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A MODEL FOR THE THERMOELASTIC BEHAVIOR OF A

JOINT-LEG-BEAM SYSTEM FOR SPACE APPLICATIONS

E.M. CLIFF, Z. LIU, AND R. D. SPIES∗

Abstract. Rigidizable-Inflatable (RI) materials offer the possibility of de-
ployable large space structures (C.H.M. Jenkins (ed.), Gossamer Spacecraft:
Membrane and Inflatable Structures Technology for Space Applications, Pro-
gress in Aeronautics and Astronautics, 191, AIAA Pubs., 2001) and so are
of interest in applications where large optical or RF apertures are needed.
In particular, in recent years there has been renewed interest in inflatable-
rigidizable truss-structures because of the efficiency they offer in packaging
during boost-to-orbit. However, much research is still needed to better under-
stand dynamic response characteristics, including inherent damping, of truss
structures fabricated with these advanced material systems. One of the most
important characteristics of such space systems is their response to changing
thermal loads, as they move in and out of the Earth’s shadow. We study a
model for the thermoelastic behavior of a basic truss componentconsisting of
two RI beams connected through a joint subject to solar heating. Axial and
transverse motions as well as thermal response of the beams with thermoelas-
tic damping are taking into account. The model results in a couple PDE-ODE
system. Well-posedness and stability results are shown and analyzed.

1. Introduction

In recent years there has been renewed interest in Rigidizable-Inflatable (RI)
space structures because of the efficiency they offer in packaging during boost-to-
orbit. RI materials offer the possibility of deploying large space structures ([7]) and
so are of interest in applications where large optical or RF apertures are needed.
Several proposed space antenna systems will require ultra-light trusses to provide
the “backbone” of the structure (see Figure 1(a)). It has been widely recognized
that practical precision requirements can only be achieved through the development
of new high-fidelity mathematical models and corresponding numerical tools.

In this paper we study the dynamics of a basic truss component consisting of
two RI beams connected through a joint (see Figure 1(b)). One of the more im-
portant characteristics of such space systems is their response to changing thermal
loads, as they move in and out of the Earth’s shadow. In this paper we study the
thermoelastic behavior of a two-beam truss element subject to solar heating. The
beams are fabricated as thin-walled circular cylinders.

Key words and phrases. Truss structures, Euler-Bernoulli beams, thermoelastic system.
∗ Corresponding author.
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(a) Rigidizable-Inflatable truss structure
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(b) Basic structure of the joint-legs-beams
system

Figure 1.1. Truss (a) and basic structure of the joint-legs-beams
system (b).

2. Thermoelastic Model

The equations of motion for the Joint-Leg-Beam system depicted in Figure 1(b)
are the following (see [1] for details):

ρiAi
∂2ui(t, si)

∂t2
= EiAi

∂2ui(t, si)

∂s2
i

, ρiAi
∂2wi(t, si)

∂t2
= −EiIi

∂4wi(t, si)

∂s4
i

, (2.1)
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M
d2

dt

[

x(t)y(t)θ1(t)θ2(t)
]T

= C
[

M1(t)N1(t)M2(t)N2(t)F1(t)F2(t)
]T

(2.2)

for time t > 0 and spatial variable si ∈ [0, Li], where M and C are 4× 4 and 4× 6
matrices give by

M =

2

6

6

4

m 0 −m1d1 cos ϕ1 m2d2 cos ϕ2

0 m m1d1 sin ϕ1 m2d2 sin ϕ2

−m1d1 cos ϕ1 m1d1 sin ϕ1 I1ℓ + m1d
2

1 0
m2d2 cos ϕ2 m2d2 sin ϕ2 0 I2ℓ + m2d

2

2

3

7

7

5

, (2.3)

C =

2

6

6

4

0 − cos ϕ1 0 cos ϕ2 sin ϕ1 sin ϕ2

0 sin ϕ1 0 sin ϕ2 cos ϕ1 − cos ϕ2

1 ℓ1 0 0 0 0
0 0 1 ℓ2 0 0

3

7

7

5

, (2.4)

and the other functions and parameters are as follows (here the supra or sub-index
i, i = 1, 2 will always refer to beam or leg i): ui(t, si), w

i(t, si) longitudinal and
transversal displacement of the beam; x(t), y(t) horizontal and vertical displace-
ment of the joint’s tip; θi(t) rotation angle of the leg; ρi, Ai, Li, Ei, Ii mass den-
sity, cross section area, length, Young’s modulus, moment of inertia of the beam;
mi, di, ℓi, I

i
ℓ mass, center of mass, length, moment of inertia of the leg; mp mass

of the joint, m = m1 + m2 + mp; ϕ1 initial angle of leg 1 with positive y axis; ϕ2

initial angle of leg 2 with negative y axis; Fi(t) extensional force of beam at the
end si = Li; Ni(t) shear force of beam at the end si = Li; Mi(t) bending moment
of beam at the end si = Li.

Each beam is clamped at the end si = 0. Thus the boundary conditions at
si = 0 are

ui(t, 0) = wi(t, 0) =
∂wi

∂si
(t, 0) = 0, i = 1, 2. (2.5)

At the other end of each beam several obvious geometric compatibility conditions
must be imposed. These conditions can be written in the form:
















− ∂
∂s1

w1(t, L1)

w1(t, L1)
− ∂

∂s2
w2(t, L2)

w2(t, L2)
−u1(t, L1)
−u2(t, L2)

















=

















θ1(t)
−x(t) cos ϕ1 + y(t) sinϕ1 + ℓ1θ1(t)

θ2(t)
x(t) cos ϕ2 + y(t) sin ϕ2 + ℓ2θ2(t)

x(t) sin ϕ1 + y(t) cosϕ1

x(t) sin ϕ2 − y(t) cosϕ2

















= C
T









x(t)
y(t)
θ1(t)
θ2(t)









.

(2.6)
In [1], system (2.1)-(2.6) was re-cast as an abstract second-order ODE in an appro-
priate Hilbert space. Semigroup theory was then used to prove that the system is
well-posed. Moreover, it was shown that if Kelvin-Voigt damping to both transverse
and longitudinal motions is added, then the corresponding semigroup is analytic
and exponentially stable. The spectrum of the infinitesimal generator of this semi-
group was also characterized. The case of local damping was analyzed in [4] where
it was shown that if only one of the beams is damped, then only polynomial sta-
bility is obtained even if additional rotational damping is assumed in the joint.
Numerical approximations and several numerical results are shown in [2].
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3. Thermal Dynamics

The external heat flux in the space normal to the beam’s surface is given by (see
[10])

Si
.
= S0 cos

(

ξi −
∂wi

∂si

)

, (3.1)

where S0 denotes the solar flux and ξi the angle of orientation of the solar vector
with respect to the beam. In this equation we shall neglect the contribution of
∂wi

∂si
since we are assuming it is small. We denote by T i(t, si, φi) the deviation

of the temperature of the thin-walled circular beam i with respect to a reference
temperature T i

0 at time t at the point on the beam corresponding to axial coordinate
si and circumferential coordinate φi (here φi = 0 corresponds to the top of the
beam while φi = π corresponds to the bottom). Conservation of energy for a small
segment of circular cylinder including longitudinal and circumferential conduction
in the cylinder wall and radiation from the cylinder’s surface yields the following
equation for T i:

ρici
∂T i

∂t
−

ki
c

R2
i

∂2T i

∂φ2
i

− ki
a

∂2T i

∂s2
i

+
σǫi

hi
(T i

0 + T i)4 =
αi

s

hi
Si cos(φi) δ(φi) (3.2)

where ki
a and ki

c are the axial and circumferential thermal conductivity coefficients,
respectively, ci is the specific heat, Ri the radius of the cylinder, hi is the thickness
of the wall, ǫi is the surface emissivity and αi

s is the surface absorptivity, σ is the
Stefan-Boltzmann constant, δ is a function defined on [−π, π] by δ(φi) = 1 for
φi ∈ (−π

2 , π
2 ), and δ(φi) = 0 for φi ∈ [−π,−π

2 ] ∪ [π
2 , π]. The heat flux distribution

on the RHS of equation (3.2) can be written as

Si cos(φi) δ(φi) = Si

(

1

π
+ g(φi)

)

=
Si

π
+ Si g(φi) (3.3)

where g(φi)
.
= cos(φi)χ

[− π
2

, π
2

]

(φi) −
1
π (here χ denotes the characteristic function).

Clearly g(φi) is continuous and it has zero average in [−π, π].
For each beam, the temperature distribution is separated into two parts, namely:

T i(t, si, φi) = T i(t, si) + T m,i(t, si) g(φi), (3.4)

where T i(t, si) is independent of φi and corresponds to the uniform part of the
flux, Si

π , in (3.3), and T m,i(t, si) g(φi) amounts for the circumferential variation
of the flux in (3.3). Note that for every si ∈ [0, Li] and t ≥ 0 one has that
T m,i(t, si) = T i(t, si, 0)−T i(t, si, π) = T i(t, si, 0)−T i(t, si, φ) for any φ /∈ [−π

2 , π
2 ].

Hence, T m,i(t, si) can be thought of as the thermal gradient between the top and
the bottom of the beam at the axial location si.

Also, we approximate the thermal radiation term (T i
0 +T i(t, si, φi) )4 in (3.2) by

linearizing T (t, si, φi) around T (t, si, φi) = T i
s (where T i

s , to be determined later,
is the steady-state constant temperature increment produced on the undeformed
beam i by the solar flux Si), i.e., we approximate (T i

0+T i(t, si, φi) )4 by (T i
0+T i

s)
4+
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4(T i
0 + T i

s)
3
(

T i(t, si) − T i
s + T m,i(t, si)g(φi)

)

. Hence equation (3.2) is replaced by

ρici
∂T i(t, si)

∂t
+ ρici

∂T m,i(t, si)

∂t
g(φi) −

ki
c

R2
i

T m,i(t, si) g′′(φi)

− ki
a

∂2T i(t, si)

∂s2
i

− ki
a

∂2T m,i(t, si)

∂s2
i

g(φi)

+
σǫi

hi

[

(T i
0 + T i

s)
4 + 4(T i

0 + T i
s)

3
(

T i(t, si) − T i
s + T m,i(t, si)g(φi)

)]

=
αi

sSi

hi

[

1

π
+ g(φi)

]

. (3.5)

Since g has zero average, integration of equation (3.5) over the cylinder’s cross
sectional area yields

ρici
∂T i(t, si)

∂t
− ki

a

∂2T i(t, si)

∂s2
i

+
4σǫi(T

i
0 + T i

s)
3

hi
[T i(t, si) − T i

s]

=

[

αi
sSi

πhi
−

σǫi(T
i
0 + T i

s)
4

hi

]

.
= fi . (3.6)

Since g′(φi) is discontinuous at φi = ±π
2 the integration of g′′(φi) above must be

performed in the distributional sense. The value of T i
s is now determined by setting

the RHS, fi, equals to zero. By doing so we obtain

T i
s =

(

αi
sSi

πσǫi

)
1
4

− T i
0 (3.7)

Note that with this value of T i
s corresponds to the steady-state T i(t, si) = T i

s for the
case of homogeneous Neumann boundary conditions and, since usually T m,i(t, si)
is small compared to T i

0, the linearization of the thermal radiation term performed
above, is justified near the steady state solution.

Now multiplying (3.5) by g(φi) and integrating over the cylinder’s cross sectional
area, we obtain for T m,i the following equation:

ρici
∂T m,i(t, si)

∂t
− ki

a

∂2T m,i(t, si)

∂s2
i

+

(

ki
cπ

2

R2
i (π

2 − 4)
+

4σǫi(T
i
0 + T i

s)
3

hi

)

T m,i(t, si) =
αi

sSi

hi
.

(3.8)

Thermally induced vibrations in the system is taken into account by considering
Hooke’s law for the stress-strain relation in the form ǫi

11 = 1
Ei

σi
11 + αiT

i, where αi

is the thermal expansion coefficient, and T i is, as before, the deviation from the
reference temperature T i

0. Note that at T i = 0 thermal strain vanishes, so that
T i

0 is interpreted as the (uniform) temperature of beam i in the unstressed, rest-
state. By the standard derivation of Euler-Bernoulli beam equation, we modify the
Joint-Leg-Beam system (2.1) as follows:

ρiAi
∂2ui(t, si)

∂t2
= EiAi

∂

∂si

(

∂ui(t, si)

∂si
− αiT

i(t, si)

)

, (3.9)
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ρiAi
∂2wi(t, si)

∂t2
= −EiIi

∂2

∂s2
i

(

∂2wi(t, si)

∂s2
i

+
αi

2Ri
T m,i(t, si)

)

(3.10)

The above beam equations are coupled to the heat equations modified from equa-
tions (3.6) and (3.8) and with T i

s chosen as in equation (3.7) (so that fi = 0 in
(3.6) ), that is:

ρici
∂T i(t, si)

∂t
= ki

a

∂2T i(t, si)

∂s2
i

−
4σǫi(T

i
0 + T i

s)
3

hi

(

T i(t, si) − T i
s

)

− αiEiT
i
0

∂2

∂si∂t
ui(t, si) ,

(3.11)

and

ρici
∂T m,i(t, si)

∂t
= ki

a

∂2T m,i(t, si)

∂s2
i

−

[

ki
cπ

2

R2
i (π

2 − 4)
+

4σǫi(T
i
0 + T i

s)
3

hi

]

T m,i(t, si)

+
αiEiIiT

i
0

2RiAi

∂3

∂s2
i ∂t

wi(t, si) +
αi

sSi

hi
, (3.12)

We impose Robin type boundary conditions for the temperature at both ends of
each beam, i.e.

∂

∂si

T i(t, Li, φi) = λi
R

`

T ∗
− T i

0 − T i(t, Li, φi)
´

,
∂

∂si

T i(t, 0, φi) = λi
L

`

T i
0 + T i(t, 0, φi) − T ∗

´

,

∀t ≥ 0, φi ∈ [−π, π], i = 1, 2, where T ∗ is the temperature of the surrounding
medium and λi

L, λi
R, i = 1, 2, are nonnegative constants. By writing T i(t, si, φi) in

terms of the decomposition given in (3.4) these equations take the form:

∂

∂si
T i(t, Li) +

∂

∂si
T m,i(t, Li)g(φi) = λi

R

(

T ∗ − T i
0 − T i(t, Li) − T m,i(t, Li)g(φi)

)

,

∂

∂si
T i(t, 0) +

∂

∂si
T m,i(t, 0)g(φi) = λi

L

(

T i
0 + T i(t, 0) + T m,i(t, 0)g(φi) − T ∗

)

.

Since these equations must hold for all φi ∈ [−π, π] it follows that

∂

∂si
T i(t, Li) = λi

R

(

T ∗ − T i
0 − T i(t, Li)

)

,
∂

∂si
T i(t, 0) = λi

L

(

T i
0 + T i(t, 0) − T ∗

)

(3.13)

and

∂

∂si
T m,i(t, Li) = −λi

R T m,i(t, Li),
∂

∂si
T m,i(t, 0) = λi

L T m,i(t, 0), (3.14)

for all t ≥ 0, i = 1, 2. So, in the same way that the dynamics for the tem-
perature distribution (3.5) decouples into equations (3.11) and (3.12) for T i and
T m,i, respectively, we observe that the boundary conditions also decouple. Note
however in equation (3.13) that the boundary conditions for the axial compo-

nent of the temperature, T i(t, si), are non-homogeneous. By defining T̃ i(t, si)
.
=
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T i(t, si) − (T ∗ − T i
0), equation (3.11) can be written in the form

ρici
∂T̃ i(t, si)

∂t
= ki

a

∂2T̃ i(t, si)

∂s2
i

−
4σǫi(T

i
0 + T i

s)
3

hi

(

T̃ i(t, si) + T ∗ − T i
0 − T i

s

)

− αiEiT
i
0

∂2

∂si∂t
ui(t, si),

(3.15)

while the boundary conditions (3.13) now take the form

∂

∂si
T̃ i(t, Li) = −λi

R T̃ i(t, Li),
∂

∂si
T̃ i(t, 0) = λi

L T̃ i(t, 0), (3.16)

Observe now that these boundary conditions are exactly the same as those in (3.14)
for the circumferential component of the temperature. Finally, note also that in

equation (3.9), T i(t, si) can be replaced by T̃ i(t, si) without any changes.
System (3.9)-(3.12) (or equivalently (3.9), (3.10), (3.12), (3.15)), together with

the joint-leg dynamics described by equation (2.2) constitute the thermoelastic
Joint-Leg-Beam equations with the external solar heat source. The extensional
forces, shear forces and bending moments of the beams at si = Li are now given
by:

Fi(t) = EiAi

(

∂ui

∂si
(t, si) − αiT

i(t, si)

)∣

∣

∣

∣

si=Li

, (3.17)

Ni(t) = EiIi
∂

∂si

(

∂2wi

∂s2
i

(t, si) +
αi

2Ri
T m,i(t, si)

)∣

∣

∣

∣

si=Li

, (3.18)

Mi(t) = EiIi

(

∂2wi

∂s2
i

(t, si) +
αi

2Ri
T m,i(t, si)

)∣

∣

∣

∣

si=Li

. (3.19)

4. Well-posedness

In this section, we consider the well-posedness of the Joint-Leg-Beam system
with solar heat flux, i.e., equations (3.9), (3.10), (3.12), (3.15) subject to the geo-
metric beam-leg interface compatibility conditions (2.6), the dynamic boundary
conditions (3.17), (3.18), (3.19) and the boundary conditions (2.5), (3.14), (3.16).
We first rewrite the system as a first order evolution equation in an appropriate
Hilbert space. Well-posedness is then obtained by using semigroup theory. Since
the corresponding system without thermal effects has been studied in [1], we will
follow the notation used there as much as possible for consistency. Numerical
results for that case are reported in [2].

First, we define the following Hilbert spaces with their corresponding inner prod-
ucts:











Hz = L2(0, L1) × L2(0, L2) × L2(0, L1) × L2(0, L2),

〈z1, z2〉Hz

.
=

2
∑

i=1

ρiAi

[

〈wi
1, w

i
2〉 + 〈ui

1, u
i
2〉
]

;
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{

Hb = [ker(C)]⊥ = range(CT ),
〈b1 , b2〉Hb

= 〈b1 , (CT M−1C)†b2〉lR6 ;











Hζ = L2(0, L1) × L2(0, L2) × L2(0, L1) × L2(0, L2),

〈ζ1 , ζ2〉Hζ

.
=

2
∑

i=1

ρiciAi

T i
0

[

〈T m,i
1 , T m,i

2 〉 + 〈T̃ i
1, T̃

i
2〉
]

;

where zj
.
=
(

w1
j , w2

j , u1
j , u

2
j

)T
, ζj

.
=
(

T m,1
j , T m,2

j , T̃ 1
j , T̃ 2

j

)T

, and (CT M−1C)†

denotes the Moore-Penrose generalized inverse of CT M−1C. We also define the
operators Az : Hz → Hz and Bz : Hζ → Hz by

dom(Az)
.
= H2

ℓ ∩ H4(0, L1) × H2
ℓ ∩ H4(0, L2) × H1

ℓ ∩ H2(0, L1) × H1
ℓ ∩ H2(0, L2),

Az
.
=











E1I1
ρ1A1

D4 0 0 0

0 E2I2
ρ2A2

D4 0 0

0 0 −E1

ρ1
D2 0

0 0 0 −E2

ρ2
D2











,

dom(Bz)
.
= H2(0, L1) × H2(0, L2) × H1(0, L1) × H1(0, L2),

Bz
.
=











− α1E1I1
2R1ρ1A1

D2 0 0 0

0 − α2E2I2
2R2ρ2A2

D2 0 0

0 0 −α1E1

ρ1
D 0

0 0 0 −α2E2

ρ2
D











.

where Dn .
= dn

dsn
i

and for n ∈ IN, Hn
ℓ (0, L) denotes the space of functions in Hn(0, L)

that vanish, together with all derivatives up to the order n−1, at the left boundary.
With this notation, equations (3.9)-(3.10) can now be written as the following
abstract second order ODE in Hz :

z̈(t) + Azz(t) − Bzζ(t) = 0. (4.1)

Next we define the operators Aζ : Hζ → Hζ and Bζ : Hz → Hζ by

dom(Aζ)
.
= H2

rb(0, L1) × H2
rb(0, L2) × H2

rb(0, L1) × H2
rb(0, L2),

Aζ ζ = Aζ









T m,1

T m,2

T̃ 1

T̃ 2









.
=















−
k1

a

ρ1c1
D2T m,1 +

[

k1
cπ2

ρ1c1R2
1(π2−4)

+
4σǫ1(T 1

0 +T 1
s )3

ρ1c1h1

]

T m,1

− k2
a

ρ2c2
D2T m,2 +

[

k2
cπ2

ρ2c2R2
2(π2−4)

+
4σǫ2(T 2

0 +T 2
s )3

ρ2c2h2

]

T m,2

− k1
a

ρ1c1
D2T̃ 1 +

4σǫ1(T 1
0 +T 1

s )3

ρ1c1h1
T̃ 1

− k2
a

ρ2c2
D2T̃ 2 +

4σǫ2(T 2
0 +T 2

s )3

ρ2c2h2
T̃ 2















,

dom(Bζ)
.
= H2(0, L1) × H2(0, L2) × H1(0, L1) × H1(0, L2),
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Bζz
.
=













α1E1I1T 1
0

2R1ρ1c1A1
D2 0 0 0

0
α2E2I2T 2

0

2R2ρ2c2A2
D2 0 0

0 0 −α1E1T 1
0

ρ1c1
D 0

0 0 0 −α2E2T 2
0

ρ2c2
D













.

where H2
rb(0, L) denotes the space of functions in H2(0, L) satisfying the Robin

boundary conditions (3.14) or equivalently (3.16). With this notation, equations
(3.12), (3.15), can now be written as the following abstract first order ODE in Hζ :

ζ̇(t) − Bζ ż(t) + Aζζ(t) = S (4.2)

where

S
.
=
(

α1
s

ρ1c1h1
S1,

α2
s

ρ2c2h2
S2,

4σǫ1(T1
0 +T1

s )3

ρ1c1h1
(T 1

s +T 1
0 −T∗),

4σǫ2(T2
0 +T2

s )3

ρ2c2h2
(T 2

s +T 2
0 −T∗)

)T

.

We also define three boundary projection operators PB
1 , PB

2 from Hz into IR6 and
PB

3 from Hζ into IR6 by

dom(PB
1 )

.
= H2(0, L1) × H2(0, L2) × H1(0, L1) × H1(0, L2),

dom(PB
2 )

.
= H4(0, L1) × H4(0, L2) × H2(0, L1) × H2(0, L2),

dom(PB
3 )

.
= H2(0, L1) × H2(0, L2) × H1(0, L1) × H1(0, L2),

P
B
1

0

B

B

@

w1

w2

u1

u2

1

C

C

A

.
=

0

B

B

B

B

B

B

@

− ∂
∂s1

w1(L1)

w1(L1)
− ∂

∂s2
w2(L2)

w2(L2)
−u1(L1)
−u2(L2)

1

C

C

C

C

C

C

A

, P
B
2

0

B

B

@

w1

w2

u1

u2

1

C

C

A

.
=

0

B

B

B

B

B

B

B

B

B

B

B

B

@

∂2

∂s2
1

w1(L1)

∂3

∂s3
1

w1(L1)

∂2

∂s2
2

w2(L2)

∂3

∂s3
2

w2(L2)

∂
∂s1

u1(L1)
∂

∂s2
u2(L2)

1

C

C

C

C

C

C

C

C

C

C

C

C

A

, P
B
3

0

B

B

@

T m,1

T m,2

T̃ 1

T̃ 2

1

C

C

A

.
=

0

B

B

B

B

B

B

B

@

T m,1(L1)
∂

∂s1
T m,1(L1)

T m,2(L2)
∂

∂s2
T m,2(L2)

T̃ 1(L1)

T̃ 2(L2)

1

C

C

C

C

C

C

C

A

.

Now, by using the geometric compatibility conditions (2.6) and the dynamic
boundary conditions (3.17)-(3.19), the equation for the leg-joint dynamics (2.2)
can be written as the following abstract second order ODE in Hb:

d2

dt2
(

PB
1 z(t)

)

− CT M−1CE
(

PB
2 z(t) + ΛPB

3 ζ(t)
)

= R̃ (4.3)

where E
.
= diag(E1I1, E1I1, E2I2, E2I2, E1A1, E2A2), Λ

.
= diag( α1

2R1
, α1

2R1
, α2

2R2
, α2

2R2
,

−α1,−α2) and R̃
.
= CT M−1C

(

0, 0, 0, 0, E1A1α1(T
∗ − T 1

0 ), E2A2α2(T
∗ − T 2

0 )
)T

.
Next we define the Hilbert space Hzb

.
= Hz×Hb with the usual inner product inher-

ited from those in Hz and Hb. In this Hilbert space we define the elastic operator
Azb by

dom(Azb)
.
=

{(

z
b

)

∈ dom(Az) ×Hb : PB
1 z = b

}

and Azb

(

z
b

)

.
=

(

Azz
−CT M−1CE PB

2 z

)

.
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Furthermore, we define Bzb : Hζ → Hzb by dom(Bzb)
.
= H2(0, L1) × H2(0, L2) ×

H1(0, L1) × H1(0, L2) and Bzbζ
.
=

(

Bzζ
CT M−1CEΛ PB

3 ζ

)

. Thus, equations (4.1)

and (4.3) can be combined as

d2

dt2

(

z(t)
b(t)

)

+ Azb

(

z(t)
b(t)

)

− Bzbζ(t) = R on Hzb, (4.4)

where R
.
= (0, R̃)T . It has been proved in [1] that the operator Azb is self-adjoint

and strictly positive. Thus, we can define the state space H
.
= dom(A

1/2
zb ) ×

Hzb × Hζ with the inner product

〈(

X1

X2

X3

)

,

(

Y1

Y2

Y3

)〉

H

.
= 〈A

1/2
zb X1,A

1/2
zb Y1〉Hzb

+

〈X2, Y2〉Hzb
+ 〈X3, Y3〉Hζ

. Finally, we define operator A on H by dom(A)
.
=











X1

X2

X3



 ∈ H
∣

∣ X1 ∈ dom(Azb), X2 ∈ dom(A
1/2
zb ), X3 ∈ dom(Aζ)







, A

(

X1

X2

X3

)

.
=

(

0 I 0
−Azb 0 Bzb

0 (Bζ , 0) −Aζ

)(

X1

X2

X3

)

. Then, equations (4.2) and (4.4) can be rewritten

as a first order nonhomogeneous evolution equation

Ẋ(t) = AX(t) + G on H (4.5)

where X
.
=





X1

X2

X3



 , X1
.
=

(

z
b

)

, X2
.
= Ẋ1, X3

.
= ζ and G

.
=





0
R
S



.

Theorem 4.1. (Well-posedness): Let A : H → H be as defined above. Then A is
the infinitesimal generator of a strongly continuous semigroup of contractions S(t)
on H and hence, for any initial condition X0 = X(0) ∈ dom(A), system (4.5) has
a unique global solution X(t) given by

X(t) = S(t) X0 +

∫ t

0

S(t − s)Gds.

Proof: It can be shown that A is dissipative and 0 ∈ ρ(A), the resolvent set
of A). Since dom(A) is dense in H, it then follows from Theorem 1.2.4 in [8]
that A generates a strongly continuous semigroup of contractions S(t) on H. The
existence and uniqueness of solutions for system (4.5) for any initial condition
X0 = X(0) ∈ dom(A) finally follows from Corollary 2.10 in [9]. For more details
see [3].

5. Exponential Stability

We now turn our attention to the stability of system (4.5). It is well known
that the semigroup associated with longitudinal and transversal motion of a ther-
moelastic Euler beam is exponentially stable ([5], [8]). System (4.5) consists of two
thermoelastic beam equations plus the equations for the joint-leg dynamics. This
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type of system is often referred to as “hybrid system”. It is certainly an interest-
ing problem to determine whether the thermal damping is strong enough by itself
to induce exponential stability of this kind of system. We shall prove this in the
affirmative.

The following result by Huang [6] will be used:

Theorem 5.1. Let H be a Hilbert space, A : H → H a closed, densely defined
linear operator. Assume that A generates a C0-semigroup of contractions T (t) on
H. Then T (t) is exponentially stable if and only if

ilR ∩ σ(A) = ∅, (5.1)

lim
β→∞

‖(iβ − A)−1‖ < ∞. (5.2)

Theorem 5.2. The C0-semigroup of contractions S(t) generated by A (see Theo-
rem 4.1) is exponentially stable.

Proof: If (5.2) is false then there exists a sequence {βn} ⊂ lR with βn → ∞ and a
sequence {Xn} ⊂ D(A) with ‖Xn‖H = 1 ∀n such that

lim
n→∞

‖(iβn −A)Xn‖H = 0. (5.3)

Using the components related to the thermoelastic beam equations it can be show
that (5.3) yields the contradiction ‖Xn‖H → 0 as n → ∞. Similarly, if the condition
(5.1) is false, then there exist β ∈ lR and a sequence {Xn} ⊂ D(A) with ‖Xn‖H =
1 ∀n, such that

lim
n→∞

‖(iβ −A)Xn‖H = 0. (5.4)

By repeating the same arguments we get the contradiction ‖Xn‖H → 0. For
complete details on these proofs, we refer the reader to [3]. Hence A satisfies
conditions (5.1) and (5.2) and therefore, the C0-semigroup of contractions S(t)
generated by A is exponentially stable.

6. Conclusions

In this article we considered a system of two thermoelastic Euler-Bernoulli beams
coupled to a joint through two legs. By means of semigroup theory the well posed-
ness of the system was proved and its exponential stability was derived. It is
certainly of much interest to develop numerical approximations for our state-space
model (4.5). Such numerical schemes will be useful in simulation and identification
studies to predict and better understand the structural and thermal responses of
space-borne observation systems. Efforts in this direction are already under way.
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