
REVISTA DE LA
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ON THE NOTION OF BANDLIMITEDNESS AND ITS

GENERALIZATIONS

AHMED I. ZAYED

Abstract. In this survey article we introduce the Paley-Wiener space of ban-
dlimited functions PWω, and review some of its generalizations. Some of these
generalizations are new and will be presented without proof because the proofs
will be published somewhere else.

Guided by the role that the differentiation operator plays in some of the
characterizations of the Paley-Wiener space, we construct a subspace of vec-
tors PWω(D) in a Hilbert space H using a self-adjoint operator D. We then
show that the space PWω(D) has similar properties to those of the space
PWω.

The paper is concluded with an application to show how to apply the
abstract results to integral transforms associated with singular Sturm-Liouville
problems.

1. Introduction

The term bandlimited functions came from electrical engineering where it means
that the frequency content of a signal f(t) is limited by certain bounds from below
and above. More precisely, if f(t) is a function of time, its Fourier transform

f̂(ω) =
1√
2π

∫ ∞

−∞

f(t)eiωt dt

is called the amplitude spectrum of f. It represents the frequency content of the
signal. The energy of the signal is measured by

E =

∫ ∞

−∞

|f(t)|2dt =

∫ ∞

−∞

|f̂(ω)|2dω = ‖f‖2
.

A signal is said to be bandlimited to [−σ, σ] if f̂ vanishes outside [−σ, σ]. σ is
called the bandwidth. Hence, the space of all finite energy, bandlimited signals is
a subspace of L2(IR) consisting of all functions with Fourier transforms supported
on finite intervals symmetric around the origin. This space, which is known in
harmonic analysis as the Paley-Wiener space, will be denoted by PWσ or B2

σ. P
for Paley, W for Wiener, and B for Bernstein.

In this survey article we shall give an overview of some of the generalizations of
this space, of which some are new and will be presented without proof since the
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proofs will be published somewhere else. For some related work, see [1, 2, 3, 4, 8,
9, 18, 19]

We begin with the following fundamental result by Paley and Wiener on band-
limited functions, which gives a nice characterization of the space PWσ.

Theorem 1 (Paley-Wiener,[13]). A function f is band-limited to [−σ, σ] if and
only if

f(t) =

∫ σ

−σ

e−iωtg(ω) dω (t ∈ IR) ,

for some function g ∈ L2(−σ, σ) and if and only if f is an entire function of
exponential type that is square integrable on the real line, i.e., f is an entire function
such that

|f(z)| ≤ sup
x∈IR

|f(x)| exp(σ |y|), z = x + iy,

and
∫

IR

|f(x)|2 dx < ∞.

Another important property of the space PWσ is given by the Whittaker-
Shannon-Koteln’nikov (WSK) sampling theorem, which can be stated as follows
[22]:

Theorem 2. If f ∈ PWσ, then f can be reconstructed from its samples, f(tk),
where tk = kπ/σ via the formula

f(t) =
∞
∑

k=−∞

f (tk)
sinσ(t − tk)

σ(t − tk)
(t ∈ IR), (1.1)

with the series being absolutely and uniformly convergent on IR.

One of the earliest generalizations of the Paley-Wiener space is the Bernstein
space. Let σ > 0 and 1 ≤ p ≤ ∞. The Bernstein space Bp

σ is a Banach space
consisting of all entire functions f of exponential type with type at most σ that
belong to Lp(IR) when restricted to the real line. It is known [5, p. 98] that f ∈ Bp

σ

if and only if f is an entire function satisfying

‖f(x + iy)‖p ≤ ‖f‖p exp (σ|y|) , z = x + iy,

where the norm on the left is taken with respect to x for any fixed y and

‖f‖p =

(
∫ ∞

−∞

|f(x)|p dx

)1/p

< ∞, if 1 ≤ p < ∞

and

‖f‖∞ = ess.supx∈IR |f(x)| < ∞, if p = ∞.

Unlike the spaces Lp(IR), the spaces Bp
σ are closed under differentiation and the

differentiation operator plays a vital role in their characterization. The Bernstein
spaces have been characterized in a number of different ways and one can prove
that the following are equivalent:
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A) A function f ∈ Lp(IR) belongs to Bp
σ if and only if its distributional Fourier

transform has support [−σ, σ] in the sense of distributions.
B) Let f ∈ C∞(IR) be such that f (n) ∈ Lp(IR) for all n = 0, 1, · · · , and some

1 ≤ p ≤ ∞, then f ∈ Bp
σ if and only if f satisfies the Bernstein’s inequality

[12, p. 116]

∥

∥

∥
f (n)

∥

∥

∥

p
≤ σn ‖f‖p , n = 0, 1, 2, · · · ; 1 ≤ p ≤ ∞. (1.2)

C) Let f ∈ C∞(IR) be such that f (n) ∈ Lp(IR) for all n = 0, 1, · · · , and some
1 ≤ p ≤ ∞. Then

lim
n→∞

∥

∥

∥
f (n)

∥

∥

∥

1/n

p
≤ ∞, exists

and f ∈ Bp
σ if and only if limn→∞

∥

∥f (n)
∥

∥

1/n

p
= σ < ∞.

D) Let f ∈ C∞(IR) be such that f ∈ Lp(IR) for some 1 ≤ p ≤ ∞. Then f ∈ Bp
σ

if and only if it satisfies the Riesz interpolation formula

f (1)(x) =
σ

π2

∑

k∈ZZ

(−1)k−1

(k − 1/2)2
f
(

x +
π

σ
(k − 1/2)

)

(1.3)

where the series converges in Lp(IR). Because this characterization is not
well known, we will prove it. We have

∥

∥

∥
f (1)

∥

∥

∥

p
=

∥

∥

∥

∥

∥

σ

π2

∑

k∈ZZ

(−1)k

(k − 1/2)2
f
(

x +
π

σ
(k − 1/2)

)

∥

∥

∥

∥

∥

p

(1.4)

≤ σ

π2

∑

k∈ZZ

1

(k − 1/2)2

∥

∥

∥
f
(

x +
π

σ
(k − 1/2)

)∥

∥

∥

p
. (1.5)

But
∥

∥

∥
f
(

x +
π

σ
(k − 1/2)

)
∥

∥

∥

p
= ‖f(x)‖p ,

and
∑

k
1

(k−1/2)2 = π2; hence

∥

∥

∥
f (1)

∥

∥

∥

p
≤ σ ‖f‖p ,

which shows that f (1) ∈ Lp(IR). Now by differentiating the Riesz interpo-
lation formula once more, we obtain formally

f (2)(x) =
σ

π2

∑

k∈ZZ

(−1)k

(k − 1/2)2
f (1)

(

x +
π

σ
(k − 1/2)

)

,
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but the series on the right-hand side converges because
∥

∥

∥

∥

∥

σ

π2

∑

k∈ZZ

(−1)k

(k − 1/2)2
f (1)

(

x +
π

σ
(k − 1/2)

)

∥

∥

∥

∥

∥

p

(1.6)

≤ σ

π2

∑

k∈ZZ

1

(k − 1/2)2

∥

∥

∥
f (1)

(

x +
π

σ
(k − 1/2)

)∥

∥

∥

p
(1.7)

≤ σ
∥

∥

∥
f (1)

∥

∥

∥

p
. (1.8)

Therefore, it follows that
∥

∥

∥
f (2)

∥

∥

∥

p
≤ σ

∥

∥

∥
f (1)

∥

∥

∥

p
,

which shows that f (2) ∈ Lp(IR) and in addition
∥

∥

∥
f (2)

∥

∥

∥

p
≤ σ2 ‖f‖p .

Now an induction argument shows that
∥

∥

∥
f (n)

∥

∥

∥

p
≤ σn ‖f‖p , for all n = 1, 2, · · · ,

that is f satisfies the Bernstein inequality; hence, f ∈ Bp
σ. The converse is

shown in [12].

The space B2
σ is the Paley-Wiener space PWσ. Hence, a function f in L2(IR)

belongs to the Paley-Wiener space PWσ(IR) if and only if

f(t) =
1√
2π

∫ σ

−σ

f̂(ω)eitω dω.

In other words, f ∈ L2(IR) belongs to PWσ(IR) if it has an extension to the complex
plane as an entire function of exponential type not exceeding σ. We also have a
generalization of the WSK sampling theorem.

Theorem 3. Let f ∈ Bp
σ, 1 ≤ p < ∞ and 0 < σ. Then

f(t) =

∞
∑

k=−∞

f (tk)
sinσ(t − tk)

σ(t − tk)
(t ∈ IR).

The result is not true for p = ∞. For, f(t) = sin(σt) vanishes at all tk but it is
not identically zero. However, the theorem is true for f ∈ B∞

σ−δ, 0 < δ < σ.
Now we introduce the Zakai Space of Bandlimited Functions [21].

Definition 4. A function f is said to be bandlimited with bandwidth σ in the sense
of Zakai if it is entire of exponential type satisfying |f(z)| ≤ BeA|z| and

∫ ∞

−∞

|f(x)|2
1 + x2

dx < ∞, (1.9)

for some 0 < A, B, where σ is the infimum of all W such that the Fourier transform
of (f(z) − f(0)) /z vanishes outside (−W, W ).
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It should be noted that if f is σ-bandlimited in the sense of Zakai, then g(z) =
(f(z) − f(0)) /z ∈ PWσ. Let us denote the Zakai space by Hσ. Clearly, B∞

σ ⊂ Hσ

since if f is bounded on the real line, the integral in Eq. (1.9) is finite. Examples of

functions in Hσ are sin(σz) and Si(t) =
∫ t

0
sin x

x dx, which can be written as a Fourier

transform of a function with compact support, namely, F (ω) =
(√

2π/2iω
)

χ(−1,1),
since

Si(t) =
1

2i

∫ 1

−1

1

ω
eiωtdω.

The function F (ω) is not in Lp for any 1 ≤ p, and the Fourier transform is taken
in the sense of distributions.

Another generalization of the class of bandlimited functions is the class Hk
σ which

is defined as follows. Let Hk
σ be the class of all entire functions of exponential type

satisfying
∫ ∞

−∞

|f(t)|2
(1 + t2)k

dt

and |f(z)| ≤ C(1 + |z|)k exp(σ|ℑz|). Then f ∈ Hk
σ is equivalent to either of the

following

(1)

f(t) =

k−1
∑

j=0

f (j)(0)

j!
tj +

tk

k!
g(t), g ∈ B2

σ

(2) f is a temperate distribution whose Fourier transform has support in
[−σ, σ].

The class H0
σ is the same as B2

σ and H1
σ is the same as the Zakai class Hσ. The

class

H∞
σ = ∪∞

k=0H
k
σ

consists of all functions that are temperate distributions having Fourier transform
with support in [−σ, σ]. Moreover, f ∈ H∞

σ is such that
∫ ∞

−∞

|f(t)|2
(1 + t2)k

dt < ∞

if and only if the order of its distributional Fourier transform is less than or equal
to k.

Moreover, the following sampling theorem holds [10]:

Theorem 5. Let f ∈ Hk
σ ,

0 < τ < π/σ, and 0 < β <
π

k
(
1

τ
− σ

π
).

Then

f(t) =

∞
∑

n=−∞

f(nτ)
sin[(π/τ)(t − nτ)] sink[β(t − nτ)]

[(π/τ)(t − nτ)][β(t − nτ)]k
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104 AHMED I. ZAYED

2. Bandlimited Vectors in a Hilbert Space

In this section we introduce a space of Paley-Wiener vectors in a Hilbert space
H. As can be seen from (1.2) and (1.3) the differentiation operator plays a vital role
in the characterization of classical Paley-Wiener space. In our abstract setting, the
differentiation operator will be replaced by a self-adjoint operator D in a Hilbert
space H . Furthermore, from the abstract setting we will be able to derive a new
characterization of the classical Paley-Wiener space that connects Paley-Wiener
functions to analytic solutions of a Cauchy problem involving Schrödinger equation.

According to the spectral theory [6], there exist a direct integral of Hilbert spaces
A =

∫

A(λ)dm(λ) and a unitary operator FD from H onto A, which transforms

the domain Dk of the operator Dk onto Ak = {a ∈ A|λka ∈ A} with norm

‖a(λ)‖Ak
=

(
∫ ∞

−∞

λ2k‖a(λ)‖2
A(λ)dm(λ)

)1/2

and FD(Df) = λ(FDf), f ∈ D1.

Definition 6. The unitary operator FD will be called the Spectral Fourier trans-
form and a = FDf will be called the Spectral Fourier transform of f ∈ H.

Definition 7. We will say that a vector f in H belongs to the space PWω(D) if
its Spectral Fourier transform FDf = a has support in [−ω, ω].

The next proposition is evident.

Proposition 8. The following properties hold true:
a) The linear set

⋃

ω>0 PWω(D) is dense in H.
b) The set PWω(D) is a linear closed subspace in H.

In the following theorems we describe some basic properties of Paley-Wiener
vectors and show that they share similar properties to those of the classical Paley-
Wiener functions. The next theorem, whose proof can be found in [15], shows that
the space PWω(D) has properties (A) and (B). See also [14, 16]

Theorem 9. The following conditions are equivalent:
1)f ∈ PWω(D);
2) f belongs to the set

D∞ =

∞
⋂

k=1

Dk,

and for all k ∈ N, the following Bernstein inequality holds

‖Dkf‖ ≤ ωk‖f‖; (2.1)

3) for every g ∈ H the scalar-valued function < eitDf, g > of the real variable
t ∈ R1 is bounded on the real line and has an extension to the complex plane as an
entire function of exponential type ω;

4) the abstract-valued function eitDf is bounded on the real line and has an
extension to the complex plane as an entire function of exponential type ω.
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ON THE NOTION OF BANDLIMITEDNESS AND ITS GENERALIZATIONS 105

To show that the space PWω(D) has property (C), we will need the following
Lemma.

Lemma 10. Let D be a self-adjoint operator in a Hilbert space H and f ∈ D∞. If
for some ω > 0 the upper bound

sup
k∈N

(ω−k‖Dkf‖) = B(f, ω), (2.2)

is finite, then f ∈ PWω and B(f, ω) ≤ ‖f‖.
Definition 11. Let f ∈ PWω(D) for some positive number ω. We denote by ωf

the smallest positive number such that the interval [−ωf , ωf ] contains the support
of the Spectral Fourier transform FDf.

It is easy to see that f ∈ PWωf
(D) and that PWωf

(D) is the smallest space to
which f belongs among all the spaces PWω(D). For,

‖Dkf‖ =

(
∫ ∞

−∞

λ2k‖a(λ)‖2
A(λ)dm(λ)

)1/2

=

(

∫ ωf

−ωf

λ2k‖a(λ)‖2
A(λ)dm(λ)

)1/2

≤ ωk
f (‖a‖)A .

Hence, by Theorem 9, f ∈ PWωf
(D). Moreover, if f ∈ PWω(D) for some ω < ωf ,

then from Definition 7 the spectral Fourier transform of f has support in [−ω, ω]
which contradicts the definition of [−ωf , ωf ]. The next theorem shows that the
space PWω(D) has property (C).

Theorem 12. Let f ∈ H belong to the space PWω(D), for some 0 < ω < ∞.
Then

df = lim
k→∞

‖Dkf‖1/k (2.3)

exists and is finite. Moreover, df = ωf . Conversely, if f ∈ D∞ and df =

limk→∞ ‖Dkf‖1/k, exists and is finite, then f ∈ PWωf
and df = ωf .

Finally, we have another characterization of the space PWω(D). Consider the
Cauchy problem for the abstract Schrödinger equation

∂u(t)

∂t
= iDu(t), u(0) = f, i =

√
−1, (2.4)

where u : IR → H is an abstract function with values in H.
The next theorem gives another characterization of the space PWω(D), from

which we obtain a new characterization of the space PWω.

Theorem 13. A vector f ∈ H, belongs to PWω(D) if and only if the solution u(t)
of the corresponding Cauchy problem (2.4) has the following properties:

1) as a function of t, it has an analytic extension u(z), z ∈ C to the complex
plane C as an entire function;

2) it has exponential type ω in the variable z, that is

‖u(z)‖H ≤ eω|z|‖f‖H .

and it is bounded on the real line.
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106 AHMED I. ZAYED

3. Applications To Sturm-Liouville Operators

In this section we apply the general results obtained in previous sections to
specific examples involving differential operators. We specify our characterization
of Paley-Wiener functions that are defined by integral transforms other than the
Fourier transform. For related material, see [20, 23].

3.1. Integral Transforms Associated with Sturm-Liouville Operators on

a Half-line. Consider the singular Sturm-Liouville problem on the half line

Lxy = Ly := −d2y

dx2
+ q(x)y = λy, 0 ≤ x < ∞, (3.1)

with

y(0) cosα + y′(0) sin α = 0, for some 0 ≤ α < 2π, (3.2)

and q is assumed to be real-valued.
Let φ(x, λ) be a solution of equation (3.1) satisfying the initial conditions φ(0, λ) =

sin α, φ′(0, λ) = − cosα. Clearly, φ(x, λ) is a solution of (3.1) and (3.2). It is easy
to see that φ(x, λ) and φ′(x, λ) are bounded as functions of x for λ > 0 [17]. It is
known [17, 11] that if f ∈ L2(IR+), then

F (λ) = f̂(λ) =

∫ ∞

0

f(x)φ(x, λ) dx (3.3)

is well-defined (in the mean) and belongs to L2(IR, dρ), and

f(x) =

∫ ∞

−∞

f̂(λ)φ(x, λ) dρ(λ), (3.4)

with

‖f‖L2(IR+) = ‖f̂‖L2(IR,dρ). (3.5)

The measure ρ(λ) is called the spectral function of the problem. In many cases
of interest the support of dρ is IR+. In this case the transform (3.4) takes the form

f(x) =

∫ ∞

0

f̂(λ)φ(x, λ) dρ(λ), (3.6)

and the Parseval equality (3.5) becomes ‖f‖L2(IR+) = ‖f̂‖L2(IR+,dρ). Hereafter, we

assume that q is real-valued, bounded and C∞(IR+). Because we are interested in
the case where the spectrum of the problem is continuous, we shall focus on the
case in which the differential equation (3.1) is in the limit-point case at infinity.
Restrictions on q to guarantee continuous spectra can be found in [11, 17]. The
condition q ∈ L1(R+) will suffice. In such a case the problem (3.1) and (3.2) is
self-adjoint [7, p. 158, ], i.e., 〈Lf, g〉 = 〈f, Lg〉 for all f, g ∈ DL, where DL consists
of all functions u satisfying

(1) u is differentiable and u′ is absolutely continuous on 0 ≤ x ≤ b for all
b < ∞,

(2) u and Lu are in L2(IR+),
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(3) u(0) cosα + u′(0) sinα = 0.

Now consider the initial-boundary-value problem involving the Schrodinger equa-
tion

i
∂u(x, t)

∂t
= −Lxu(x, t) =

∂2u(x, t)

∂x2
− q(x)u(x, t), 0 ≤ x < ∞, t ≥ 0, (3.7)

with

u(x, 0) = f(x) (3.8)

and

u(0, t) cosα +
∂u(0, t)

∂x
sinα = 0 for all 0 < t, (3.9)

where f(x) ∈ L2(R+),
Set

u(x, t) =

∫ ∞

−∞

eiλtf̂(λ)φ(x, λ)dρ(λ) , (3.10)

Formally, if f and Lf are in L2(IR+), then

i
∂u(x, t)

∂t
=

∫ ∞

−∞

(−λ)eiλtf̂(λ)φ(x, λ)dρ(λ) = −Lxu(x, t),

u(x, 0) =

∫ ∞

−∞

f̂(ρ)ϕ(x, λ)dρ = f(x),

and

u(0, t) cosα +
∂u(0, t)

∂x
sin α = 0. (3.11)

Therefore, u(x, t) is a solution of the initial-boundary-value problem (3.7) -(3.9),
in the sense of L2(IR+).

Definition 14. We say that f(x) ∈ L2(IR+) is bandlimited with bandwidth ω or

f ∈ PWω(L) if its spectral Fourier transform f̂(λ) according to Definition 6, has
support [−ω, ω], where L is given by (3.1) and (3.2).

It follows from the definition that if f is bandlimited to [−ω, ω], then

f(x) =

∫ ∞

−∞

f̂ (λ)ϕ(x, λ)dρ =

∫ ω

−ω

f̂(λ)ϕ(x, λ)dρ.

In order to apply Theorem 13, we have to define the domain D∞ on which all
iterations of L are self-adjoint. It is easy to see that D∞ consists of all functions u
satisfying the following conditions:

i) u is infinitely differentiable on IR+,
ii) Lku is in L2(IR+), for all k = 0, 1, 2, · · · ,
iii)

(

Lku
)

(0) cosα +
(

d
dxLku

)

(0) sin α = 0.
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108 AHMED I. ZAYED

Hence, if f is bandlimited according to Definition 14, Lnf(x) =
∫ ω

−ω
f̂(λ) (λ)

n
ϕ(x, λ)dρ ,

which exists for all n = 0, 1, 2, · · · . Thus, by Parseval’s equality

‖Lnf‖2
L2(IR+) =

∫ ω

−ω

∣

∣

∣
f̂(λ)

∣

∣

∣

2

λ2ndρ ≤ ω2n

∫ ∞

−∞

∣

∣

∣
f̂ (λ)

∣

∣

∣

2

dρ

= ω2n‖f̂‖2
L2(IR,dρ) = ω2n ‖f‖2

L2(IR+) . (3.12)

That is,

‖Lnf‖ ≤ ωn ‖f‖ , n = 0, 1, 2, · · · , (3.13)

which is a generalization of Bernstein inequality (1.2).

Theorem 15. A function f ∈ L2(IR+) is bandlimited in the sense of Definition
14 with bandwidth ω if and only if the solution u(x, t) of the initial-boundary-value
problem (3.7) - (3.9) with f ∈ D∞ has the following properties:

(1) As a function of t it has analytic extension u(x, z) to the complex plane as
entire function of exponential type ω,

(2) It satisfies the estimate

‖u(., z)‖L2(IR+) ≤ eω|ℑz| ‖f‖L2(IR+) ≤ eω|z| ‖f‖L2(IR+) .

In particular, u(x, z) is bounded on the real t-line.
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