorical notions of cluster categories and combinatorial notions of cluster algebras.

Cluster algebras were defined by Fomin and Zelevinsky, in general with coef-
ficients, however cluster categories are set to deal only with the cluster algebras
without coefficients, so we will recall the definition of cluster algebras only in that
case. We also point out that the “sign skew symmetrizable square matrices” cor-
respond to valued quivers, with valuations on arrows being precisely the integer
values of the entries of the corresponding matrix.

2.1. Cluster algebras; Definitions.

Cluster algebra A is a subalgebra of the field of rational functions Q(u1, . . . , un),
which is generated as algebra by cluster variables; cluster variables are defined
to be all rational functions which appear in a certain collection of transcendence
bases, called clusters; clusters are transcendence bases in Q(u1, . . . , un) which are
obtained from an initial cluster after applying sequences of “cluster mutations” in
every possible direction, but according to the rules prescribed by the matrices B,
(or equivalently, quivers Q) as we will describe in 2.1.1.

We point out that at every stage of cluster mutations, there is a new pair formed
(x,Q), called a cluster seed, where x is the new cluster and Q is the new quiver. Ini-
tial cluster seed is a pair (x(0), Q(0)), where x(0) = {x(0),1, . . . , x(0),n} is a transcen-

dence basis, called initial cluster and Q(0) is the initial quiver (a matrix B = (bij)).

Rev. Un. Mat. Argentina, Vol 48-3



32 GORDANA TODOROV

Definition 2.1.1. Using the notation from above we now define cluster mutations
(again, the same mutation expressed in 3 ways as in 1.9):

(1) Cluster mutation of xi with respect to the cluster seed (x,Q) is the new

cluster variable (xi)
∗ obtained as xi · (xi)

∗ =
∏

bij>0

x
bij

i +
∏

b′ij<0

x
b′ij

i .

Notation µ(xi) = (xi)
∗.

(2) Cluster mutation of the cluster x = {x1, . . . , xn} at xi is a new cluster
x′ = {x1, . . . , (xi)

∗, . . . xn} = {x1, . . . , µi(xi), . . . xn}
Notation: µ̄i(x) = {x1, . . . , µi(xi), . . . xn} = x′

(3) Cluster mutation of the cluster seed (x,Q) at xi is the new cluster seed
(x′, Q′).
Notation: µ̃i(x,Q) = (µ̄i(x), ~µiQ) = (x′, Q′), where ~µi(Q) = Q′ new quiver
obtained in quite a complicated way (see [FZ1]).

In general, this process of creating new cluster variables will never stop, however
there is a precise classification of cluster algebras which have only finitely many
cluster variables, as stated in the following theorem.

Theorem 2.1.2. [FZ2] A cluster algebra has finitely many cluster varibles, if and
only if a Dynkin diagram appears as one of the quivers in the mutation process.

2.2. Bijections.

Starting with a fixed quiver Q (no oriented cycles), one obtains a cluster alge-
bra A(Q), with all of its notions: cluster seeds, clusters, cluster variables, cluster
mutations. From the same quiver one can construct cluster category CkQ, with the
tilting seeds, tilting object, indecomposable objects and tilting mutations. The fol-
lowing table contains main “cluster algebra” and “cluster category” notions, NOT
as a theorem, but just to indicate where the correspondences should be. However,
the theorems are stated afterwards.

Q quiver

A(Q)-cluster algebra —— CΛ-cluster category, where Λ = kQ
(x(0), Q(0))-initial cluster seed —— (P1[1]

∐
· · ·

∐
Pn[1], Q)-initial tilting seed

(x,Q)-any cluster seed —— (T,QT )-any tilting seed
x = {x1, . . . , xn}-any cluster —— T = T1

∐
· · ·

∐
Tn-any basic tilting object

xi-any cluster variable —— M -any indecomposable exceptional object

Theorem 2.2.1. [FZ1], [MRZ] Suppose Q is a Dynkin diagram. Then there exists
a one-to-one correspondence
{cluster variables} → {isoclasses of indecomposable objects }.

Theorem 2.2.2. [BMRRT] Suppose Q is a simply laced Dynkin diagram. Then
there exist one to one correspondences (the second one being induced by the first):
{cluster variables} → {isoclasses of indecomposable objects},
{clusters} → {basic tilting objects}.
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It was conjectured in the same paper that similar one-to-one correspondences
exist between cluster variables and exceptional indecomposable objects for all sim-
ply laced diagrams with no oriented cycles. The proof of this follows from the
existence of two particular surjective maps, which are inverse bijections:
α : {cluster variables} → {isoclasses of indecomposable exceptional objects},
β : {isoclasses of indecomposable exceptional objects} → {cluster variables}.

The map β is the Caldero-Chapoton map from [CK2], and the existence of map
α is given in the following theorem.

Theorem 2.2.3. [BMRT] Let Q be simply laced diagram with no oriented cycles.
(a) There exist well defined maps:
α : {cluster variables} → {isoclasses of indecomp. exceptional objects},
ᾱ : {clusters} → {tilting objects},
α̃ : {cluster seeds} → {tilting seeds}.

(b) All three maps: α, ᾱ, α̃ are onto.

We will indicate main steps of the proof of the above theorem, since they include
several other interesting results about the denominators of the cluster variables
2.3.4, weak positivity condition 2.4.6 and proof of the Fomin-Zelevinsky conjecture
that cluster determines the entire cluster seed after cluster mutations 2.5.1.

Theorem 2.2.4. Bijection ([CK2],[BMRT]) Let Q be simply laced diagram with
no oriented cycles. Then there exist a bijection between cluster variables and ex-
ceptional indecomposable objects, inducing a bijection between clusters and tilting
objects.

An illustration on A3. We illustrate the above correspondence by using the same
Figure 1 as we did for the objects, tilting objects and exchange pairs of the cluster
category, but label the vertices now by the corresponding cluster variables.

• xS3

• xS1

• xI2

• xP2

• xP3 • xS2

• x1 = xS1[1]

• x3 = xP3 [1]

•x2 = xP2[1]

Figure 2. Clusters in the cluster algebra of A3
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34 GORDANA TODOROV

• Vertices are labeled by cluster variables and cluster variables are labeled by
the corresponding representatives of indecomposable objects in the cluster
category.
• Vertices are connected by a line if the compatibility degree between the

cluster variables is 0 which corresponds to no extensions between the cor-
responding two objects.
• Each small triangle defines a cluster and a basic tilting object.
• All clusters and all tilting objects are given that way.
• There are 14 clusters and 14 basic tilting objects in this example.
• The initial cluster {x1, x2, x3} is chosen in such a way, that the denomina-

tors of all other cluster variables are given by the dimension vectors of the
corresponding kQ-modules (see theorems in next section).

2.3. Denominators of cluster variables.

From this section, we only need notation, and the famous “Laurent phenomenon”
theorem of Fomin and Zelevinsky. However we will also state known results about
the monomials which appear in the denominators of the cluster variables.

Theorem 2.3.1. [FZ1] (Laurent phenomenon) The denominators of all cluster
variables, when expressed in terms of the initial cluster, and then reduced, are
monomials.

Notation: Let m = xk1
1 . . . xkn

n be a monomial in variables x1, . . . , xn. Denote the
exponent vector by ǫ(m) = (k1, . . . , kn) ∈ Zn

≥0.

Theorem 2.3.2. [FZ1] Let Q be a Dynkin diagram with alternating orientation.
For each cluster variable in reduced form f/m, there is an indecomposable module
M , such that ǫ(m) = dimM.

Theorem 2.3.3. [CCS2] Let Q be any Dynkin diagram. For each cluster variable
in reduced form f/m, there is an indecomposable module M , such that ǫ(m) =
dimM. (Also [RT] and [CK1] have the same result.)

Theorem 2.3.4. [BMRT] Let Q be any finite simply laced diagram with no oriented
cycles. For each cluster variable in reduced form f/m, there is an indecomposable
exceptional module M , such that ǫ(m) = dimM.

Proof. This follows from 2.4.6. �

2.4. Weak Positivity Condition and Conditions (∗, ∗̄, ∗̃).

These are essential notions for the proofs of the existence of the maps α, ᾱ, α̃,
i.e. that the objects α(x), ᾱ(x′), α̃((x′, Q′)) satisfy the desired conditions: α(x) is
an indecomposable exceptional object, ᾱ(x′) is a tilting object and ((x′, Q′)) is a
tilting seed.

Definition 2.4.1. A polynomial f in variables {x1, . . . , xn} is said to satisfy the
weak positivity condition if f(ei) > 0 for all ei = (1, 1, . . . , 1, 0, 1, . . . , 1, 1), where 0
is at the i-th place.
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Remark: If f satisfies the weak positivity condition, then f does not have any
non-constant monomial factors.

Definition 2.4.2. Let (x1, . . . , xn) be an initial cluster for a cluster algebra given
by a quiver Q. A cluster variable x is said to satisfy condition (∗) if:

(1) either x = f/m or x = fxi, where f is a polynomial in {x1, . . . , xn} and it
satisfies positivity condition and

(2) if x = f/m, then there exists an indecomposable exceptional kQ-module
M , such that ǫ(m) = dimM .

Definition 2.4.3. If a cluster variable x satisfies condition (∗), we (can) define:

α(x) :=

{
M if x = f/m and ǫ(m) = dimM

Pi[1] if x = fxi.

Remark: We want to define α on all cluster variables. So far, we defined only on
cluster variables satisfying (∗). So, we will prove that ALL cluster variables satisfy
condition (∗) if the cluster algebra is acyclic with no coefficients.

This will be proved after the Proposition 2.4.4 and Corollary 2.4.6, however the
proof involves clusters and cluster seeds as well. The corresponding conditions on
clusters and cluster seeds will be denoted by: (∗̄),(∗̃) and we define them now.

Properties: (∗), (∗̄), (∗̃) Definitions and properties.
(∗) is a property of a cluster variable x′i consisting of two parts:

• x′i = f/m or x′i = fxi, where f satisfies positivity condition, and
• ǫ(m) = dimM , for some indecomposable exceptional module M .

Notice: If x′i satisfies (∗), then α(x′i) is defined (i.e. it is an indecomposable
exceptional object)(as in 2.4.2 and 2.4.3).

(∗̄) is a property of a cluster x′ = {x′1, . . . , x
′
n} consisting of two parts:

• each cluster variable x′i satisfies (∗), and
• α(x′1)

∐
· · ·

∐
α(x′n) is a tilting object.

Notice: If x′ satisfies (∗̄), then ᾱ(x′) can be defined as
ᾱ(x′) = α(x′1)

∐
· · ·

∐
α(x′n), which is a tilting object.

(∗̃) is a property of a cluster seed (x′, Q′) consisting of two parts:

• the cluster x′ satisfies (∗̄), and
• Q(ᾱ(x′)) = Q′.

Notice: If (x′, Q′) satisfies (∗̃), then α̃(x′, Q′) can be defined as
α̃(x′, Q′) = (ᾱ(x′), Q′) which is a tilting seed.

Proposition 2.4.4. Let (x′, Q′) be a cluster seed satisfying (∗̃). Consider a cluster
mutation. Then:

(1) a: The new cluster variable satisfies (∗).
ā: The new cluster satisfies (∗̄).
ã: The new cluster seed satisfies (∗̃).

(2) a: α commutes with mutations, i.e. α ◦ µ = ν ◦ α.
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36 GORDANA TODOROV

ā: ᾱ commutes with mutations, i.e. ᾱ ◦ µ̄ = ν̄ ◦ ᾱ.
ã: α̃ commutes with mutations, i.e. α̃ ◦ µ̃ = ν̃ ◦ α̃.

Proof. We need to set up a bit more detailed and precise notation.
Let (x′, Q′) be a cluster seed, where x′ = {x′1, . . . , x

′
n} is a cluster.

Let µ be a cluster mutation at x′i.
Since x′i satisfies (∗), there exists an object M such that α(x′i) = M .
Denote x′i by xM .
Let (xM )∗ be the new cluster variable defined via cluster mutation µ.
Then µ(x′) = µ({x′1, . . . , x

′
i . . . , x

′
n}) = µ({x′1, . . . , xM . . . , x′n}) =

{x′1, . . . , (xM )∗ . . . , x′n}.
Proof of a: WTS (xM )∗ satisfies (∗). Let T = T1

∐
· · ·

∐
Tn = α(x′1)

∐
· · ·

∐
α(x′n).

It is a tilting object since x′ satisfies (∗̄).
Consider tilting mutation of T at M , i.e. exchange M with another object M∗.
Then T ′ = T1

∐
. . .

∐
M∗

∐
. . .

∐
Tn is the new tilting object.

Let M∗ → B →M and M → B′ →M∗ be the exchange triangles.
Notation and results from ([BMR2], 6.2) imply:
xM (xM )∗ = xB + xB′ =

∏
xBi +

∏
xB′

i
if B =

∐
Bi and B′ =

∐
Bi.

At this point we brake the proof into several parts, depending on whether the
representatives of M and M∗ are modules or shifted projectives.
Case I: Both M and M∗ are modules.

Step 1: 0→M∗ → B →M → 0 is an exact sequence of modules.
Step 2: Describe B′, i.e. representatives of the summands of B′ in the funda-

mental domain add(indΛ∪{Pi[1]}ni=1). Consider the following commutative
diagram, together with the AR-triangles as mentioned at the beginning:

Kh

∐
Lh[−1]

0

Kg

∐
Lg[−1] τ−1M∗

AM∗ 0

0 M∗ B M 0

0 AτM

τM B′ = Kh[1]
∐
Lh

0

τ−1M∗[1] = FM∗

? ?

? ?

h

�
�3

��3

?
- -

?

g

��3

-

?

-

?

�
��3

�
�3 ��3

��3

?
?

�
�3
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dimExt(M,M∗) = 1 implies dimHom(τ−1M∗,M) = 1 and τ−1g = h
τ−1(Kg

∐
Lg[−1])[1] ∼=

Db
(Kh[1]

∐
Lh)

Let Lg = I
∐
Z with I injective and Z with no injective summands.

Let Kh = P
∐
Y with P projective and Y with no projective summands.

τ−1Kg[1]
∐
τ−1I

∐
τ−1Z ∼=

Db
(Lh

∐
P [1]

∐
Y [1])

By comparing shifts of nonprojectives, shifts of projectives and actual mod-
ules, get the following isomorphisms in the derived category:
τ−1Kg[1] ∼=

Db
(Y [1]), P (SocI)[1] = τ−1I ∼=

Db
P [1], τ−1Z ∼=

Db
(Lh)

τ−1Kg[1] ∼=
Db

(Y [1]) implies FKg
∼=

Db
(Y [1]) and so Kg

∼=C
(Y [1])

Finally: B′ ∼=C
(Lh

∐
Kg

∐
P [1])

Step 3: All xM , xB , xB′ satisfy condition (∗) by assumption.
xM = (fM/mM ), xB = (fB/mB), xKg = (fKg/mKg), xLh

= (fLh
/mLh

),
xP [1] = (c(P/rP )fP [1]) where ǫ(c(P/rP )) = dim(P/rP )
fM , fB, fKg , fLh

, fP [1] satisfy positivity condition
ǫ(mM ) = dimM , ǫ(mB) = dimB, ǫ(mKg) = dim(Kg), ǫ(mLh

) = dim(Lh).

Step 4: (mKgmLh
)|mB or (mKgmLh

) = (mB/m
′) Reason:

dim(Kg) + dim(Lh) + dim(−) + dim(−) = dimM∗ + dimM = dimB

Step 5: Compute (xM )∗.

(xM )∗ = (xB+xB′)
(xM ) =

(fB+fKg ·fLh
·m′·c(P/rP)·fP [1])(1/fM )

(mB/mM)

Step 6: (xM )∗ satisfies condition (∗). Reason:
fM divides the rest of the numerator (Laurent phenomenon).
Numerator is a polynomial which satisfies positivity condition.
Numerator does not have any non-constant monomial factors.
Denominator is monomial mB/mM , with ǫ(mB/mM ) = dimM∗.
M∗ is an indecomposable exceptional module.

Step 7: α((xM )∗) = M∗. This is exactly the statement that α commutes
with mutations, i.e. 2)a of the proposition.

Case II: M is not a module, i.e. M = P [1].
First, we point out that in this case M∗ must be a module, since Ext(M,M∗) 6= 0.
We will just set up the exchange triangles and commutative diagrams, and the rest
is similar kind of analysis, but somewhat more complicated.
M = P [1] implies that B = C

∐
P ′[1], with C non-projective and P ′ projective.

M∗[1] ∼= P/P ′[1] since dimHom(M,M∗[1]) = 1
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B′ τ−1(P/P ′)

AP/P ′

P P/P ′ C
∐
P ′[1] P [1] (P/P ′)[1]

AI

I B′

τ−1(P/P ′)[1] = F (P/P ′)

? ?

? ?

h

�
�

�3

�
��3

?
- -

?

g

�
��3

-

?

-

?

�
�

��3

�
�

��3
�

��3

�
�

��3

?
?

�
�

�
�3

Case III: M a module, M∗ = P [1]. Similar to the previous case.

This finishes the proof of a : the new cluster variable (xM )∗ satisfies condition (∗)
and also α((xM )∗) = M∗.

Proof of ā : The new cluster {x′1, x
′
2, . . . , (xM )∗, . . . , x′n−1, x

′
n} satisfies (∗̄).

• Each cluster variable {x′1, x
′
2, . . . , (xM )∗, . . . , x′n−1, x

′
n} satisfies (∗) condi-

tion by assumption and part a.
• α(x′1)

∐
α(x′2) . . . α((xM )∗) . . . α(x′n−1)

∐
α(x′n) = T1

∐
T2 . . .M

∗ . . . Tn−1

∐
Tn

is a tilting object.

Proof of ã : The new cluster seed ({x′1, x
′
2, . . . , (xM )∗, . . . , x′n−1, x

′
n}, Q”) satisfies (∗̃).

• The new cluster {x′1, x
′
2, . . . , (xM )∗, . . . , x′n−1, x

′
n} satisfies (∗̄) by ā.

• The quiver of End(T1

∐
T2 . . .M

∗ . . . Tn−1

∐
Tn)op is equal toQ” by [BMR].

This finishes the proof of the proposition. �

Corollary 2.4.5. Let (x′, Q′) be a cluster seed satisfying condition (∗̃). Let µ̃ be
a cluster mutation and ν̃ the corresponding tilting mutation. Then: α̃ ◦ µ̃ = ν̃ ◦ α̃.

Rev. Un. Mat. Argentina, Vol 48-3



CLUSTER CATEGORIES AND THEIR RELATION TO CLUSTER ALGEBRAS 39

Corollary 2.4.6. Every cluster seed satisfies (∗̃), every cluster satisfies (∗̄) and
every cluster variable satisfies (∗). In particular, every cluster variable is either of
the form f/m or fxi, for some weakly positive polynomial f .

Proof. The initial seed ({x1 . . . xn}, Q) satisfies (∗̃) condition. Since every cluster
seed can be reached by a finite number of cluster mutations, and by the proposition
every cluster seed at each step satisfies (∗̃) condition it follows that all cluster seeds
satisfy (∗̃) condition. �

Proof. of the Theorem 2.2.3(a): By the above corollary it follows that everything

satisfies appropriate (∗), (∗̄), (∗̃), and by the comments in the definitions of (∗),
(∗̄), (∗̃), all three maps (α), (ᾱ), (α̃) are defined. �

Proof. of the Theorem 2.2.3(b): We will show that α̃ is onto. Let (T,QT ) be a

tilting seed. There exists a finite number of tilting mutations from the initial
tilting seed to (T,QT ). Consider the same sequence of cluster mutations from the
initial cluster seed. Use Corollary 2.4.5. �

2.5. Fomin-Zelevinsky Conjecture: Cluster Determines Seed.

The following was conjectured by Fomin and Zelevinsky (for any cluster algebra)
and we prove it for the acyclic case with no coefficients.

Theorem 2.5.1 (BMRT). Let (x′, Q′) and (x′, Q”) be cluster seeds for an acyclic
cluster algebra with no coefficients. Then Q′ = Q”.

Proof. α̃(x′, Q′) = (ᾱ(x′), Q′) and α̃(x′, Q”) = (ᾱ(x′), Q”) are tilting seeds. But,
Q′ = Q” since tilting seed is determined by its tilting object. �

3. Semi-invariants and Cluster Categories

We first recall the definition and some of the classical theorems about semi-
invariants, as done by Kac, Schofield, Derksen-Weyman for non-negative integral
vectors. After that we state theorems for “mixed signs” integral vectors as done
in [IOTW]. In particular, in the Dynkin diagram case, we state the relation be-
tween the simplicial complex of the partial tilting objects and the domains of
semi-invariants .

3.1. Definitions; Representations and Semi-invariants. Let Q = (Q0, Q1)
be a simply laced quiver, where Q0 denotes the set of the vertices of Q, and Q1

is the set of the arrows of Q. Assume Q has no oriented cycles. Let k be an
algebraically closed field. Let n be the number of the vertices in Q0.

3.2. Representation space for α ∈ Nn. The representation space for a non-
negative integral vector α = (αv) is the affine space:

R(α) =
∏

(u→v)∈Q1

Homk(k
αu , kαv).
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Elements of R(α) will be called based representations with dimension vector α.
Every element of R(α) can be viewed as a collection of αv × αu-matrices, one for
each arrow a : u→ v. The group:

G(α) =
∏

v∈Q0

Glαv (k)

acts on R(α), by gMa := (gha)Ma(gta)−1. We use the convention that Gl0(k) is
the trivial group.

3.3. Euler bilinear form. The vertices of the quiver are partially ordered by
u < v if there is a directed path from u to v and we choose a fixed extension of this
partial ordering to a total ordering. The Euler matrix E is defined as n×n matrix
with rows and columns labeled by Q0 (written in the order described above), with
the diagonal entries equal to 1 and the entry Eu,v = −(the number of arrows from
u to v) for u 6= v. The matrix E gives a nonsymmetric bilinear form

〈α, β〉 := αtEβ

on Zn, which we call the Euler form.

3.4. Some useful facts about the Euler form and Euler matrix.

(1) 〈dimM, dimM ′〉 = dimk HomQ(M,M ′)− dimk Ext1Q(M,M ′), i.e. 〈α, α′〉 =

dimk HomQ(M,M ′)−dimk Ext1Q(M,M ′) for all representations M and M ′

such that α = dimM and α′ = dimM ′.
(2) The row of E corresponding to the vertex v, consists of coefficients of

indecomposable projectives in the expression of S(v).
(3) Et(α) gives coefficient vector of α in terms of dimP (w)s.
(4) α − Et(α) always has non-negative coefficients, e.g. if α = dimS(v) then

α− Et(α) = dim(radP (v)).

3.5. Notation. Let α ∈ Nn. We denote by P (α) the following projective repre-
sentation: P (α) =

∐
v∈Q0

P (v)αv . Notice that P (dimS(v)) = P (v).

3.6. Canonical projective presentations. Recall, the canonical projective pre-
sentation of a representation M , with dimM = α is:

0→ P1
cM−−→ P0 →M → 0

where P0 = P (α) =
∐

v P (v)αv and P1 =
∐

u→v P (v)αu . The mapping cM : P1 →
P0 sends P (v)αu to P (u)αu by the negative inclusion map; so, the generator of each
P (v) maps to -(the image in P (u)v of the generator of the corresponding P (u))
and cM sends P (v)αu to P (v)αv by the mapping Ma : Mu → Mv induced by the
arrow a : u→ v.

Remark 3.6.1. The representation P1 can also be described as:
P1 =

∐
v P (v)(

P

u→v αu) = P (α− Etα), and cM ∈ HomQ(P (α), P (α− Etα)).
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3.7. Classical results on semi-invariants of quivers.

We recall now the notion of semi-invariants of a group acting on a variety and
state the classical results about semi-invariants on the representation spaces of
quivers by Kac, Schofield and Derksen-Weyman.

3.8. Definition of semi-invariants. For an algebraic group G acting on a variety
X , an element f of the coordinate ring ofX is called a semi-invariant, if there exists
a character χ of G such that for all g ∈ G and all v ∈ X :

f(g · v) = χ(g)f(v).

3.9. Semi-invariants of quivers, α ∈ Nn. The group G(α) acts on the represen-
tation space R(α) (see 3.2). Since the group G(α) is the product of general linear
groups, the character χ(g) is the product (det(g1))

σ1 . . . (det(gn))σn . The integral
vector σ = (σ1, . . . , σn) ∈ Zn is called the weight of the semi-invariant. Note that
if gi ∈ GL0(k) then σi is indeterminate.

3.10. Fundamental theorems for semi-invariants of quivers. The First fun-
damental theorem (FFT) states that all semi-invariants of quivers are generated by
determinants, the Saturation theorem describes all nonnegative vectors with semi-
invariants of a given weight and the third theorem describes Generic decomposition
of any non-negative integral vector α ∈ Nn.

Theorem 3.10.1 (FFT,[S, DW1]). Let Q be a quiver and α ∈ Nn. Then the ring
of semi-invariants on R(α) is generated by {det(cM , N)}, where

(cM , N) : HomQ(P0, N)→ HomQ(P1, N)

are induced by the canonical presentation of M ∈ R(α), and representations N
satisfy 〈α, dimN〉 = αtEdimN = 0. Furthermore, the weight of the semi-invariant
det(cM , N) is EdimN .

Remark 3.10.2. The condition 〈α, dimN〉 = αtEdimN = 0 is equivalent to say-
ing that the matrix of (cM , N) is square.

Definition 3.10.3. Let σ ∈ Zn. The support of σ is defined as

supp(σ) := {α ∈ Nn | R(α) has a semi-invariant of weight σ}.

Theorem 3.10.4 (Saturation,[DW]). Let β ∈ Nn. Then:

supp(Eβ) = Nn ∩D(β),with

D(β) = {α ∈ Rn|〈α, β〉 = 0} ∩ (∩β′ →֒β{α ∈ Rn|〈α, β′〉 ≤ 0}), where β′ →֒ β

means that the general representation of dimension β has a subrepresentation of

dimension β′.

Before stating the generic decomposition theorem, recall the following definition:
for α, β ∈ Nn,

ext(α, β) := min{dimk Ext(A,B)|dimA = α, dimB = β}
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(k is algebraically closed). Since dim Ext is upper semicontinuous this minimum
is attained for generic modules of these dimensions. So, this definition agrees with
the usual definition, i.e. ext(α, β) = dimkExtQ(A,B), where A,B are generic
representations with dimA = α and dimB = β.

Theorem 3.10.5 (Generic decomposition,[K]). Any α ∈ Nn has a unique decom-
position of the form α = Σαi where ext(αi, αj) = 0 for all i 6= j and each αi is a
Schur root. Furthermore, general representation M with dimM = α decomposes as
M ∼=

∐
Mi with dimMi = αi where Mi are indecomposable representations which

do not extend each other.

3.11. Virtual representation spaces and Virtual semi-invariants.

In this section we deal with integral vectors (not necessarily non-negative), de-
fine non-canonical generalized representation spaces and the virtual representation
space as the direct limit of those. Similarly, we define semi-invariants on the gener-
alized representation spaces and virtual semi-invariant as the induced map on the
virtual representation space.

3.12. Projective decomposition of integral vectors. Let α ∈ Zn and let
Etα = γ

0
− γ

1
with γ

i
∈ Nn. We refer to (γ

0
, γ

1
) as a projective decomposi-

tion of α. Note that there is a unique minimal projective decomposition where
γ

0
, γ

1
have disjoint supports.

3.13. Generalized representation spaces for integral vectors. Let α ∈ Zn.
For each projective decomposition (γ

0
, γ

1
) of α, a non-canonical generalized repre-

sentation space is defined as

R(γ
0
,γ

1
)(α) := HomQ(P (γ

1
), P (γ

0
)).

3.14. Stabilization maps. Given any γ
0
, γ

1
,∈Nn we have the stabilization map:

HomQ(P (γ
1
), P (γ

0
))→ HomQ(P (γ

1
)
∐
P (), P (γ

0
)
∐
P ()), which sends ψ to

ψ
∐

1P (γ).

3.15. Virtual representation spaces for integral vectors. Let α ∈ Zn. Then

all representation spaces R(γ
0
,γ

1
)(α) form a directed system with the above stabi-

lization maps. We define the virtual representation space as the direct limit:

Rvir(α) = lim
→
R(γ

0
,γ

1
)(α).

3.16. Semi-invariants on Generalized representation spaces. The space

R(γ
0
,γ

1
)(α) = HomQ(P (γ

1
), P (γ

0
)) is an affine space with the natural action of

the group Aut(P (γ
0
)) × (Aut(P (γ

1
)))op which is given by (g0, g1)ψ := g0ψg1 for

each ψ ∈ HomQ(P (γ
1
), P (γ

0
)). (We point out that this is a different action then

in 3.2).

Since R(γ
0
,γ

1
)(α) is an affine space its coordinate ring is a polynomial ring, hence

polynomial semi-invariants are defined as in 3.8.
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3.17. Virtual semi-invariants. A virtual semi-invariant on Rvir(α) is a function

fvir induced by a family of semi-invariants f (γ
0
,γ

1
) on the representation spaces

R(γ
0
,γ

1
)(α), which are compatible with stabilization maps (3.14).

3.18. Characters . Notice that for P (γ) =
∐

v P (v)γv , each element of
Aut(P (γ)) can be written as an n × n upper triangular matrix g = (guv) with

guv ∈ HomQ(P (v)γv , P (u)γu) and diagonal entries gvv ∈ Aut(P (v)γv) ∼= GLγv(k).
The reason is that the vertices are partially ordered by u < v if there is a directed
path from u to v and this partial ordering is extended to a total ordering to write
the matrix.

Remark 3.18.1. Given a projective representation P (γ) then any rational char-
acter of the group Aut(P (γ)) is of the form: χσ(g) =

∏
v∈Q0

det(gvv)σv , with the
vector σ ∈ Zn; and σ ∈ Nn for polynomial characters. As before, σv is indetermi-
nate if γ

v
= 0.

Remark 3.18.2. (a) A polynomial SI on R(γ
0
,γ

1
)(α) = HomQ(P (γ

1
), P (γ

0
)) is a

polynomial function f so that: f((g0, g1)ψ) = χ(g0, g1)f(ψ) for some character χ,
all ψ ∈ HomQ(P (γ

1
), P (γ

0
)) and all (g0, g1) ∈ Aut(P (γ

0
))× (Aut(P (γ

1
)))op.

(b) Furthermore χ(g0, g1) = χ0(g0)χ
1(g1) , with χ0 and χ1 characters of

Aut(P (γ
0
)) and (Aut(P (γ

1
)))op respectively, and therefore of the form χ0

σ0 and

χ1
σ1 for σ0, σ1 ∈ Nn.

3.19. Weights of semi-invariants. If γ
0
, γ

1
are sincere (nonzero at every vertex)

then σ0 = σ1 above, call it σ. The well-defined σ ∈ Nn is called the weight of

the SI f . Since the collection of R(γ
0
,γ

1
) for sincere pairs γ

0
, γ

1
is cofinal in the

directed system, the weights are well defined for virtual SI and have non-negative
coordinates.

3.20. A construction of semi-invariants for α ∈ Zn. We show that the deter-
minants also give generalized SI and induce virtual SI.

Proposition 3.20.1. Let Etα = γ
0
− γ

1
be a projective decomposition of α ∈ Zn.

Let N be a representation with 〈α, dimN〉 = 0. Then:

(1) The function f
(γ

0
,γ

1
)

N := det(Hom( , N)) is a polynomial SI on the gener-

alized representation space R(γ
0
,γ

1
)(α),

(2) Weight(f
(γ

0
,γ

1
)

N )= dimN .

(3) Furthermore, f
(γ

0
,γ

1
)

N is compatible with stabilizations.
(4) The induced semi-invariant fvir

N on the virtual representation space Rvir(α)
has also weight equal to dimN .

Definition 3.20.2. The support of fN is defined to be the set of all α ∈ Zn so that

fN 6= 0 on R(γ
0
,γ

1
)(α) for some projective decomposition Etα = γ

0
− γ

1

Theorem 3.20.3. (Virtual Saturation Theorem) The support of fN is equal to

Zn ∩D(β)
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if N is the general representation of dimension β.

Theorem 3.20.4. (Virtual Generic Decomposition) Any α ∈ Zn has a unique
decomposition of the form

α =
∑

β
i

where

(1) ext(β
i
, β

j
) = 0 for all i 6= j,

(2) Each β
i
is either a Schur root in degree ) or negative indecomposable pro-

jective in degree 1.

3.21. The finite case - Dynkin diagrams.

We show that the simplicial complex of the clusters can be identified with the
domains of the generalized semi-invariants, which will also be identified with the
Igusa-Orr pictures for the sets of simple roots [IO].

3.21.1. Simplicial complex of exceptional (or partial tilting) objects. The
simplicial complex of the Dynkin diagram is defined to be the simplicial complex
T (Q), with vertex set

Φ+ ∪ {negative projective roots},

and faces are the spans of subsets of vertices, corresponding to the exceptional
objets in the cluster category.

Theorem 3.21.1. (Simplicial complex and domains of semi-invariants theorem)
[IOTW]. Let Q be a Dynkin diagram of type A,D,E. Then:

(1) The simplicial complex of the exceptional objects is homeomorphic to the
n− 1 sphere.

(2) The image of the n− 2 skeleton of T (Q) in Sn−1 is the union:

⋃

β∈Φ+

D(β) ∩ Sn−1.

3.21.2. Illustration on the example of A3. The image of the 1 skeleton of T (A3)
in S2 is the union:

⋃

β∈Φ+

D(β) ∩ S2.
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D(s1) D(s1 + s2) D(s2)

D(s3)

D(s2 + s3)

D(s1 + s2 + s3)

• • − (1, 0, 0)−(1, 1, 0)

−(1, 1, 1)

(1, 1, 1)

•
(0, 0, 1)

•
(0, 1, 1)

•
(1, 0, 0)

•
(1, 1, 0)

•
(0, 1, 0)

•

•

• The quiver is 1← 2← 3 with Euler matrix

E =




1 0 0
−1 1 0
0 −1 1





• Circles and semicircles, labeled by D(β), denote the domains of semiinvari-
ants (with weight β).
• Vertices are labeled by the positive roots Φ+ and negative projective roots.
• Positive roots can also be viewed as dimension vectors of indecomposable

representations by Gabriel’s theorem, e.g. (1, 1, 0) = dim(P2).
• For example: Rep((1, 1, 0)) has semi-invariants of weights s1 = (1, 0, 0) and
s3 = (0, 0, 1).
• For example: Rep((1, 1, 0)), Rep((1, 1, 1)), Rep((0, 0, 1)) ,Rep(−(1, 1, 0)),
Rep(−(1, 1, 1)) all have semi-invariants of weights s1 = (1, 0, 0) since Es1 =
(1,−1, 0) making αTEs1 = 0 iff α1 = α2.
• The semiinvariant σs1 on a representation

V : V1
f12
←−− V2

f23
←−− V3

is σs1(V ) = det f12. This is only well-defined if coordinates φi : Vi
≈
−→ αik

are chosen. If these are changed by gi ∈ GL(αi, k) then det f12 becomes

det(g1f12g
−1
2 = (det g1)(det g2)

−1 det f12

So, this semiinvariant has weight (1,−1, 0) = Es1.
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• In the case β = s1 + s2 = (1, 1, 0) we have s1 →֒ s1 + s2. So, D(s1 + s2)
does not contain points α where αTEs1 > 0. So, D(s1 + s2) contains no
points inside the D(s1) circle.
• Furthermore, any integral vector belongs to one of the simplices, and the

generic decomposition is given in terms of the vertices of that simplex.

4. Homology of Nilpotent, Torsion-free Groups

4.1. Homology of groups and Lie algebras.

4.1.1. Homology of a group. The homology of a group G is defined by

Hk(G; Z) := TorZG
k (Z,Z)

More explicitly, we need to choose a free ZG resolution C∗(G) of Z. Then H∗(G; Z)
is the homology of the complex C∗(G) ⊗ZG Z. One standard complex is given by
the bar resolution where Ck(G) is the free ZG module generated by Gk and the
boundary map d : Ck(G)→ Ck−1(G) is given by

d(g1, · · · , gk) = g1(g2, · · · , gk) +
X

(−1)i(g1, · · · , gigi−1, · · · , gk) + (−1)k(g1, · · · , gk−1)

This chain complex is infinitely generated. In the case when G is torsion-free,
nilpotent, there is a smaller chain complex in which Ck(G) is generated by the set
of all k′-element subsets of the nilpotent basis B of G, see 4.2.7. There are various
descriptions of this complex ([CP1], [IO]). One of the objectives of this work is
to give a new canonical description of this smaller complex using root systems
and semi-invariants in the case when G is a monomial group (including groups of
Dynkin type).

4.1.2. Homology of a group - topological definition. We recall, but will not
use that the homology of the group G is defined topologically by Hk(G; Z) =
Hk(BG; Z) where BG is the classifying space of the discrete group G, also known
as the Eilenberg-MacLane space BG = K(G, 1).

4.1.3. Rational homology of a group. The rational homology of a group G is
H∗(G; Q) = H∗(G; Z)⊗Q.

4.1.4. Homology of a Lie algebra. The homology of a Lie algebra L, H∗(L), is
defined to be the homology of its Koszul complex C∗(L) given by Ck(L) := ΛkL
with boundary d : Ck(L)→ Ck−1(L) given by

d(x1 ∧ · · · ∧ xk) =
∑

i<j

(−1)i+j [xi, xj ] ∧ x1 ∧ · · · ∧ x̂i ∧ · · · ∧ x̂j ∧ · · · ∧ xk

4.1.5. Rational homology of a Lie algebra. The rational homology of a Lie
algebra L is H∗(L; Q) = H∗(L)⊗Q ∼= H∗(L ⊗Q).

4.1.6. Lie algebra L associated to a group G. To every group G there is an
associated graded Lie algebra L(G) =

⊕
Li(G) given by Li(G) = Gi/Gi+1 with

Lie bracket
[ , ] : Li(G)⊗ Lj(G)→ Li+j(G)

given by the commutator: [gGi+1, hGj+1] := [g, h]Gi+j+1.
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4.2. Torsion-free Nilpotent groups.

4.2.1. Definition of Torsion-free, Nilpotent groups. Let G be a group and
G = G0 ⊃ G1 ⊃ · · · ⊃ Gi ⊃ Gi+1 ⊃ . . . the chain of subgroups defined as Gi+1 =
[G,Gi], where [ , ] denotes the group commutator operation, i.e. [g, h] = ghg−1h−1

for all g, h ∈ G. The group G is said to be:

• Torsion free if Gi/Gi+1 is finitely generated free abelian group for all i.
• Nilpotent if there exists an s such that Gs = 0.

4.2.2. Theorem of Nomizu.

Theorem 4.2.1 (Nomizu). [N54] The rational homology of a torsion-free nilpotent
group G is isomorphic to the homology of the Lie algebra L(G)⊗ Q.

4.2.3. Remark. Nomizu [N54] gave the first example of a nilpotent torsion free
group whose integral homology is not isomorphic to that of the associated Lie
algebra. Dwyer [D] points out that the upper triangular matrix group (the nilpotent
group associated to the Dynkin diagram An) has p-torsion in its homology for all
p < n. The rational homology is given by the following theorem of Bott and
Kostant.

Theorem 4.2.2. [Bo][Ko] The rank of the k-th homology of the nilpotent subalgebra
of a semisimple Lie algebra spanned by the positive roots is equal to the number of
elements of the Weyl group of weight k.

For example, the rank of Hk(G(An)Q) is equal to the number of elements σ
of the symmetric group on n + 1 letters for which there are k pairs i < j with
σ(i) > σ(j).

4.2.4. Koszul complex. The Koszul complex gives both the integral and rational
homology for any Lie algebra L and in particular for the Lie algebra L(G) and
therefore, by Nomizu’s theorem, it gives the rational homology of G as well.

4.2.5. Cenkl and Porter. In [CP1] they give an algorithm for constructing the
integral cochain complex for the integral cohomology of G. (The integral cohomol-
ogy determines the integral homology.) In [CP1] they construct a nilpotent torsion
free group with a prescribed Lie algebra (the reverse of the usual construction).

4.2.6. A motivation from topology. Kent Orr proved that all Milnor µ̄-invariants
of links are represented by elements of H3 of the fundamental group of the com-
plement of the link. Igusa and Orr proved that H3 has no torsion for nilpotent
torsion free groups, using a particular complex in which boundaries are given by
“pictures”.

4.2.7. Remark. Each nilpotent torsion free group has a finite basis B = {b1, . . . , bm}
which can be obtained as the union of preimages of the bases of the free abelian
groups Gi/Gi+1 for 0 ≤ i ≤ s. These elements form a basis in the sense that every

element in the group can be expressed uniquely in the form bk1
1 b

k2
2 · · · b

km
m where

k1, · · · , km are integers.
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• Let {s1, . . . , sn} be preimages of a set of basis elements of G0/G1.
• Then {s1, . . . , sn} is a minimal set of generators for the group G, call these

elements simple generators.
• The number n does not depend on the choice of the basis.

4.2.8. Igusa-Orr complex and “pictures”. This is a particular Z[G] resolu-
tion of Z, which we will not describe precisely, but the following are some of the
important facts about it:

• Ck(G) is freely generated by the sets of k-element subsets of the basis B.
• The boundary d : Ck(G)→ Ck−1(G) is recursively defined for each subset

of B.
• Boundary is Koszul boundary plus additional terms.
• Boundary for each subset of B corresponds to a “picture”, i.e. a cell decom-

position of sphere, satisfying certain necessary and sufficient conditions.
• Left and right commutators in the group give the most efficient “collecting

process”.
• Different forms of commutators. The standard form of commutator is the

left commutator aba−1b−1, the original Igusa-Orr pictures use the right
commutator a−1b−1ab, and for the Cluster-Semiinvarian pictures it is more
convenient to use the middle commutator b−1aba−1.

4.3. Monomial groups.

4.3.1. Definition of Monomial groups. These are special torsion free mono-
mial groups, for which Igusa-Orr pictures are related to the Cluster-Semi-invariant
pictures. A group G is called monomial if it is:

(1) Torsion free,
(2) Nilpotent and
(3) There exists a basis B = {b1, . . . , bm} satisfying:

a: [bi, bj] ⊂ B ∪ B
−1 ∪ [1]

b: For any three elements at least two commute
c: For any bi, bj ∈ B, [bi, bj ] commutes with both bi and bj

4.3.2. Maximal monomial groups. These will be monomial groups which are
maximal in the following sense (but we need to point out a few facts):

• The number of elements in {s1 . . . , sn} is an invariant of the group G.
• Monomial groups with n simple generators, for a fixed n, are partially

ordered by epimorphisms of groups, which send simple generators to simple
generators (or their inverse).
• Maximal elements with respect to this partial order are called Maximal

monomial groups.

4.3.3. Dynkin diagrams and Maximal monomial groups. To each simply
laced Dynkin diagram Q with the set of positive roots Φ+, we associate a group G
defined by:

• Generators: {Θ(α)|α ∈ Φ+} and
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• Relations: {[Θ(α),Θ(β)] = Θ(α + β)ǫ(α,β) where ǫ(α, β) = (−1)E(α,β) if
α+ β ∈ Φ+ and 0 otherwise}. Here E(α, β) denotes the Euler form.

We have the following facts, questions (and work in progress):

• Simply laced Dynkin diagrams define maximal monomial groups.
• Are all maximal monomial groups given by simply laced Dynkin diagrams

(A,D,E) as above?
• Description of the groups (with appropriate modifications of the condition

(3)), which will correspond to the other Dynkin diagrams (B,C,F,G).

4.4. Pictures.

4.4.1. An A3 example of Igusa-Orr picture.

• Circles and semicircles are labeled by positive roots α ∈ Φ+ for the Dynkin
diagram A3. Any positive root α is expressed as a sum of simple roots
{s1, s2, s3}
• For the middle-commutator I-O picture the same labels are used for the

elements of the associated nilpotent group G, i.e. any positive root α
actually stands for Θ(α), see 4.3.3.
• A free ZG resolution of Z is given by Ck = free module generated by subsets

of Φ+ with k elements, and with boundary given by the pictures.
• The following picture describes the boundary d(s1, s2, s3) as:
• d(s1, s2, s3) = −(s1, s2) + (s1, s3) − (s2, s3) − Θ(s2)Θ(s1 + s2)(s1, s2) +

Θ(s1)(s2, s3) + Θ(s3)(s1, s2 + s3) − Θ(s3)Θ(s2 + s3)(s2, s1 + s2 + s3) +
Θ(s2)(s1 + s2, s1 + s2 + s3) + Θ(s3)Θ(s2 + s3)Θ(s1 + s2 + s3)(s1, s2)
• Each term in the sum corresponds to a vertex, and is obtained by “reading”

the picture.

• Circles and semicircles are labeled by positive roots Φ+ for the Dynkin
diagram A3. Labeling agrees with the same labeling of the same picture
by the domains of semiinvariants.

4.4.2. I-O vs C-SI pictures. The original, right commutator Igusa-Orr and Cluster-
Semiinvariant pictures are given below for the example of Dynkin diagram A3.

• I-O picture has 12 tri-angles, 1 quadr-angle, 1 bi-angle
• C-SI picture is a simplicial complex, triangulation of a shpere with 14 tri-

angles.

4.4.3. Some facts.

• Igusa-Orr pictures are Koszul boundary plus higher terms.
• Cluster-Semiinvariant pictures are modified Koszul boundary plus higher

terms.
• Cluster-Semiinvariant pictures are more natural - simplicial complex.
• Plan to re-do Igusa-Orr algorithm to construct all Cluster-Semiinvariant

pictures.
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• Cluster-Semiinvariant pictures give the middle commutator Igusa-Orr pic-
tures for the particular subset consisting of the simple generators {s1, . . . , sn}
of the group G, which actually correspond to the set of simple roots in Φ+.
• We believe that Cluster-Semiinvariant pictures can be used to construct,

in a functorial way, all middle-commutator I-O pictures (for all subsets of
Φ+.
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