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POISSON-LIE T-DUALITY AND INTEGRABLE SYSTEMS

H. MONTANI

ABSTRACT. We describe a hamiltonian approach to Poisson-Lie T-duality
based on the geometry of the underlying phases spaces of the dual sigma
and WZW models. Duality is fully characterized by the existence of a hamil-
tonian action of a Drinfeld double Lie group on the cotangent bundle of its
factors and the associated equivariant momentum maps. The duality trans-
formations are explicitly constructed in terms of these actions. It is shown
that compatible integrable dynamics arise in a general collective form.

Classical Poisson-Lie T-duality [1, 2, 3, 4] is a kind of canonical transformation
relating (1 4+ 1)-dimensional o-models with targets on the factors of a perfect Drin-
feld double group [5], [6]. Each one describes the motion of a string on a Poisson-Lie
groups, and they become linked by the self dual character of the Drinfeld double.
Former studies relies on the lagrangian formulation where the lagrangians of the
T-dual models are written in terms of the underlying bialgebra structure of the Lie
groups. On the other hand, the hamiltonian approach allows to characterize T-
duality transformation when restricted to dualizable subspaces of the sigma models
phase-spaces, mapping solutions reciprocally. As (1 + 1)-dimensional field theory
describing closed string models, a sigma model has as phase space the cotangent
bundle T* LG of a loop group LG. A hamiltonian description [13] reveals that there
exists Poisson maps from the T-dual phase-spaces to the centrally extended loop
algebra of the Drinfeld double, and this holds for any hamiltonian dynamics on
this loop algebra lifted to the T-dual phase-spaces. There is a third model involved
[1, 2, 3, 4] [14]: a WZW-type model with target on the Drinfeld double group D,
and T-duality works by lifting solutions of a o-model to the WZW model on D
and then projecting it onto the dual one. It was also noted that PL T-duality
just works on some subspaces satisfying some dualizable conditions expressed as
monodromy constraints.

These notes are aimed to review the hamiltonian description of classical PL T-
duality based on the symplectic geometry of the involved phase spaces as introduced
in [11],[12], remarking the connection with integrable systems. There, PL T-duality
is encoded in a diagram as this one

(Lot {, brk)
v é] & (1)
(T*LG;w,) (QD;wap) (T*LG™; @&,)
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where the left and right vertices are the o-models phase spaces, equipped with
the canonical Poisson (symplectic) structures, Lo} is the dual of the centrally
extended Lie algebra of LD with the Kirillov-Kostant Poisson structure, and QD
is the symplectic manifold of based loops. The arrows labeled by P, w and i are
provided by momentum maps associated to hamiltonian actions of the centrally
extended loop group LD” on the W ZW and o models phase spaces, respectively.
These actions split the tangent bundles of the pre-images under p and i of the pure
central extension orbit, and the dualizable subspaces are identified as the orbits of
QD which turn to be the symplectic foliation.

In the present work, we describe T-duality scheme on a generic Drinfeld double
Lie group H = N x N* in a rather formal fashion, showing that the action dNxn”
He x (N x n*) — (N x n*) (4), of the central extension He of H on the cotangent
bundles T*N and T*N*, besides the reduction procedure, allows to characterize
all its essential features making clear the connection with the master WZW-type
model.

This notes are organized as follows: in Section I, we review the main features of
the symplectic geometry of the W ZW model; in Section II, we describe the phase
spaces of the sigma model with dual targets and introduced a symmetry relevant
for PL T-duality; in Section III, the contents of the diagram (1) are developed,
presenting the geometric description of the PLT-duality. The dynamic is addressed
in Section IV, describing hamiltonian compatible with the above scheme and linking
with integrable systems.

1. WZW LIKE MODELS ON O, (0,1)

W ZW models are infinite dimensional systems whose phase space is the cotan-
gent bundle of a loop group, endowed with the symplectic form obtained by adding
a 2-cocycle to the canonical one [17],[15]. We review in this section the main
features of its hamiltonian structure working on a generic Lie group.

Let H be a Lie group and consider the phase space T*H = H x h*, trivialized by
left translations, with the symplectic form wr = w, + I'g where w, is the canonical
symplectic form and

Fr(l)=c (dllil@dllfl)

wr is just invariant under right translation o1*%" (1, ) = (Im~1, Adr 1 \), m € H.
It has associated the non Ad-equivariant momentum map J% : H x h* — h*.
Introducing the central extension He by the Ad*-cocycle C' : H — §*, satisfying
C (lk) = Ad™ C (k) + C (1), then é = — dC|, : h — b* produces the 2-cocycle
c:heh — R, ¢(X,Y) = (¢(X),Y). Let h. be the central extension of the Lie
algebra h by the 2-cocycle ¢ and b} its dual. The coadjoint actions of Ho on b is

—Hx
Ad;-1 (€,b0) = (Adj_.£+bC (1) ,b).
In this way, we define the extended momentum map jCR H x p* — b,
JE (L) = (n = AdFC (1), 1)

—~H ~ * —~Hsx 4
which is now Ad -equivariant, J& (0" (1,€)) — Ad,,-JF (1,€) = (0,0).
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Applying the Marsden-Weinstein reduction procedure [19] to the regular value
(0,1) € b of Im JE. Hence, the level set

78] 0.1 = (0. Ao W) /1€ My CH

turns into a presymplectic submanifold when equipped with the 2-form obtained
by restricting the symplectic form wr

@) = wrlyr o) = €° (Li-1)? o T2

and its null distribution is spanned by the infinitesimal generators of the action
of the subgroup Hg ), the stabilizer of (0,1) € b, that coincides with ker C.
Therefore, the reduced symplectic space is

-1
TR
yonr _ F] O )
‘ Ho1) Ho,1)

with symplectic form wg defined by
WE/H((’J)WR = (:}
in the fiber bundle
0D B H ).

wp is still invariant under the residual left action H x H/H,1) — H/Hg 1),
(h,l-H(o,l)) — Wl - Hp,1)- The associated equivariant momentum map (i>c :
/H(o,l) — beis

D, (I-Hp,1)) = (C(1),1)

d, is a local symplectic diffeomorphism with the coadjoint orbit O, (0,1) C b

equipped with the Kirillov-Kostant symplectic structure w%. so we get the com-

mutative diagram

Méo’l) - H/H1)

JER 3
: < g

0.(0,1)

When H is loop group, H/H(0,1) is the group of based loops, and it can be
regarded as the reduced space of a WZNW model as explained in [15].
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2. DOUBLE LIE GROUPS AND SIGMA MODELS PHASE SPACES

From now on, H is the Drinfeld double of the Poisson Lie group N [5, 6], H =
N »x N* with tangent Lie bialgebra h = n @ n*. This bialgebra h is naturally
equipped with the non degenerate symmetric Ad-invariant bilinear form provided
by the contraction between n and n*, and which turns them into isotropic subspaces.
This bilinear form allows for the identification 1 : n — n*.

We shall construct a couple of dual phase spaces on the factors N and N*. T-
duality take place on centrally extended coadjoint orbit and, as a matter of fact,
we consider the trivial orbit O.(0,1) as it was considered in ref. [11] in relation to
Poisson-Lie T-duality for loop groups and trivial monodromies.

Our approach to PL T-duality is based on the existence of some hamiltonian
H-actions on phase spaces T*N and T*N* so that the arrows in the diagram (1) are
provided by the corresponding equivariant momentum maps. The key ingredients
here are the reciprocal actions between the factors N and N* called dressing actions
[18],[6]. Writing every element | € Has [ = gh, with g € N and h € N*, the product
ng in H can be expressed as ﬁg = ghl~19, with ¢" € N and h9 € N*. The dressing
action of N* on N is then defined as

Dr:N*xN—N / Dr(ﬁ,g):HN(ﬁg):gh

where IIy : H — N is the projector. For £ € n*, the infinitesimal generator of this
action at g € N is

d
£ — dr(&)g = — %Dr (etﬁ,g)

t=0
such that, for n € n*, we have dr(ﬁ)g,dr(n)g} = dr([{,n],.),. It satisfies the
relation Adg,lﬁ = —g~'dr (§),+ Ady¢, where AdgH,1 € Aut (b) is the adjoint action
of H on its Lie algebra. Then, using the II,, : h — n, we can write dr(f)g =
—g HnAd_I;_lf.

Let us now consider the action of H on itself by left translations L _;gh = abgh.

Its projection on the one of the factors, N for instance, yields also an action of H
on that factor

IIn (La,;giz> =TIy (al;gﬁ) = agg
The projection on the factor N* is obtained by the reversed factorization of H,
namely N* x N, such that

IIn- (Ll;aﬁg> = IlIn= (Eaﬁg) = l~)i~za

Both these actions, lifted to the corresponding cotangent bundles 7*N and T*N*,
and then centrally extended, will furnish the arrows we are looking for.

2.0.1. The (T*N,w,) phase space and dualizable subspaces. We now consider a
phase space T*N = N x n*, trivialized by left translations and equipped with
the canonical symplectic form w,. We shall realize the symmetry described above,
as it was introduced in [11].
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For duality purposes, we consider the adjoint N-cocycle N : N* — n* as
the restriction to the factor N of an H-coadjoint cocycle on CH : H — h*. The
restrictions properties

CH:N-—n
CH :N* — n*
make C™ compatible with the factor decomposition.
Thus, we promote this symmetry to a centrally extended one on T*N by means
of an n*-valued cocycle N : N* — n*,
d¥* L He x (N x n*) — (N x n*) A
gNxn” (aé, (g,)\)) = (agb,Adg])\—l—CN* (l;g>) (4)
For duality purposes, we consider the adjoint N-cocycle CN™ : N* — n* as the

restriction to the factor N of an H-coadjoint cocycle on C? : H — h*. The
restrictions properties

CH:N—n
CH o N* — (5)
make C™ compatible with the factor decomposition. One of the key ingredients for
describing the resulting duality is that the above H-action is hamiltonian.

Proposition: Let T*N be identified with N x n* by left translations and
endowed with the canonical symplectic structure. The action dN*"", de-
fined in eq.(4), is hamiltonian and the momentum map p: (N X n*,w,) —

(b2, }e)
w0 = Ay (), 1) = (6 (A + N (9)) 1) .

is AdP-equivariant.

T-duality works on some subspaces of the phase space T*N. As shown in [11],
these dualizable subspaces can be identified as some symplectic submanifolds in the
pre-images of the coadjoint orbit in O, (0,1) C b% by o, namely g (O, (0,1))
characterized as

10, (0,1)) = {(g,c (b)) eENxn*/geN, be N*}
that coincides with the Heo-orbit through (e, 0) in N x n*
Onxen- (€,0) = {aan* (gz?, (e,())) eENxn*/geN, be N*}
since dNx" (gé, (e,())) = (g,C’ (5)) Tangent vectors to u~! (0. (0,1)) at the

point (g, &) are
AN
X1 (0001 | (ge) = 42" (X)

for X € B, and then we have the following statement.

(9:6)
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Proposition: ;=1 (0. (0,1)) is a presymplectic submanifold with the closed
2-form given by the restriction of the canonical form w,,

ANxn* ANxn* _ 7 —b
<wo,d* (X) @ d (Y)>(g7£) - <(c (ab) ,1) ,adXY>h (6)
for X,Y € hand (g,€) = dV*° (aé, (6,0)) € uH(0.(0,1)). Its null
distribution is spanned by the infinitesimal generators of the right action
by the stabilizer Ho 1) := ker C' of the point (0, 1)
r. H(O,l) X M_l (Oc (Oa 1)) - :u_l (Oc (Oa 1))
(1o, @ (ab, (e,0)) ) = & (ably ", (e,0))
and the null vectors at the point dN**" (ai), (6,0)) € 1ot (0(0,1)) are
ANxn* H
(g6 Z0 = —d7" (AdgZo) o)
for all Z, € Lie (ker C') C b.

We may think of u=! (0. (0,1)) as a principal bundle on O, (0,1) where the
fibers are the orbits of Ho 1) by the action r. Assuming that H ) = ker C is
a normal subgroup, as it happens in the case of H = LD, the loop group of the
double Lie group D [11], a flat connection is defined by the action of the group
H/Ho,1) and each flat section is a symplectic submanifold. These are the dualizable
subspaces.

2.0.2. The dual factor (T*N*,&,) factor phase space. Let us consider H with the
opposite factorization, denoted as H — HT = N* N, so that every element is
now written as hg with o € N* and g € N. This factorization relates with the

~ ~ ot -1 _— —1
former one by b, = ((b_l) ) and a; = ((a‘l)b ) . The dressing action

Dr: N x N* — N* is Dr (g7 B) = izg and, by composing it with the right action

of N* on itself, we get the action bN" : N x N* — N* defined as bN (I;a, iL) = bhy,

with @ € N and h, b € N*.
As the dual partner for the phase spaces on N x n* we consider the symplectic
manifold (N* x n,&,) where @, is the canonical 2-form in body coordinates.

Proposition: Let us consider the symplectic manifold (N* x n,&,). The map
b:H. x (N* xn) — (N x n*) defined as

b (Ea, (B,X)) _ (Eha, A X v C (ah)) (7)

—~H_.*
s a hamiltonian H-action and [ig is the associated Ad ~ -equivariant the
momentum map

i (h7) = Adi Sy ((2),1) = (v (adiz+c(k)).1)
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In terms of the orbit map 6(610) : H — N* x n associated to the action B,

B(e,o) (aB) =b (Ea, (e, O)) = (5, C (a))
providing the identification
i1 (0, (0,1)) = Im by, o)

Analogously, we may think of i=! (O, (0,1)) as a fiber bundle on O, (0,1) and
define a flat connection by the action of H/H ;) thus obtaining the corresponding
dualizable subspaces as flat (global) sections.

3. THE SCHEME FOR 1T DUALITY

Let us name the dualizable subspaces in Nxn* as S (g,), (o, 0) in =1 (O, (0,1))
the point the orbit pass through, then S (g,) becomes a symplectic submanifold
when equipped with the restriction of the presymplectic form (6). On the other
side, each dualizable subspace coincides with an orbits of H/H( ). Regarding
H/H(o,1) as the reduced space of the WZNW system (Mc(o’l),wR) (2), we may
easily see that the orbit map H/Hy 1) — S(go) is a symplectic morphism, giving

rises to a factorization of ® through S(g,) C T*N,

0.(0,1)

H/Ho,1)
with arrows being symplectic maps.

An analogous analysis can beNpgrformed for the mirror image on T*N* obtaining
the factorization of ® through S(h,) C T*N*,

0.(0,1)

H/H,1)

Joining together diagrams (8) and its mirror image, we obtain a commutative
four vertex diagram relating dualizable subspaces in T*N and T*N*, through sym-
plectic maps. Because p and [ are equivariant momentum maps, the intersec-

tion region extends to the whole coadjoint orbit of the point u(g,n7) = i (ﬁ, Z)

in b7, establishing a connection between Hg-orbits in 7*H and T*N*. It can
be seen that this common region coincides with the pure central extension orbit
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0:(0,1) = Imp NIm g and it is a isomorphic image of the WZW reduced space,
so that we may refine diagram (1) to get a connection between the phase spaces of
sigma models on dual targets and WZW model on the associated Drinfeld double

group

(Oc (Oa 1) ;WKK)

(010 (0,1)); wol,-1) @7 (71 (0c (0,1)); @ol;-1)

(H/H(o,1);wr)
Hence, we define Poisson-Lie T-duality by restricting this diagram to the symplec-
tic leaves in =1 (O, (0,1)) and i~* (O, (0,1)). In terms of the dualizable subspaces

S(go) € ' (0.(0,1)) and S (izo) C i1 (0. (0,1)), Poisson-Lie T-duality is the
symplectic map resulting from the composition of arrows

S(ho)

H/Ho1)
defines the T-duality transformation ¥ : S (g,) — S (izo)

Ui (9,A) = (5 (ﬁo)a ,C (%))

where {ai)} € H/H,1) is such that (g,\) = a({al}} ,(go,O)). This are nothing

but the duality transformations given in [1, 2, 3, 4] and other references (see refer-
ences in [11]). Obviously, as a composition of symplectic maps, U is a canonical
transformation and a hamiltonian vector field tangent to S (g,) is mapped onto a

hamiltonian vector field tangent to S (fzo)

4. T- DUAL DYNAMICS AND INTEGRABILITY

The diagram (10) provides the geometric links underlying Poisson Lie T-duality,
and now we work out the compatible dynamics. To this end , we observe that
H/Hg 1) = &' (0. (0,1)) and the symplectic leaves in u=! (O, (0,1)), i~* (O, (0,1))
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are replicas of the coadjoint orbit O, (0,1). The equivariance entails a local iso-
morphism of tangent bundles and since O, (0, 1) is in the vertex linking the three
models, it is clear that T-duality transformation (10) exist at the level of hamil-
tonian vector fields. So, singling out a hamiltonian function on O, (0,1), one gets
the associated vector field in associated T-dual partners on symplectic leaves in
p1(0:(0,1)) and =1 (0. (0,1)) and, whenever they exist, a couple T-dual re-
lated solution curves belonging to some kind of dual sigma models.

In terms of hamiltonian functions, once a suitable function h € C'* (9%) is fixed,
we have the corresponding hamiltonian function on x=! (O) and =1 (O) by pulling
back it through the momentum maps p and g, to get ho i, ho i and h o ®.These
systems on T*N, T*N* T*H* are said to be in collective hamiltonian form [20], and
the scheme of integrability is complemented by applying the Adler-Kostant-Symes
theory, which provides a set of functions in C*° (9}) in involution.

The geometric meaning of collective dynamics can be understood by considering
a generic hamiltonian system (M,w, H), with an Ad-equivariant momentum map
J : M — g* associated to the symplectic action ¢ : G x M — M of a Lie group
G. Then, a collective hamiltonian is a composition

H=holJ

for some function h : g* — R.

In terms of the linear map Ly, : g* — g, namely the Legendre transformation
of h defined as (¢, Ln(n)), = (dh|,,§), for any £ € g*, we have the relation
(em)y [Lno J] (m) = [Ly (J(m))]yl,,, for m € M and where ¢, : G — M is the
orbit map through m € M.

Proposition: The hamiltonian vector field associated to H =ho J is
Vil = (¢m), [Ln o J] (m)
and its image by J is tangent to the coadjoint orbit through J (m)
il Vi = —ady, (5(my)J (m)

That means, the hamiltonian vector fields Vg is mapped into a coadjoint orbits
in g* and, if m(¢t) denotes the trajectory of the hamiltonian system passing by
m(0) = m, m(t) = Vi), the images y(t) = J(m(t)) lies completely on the
coadjoint orbit through J (m) and the equation of motion there is

() = —adz, () V(1)

that can be regarded as a hamiltonian system on the coadjoint orbits on g*, with
hamiltonian function Hg« = h.

Proposition: Let y(t) a curve in g*, and Ly (v(t)) C g. Define the curve
g (t) in G such that

V(t) = Adg1,7(0) (11)
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Then, this curve is a solution of the differential equation on G

99~ (1) = Ln (v(1)) (12)
g(0) =e

Hence, m(t) = ¢ (g(t), m) is the solution to the original hamiltonian system.
Moreover, if g is supplied with an invariant non degenerate bilinear form () :
g X g — g thus providing an isomorphism from g* — g, and denoting ¥(¢) C g
the image of v(t) C g* through the bilinear form, the equation of motion turns into
the Lax form

dy(t) -
7l [Y(t): Ln (v(1))] (13)
showing this systems are integrable.

Coming back to our systems on T*N, T"N* and T*H*, with dynamics given
in collective hamiltonian form, ensures that the corresponding hamiltonian vec-
tor fields are tangent to the He orbits. Further, a hamiltonian vector field at
—~H=x —~Hx*x ~Hx
Ad;—1(0,1) € 0. (0,1) is alike ad,, Ad;—. (0,1), and the solution curves are deter-
mined from the solution of the differential equation on H

(B () = La(y(1)) (14)

Thus, the solutions for the collective hamiltonian vector fields on T*N, Mc(o’l) and
T*N* are

respectively, with [(¢) given by (14) and for (go,7,) € =1 (7(0)), [lo] € ®~1(7(0)),
(Ro. Z0) € i (3(0)).

Also note that, in order to have a non trivial duality, restriction to the common
sector in h where all the momentum maps intersect is required. Hence, in this
case we consider the coadjoint orbit O, (0, 1), focus our attention on the pre images
p (0. (0,1)) and i~ (O.(0,1)). We shall refer to these pre-images as dualizable
or admissible subspaces.

Let us work out an example of hamiltonian function. For the symplectic manifold
(H x h*,w.) and their reduced space Mc(o’l), we consider the quadratic Hamilton
function

1 * * * * * 1 *
He (1) = 5 (Adjm, LyAdiam)y. + (Adian, LaC (). — 5 (C (), LaC (1))
that when restricted to M"", 5 = Ad;fC (1), takes the collective form

He (Lm0 = 5 (C (1), (L +1L3) C (1))

DN =
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POISSON-LIE T-DUALITY AND INTEGRABLE SYSTEMS 81

in terms of the momentum map . (I - H.) = (C ({),1). The Hamilton equations
of motion reduces to

17V = (LY +L5)n) )

77 — ad:;—)((]l‘g*_;rll;)n)n —¢ (w ((}Lé* + LIQ*) 77))

Analogously, let us now consider the hamiltonian space and (Nxn*,w, ,Hc, y1, ho
). For h quadratic as above, the hamiltonian for the sigma model system must be

1
Hs = 5 (vall)h

where we named by £ the symmetric part of (Ly + LL3). The Hamilton equation of
motion yield

g9 =T ((Adl 0 €0 AdlL, ) (AdA+ 9 (C (9)))
For more details on the Hamilton and Lagrange functions for these models, see
[11].
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