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ADMISSIBLE RESTRICTION OF HOLOMORPHIC DISCRETE

SERIES FOR EXCEPTIONAL GROUPS
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Abstract. In this note, we give results about the restriction of a holomorphic
discrete series of an exceptional simple Lie real group to a subgroup.

1. Introduction

A basic problem in representation theory of Lie groups is to derive “branching
laws”. By this we mean, for a given unitary irreducible representation of an ambient
group G, consider its restriction to a fixed subgroup H and find the decomposition
as a direct integral, and in particular compute the multiplicity of each irreducible
factor of the restriction. There is a vast literature on this subject, and here we just
direct the reader’s attention to the extensive reviews of [13], [14] and references
therein. In this note, we consider a holomorphic discrete series of a connected
simple exceptional Lie group, and determine whether or not it has an admissible
restriction to a given closed connected reductive subgroup H ⊂ G. Let us recall
that a unitary representation of a topological group H is admissible if it is a dis-
crete Hilbert sum of irreducible unitary sub-representations and each irreducible
summand occurs with finite multiplicity.

Holomorphic discrete series are associated to Hermitian symmetric spaces. We
consider a Hermitian symmetric space G/K, where G is a simple connected real
Lie group G (which we shall assume for convenience, to minimize notations, with
finite center), and K a maximal compact subgroup. For a Lie group we denote its
Lie algebra by the corresponding German lower case letter. We write the Cartan
decomposition of g as g = k ⊕ s. Thus s, the tangent space of G/K at the origin,
is provided with a complex structure J ∈ HomR(s, s) corresponding to a choice of
square root i ∈ C. To denote the complexification of a vector space, we add the
subscript C. We denote by s+ and s− the eigenspaces of J in sC with respective
eigenvalues {+i,−i}: a linear form f ∈ HomR(s, C) is C-linear if and only if its
linear extension to sC is zero on the subspace s−. Moreover, sC = s+ ⊕ s−, is the
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decomposition of sC as a direct sum of two irreducible K-modules, dual to each
other.

Recall (see [7]) that the center z of k is one dimensional, and that we can choose
uniquely a basis (denoted by the same letter J) of z whose adjoint action in s is the
complex structure J of the tangent space at the origin of G/K. We write kss = [k, k].
We have g = kss ⊕ RJ ⊕ s, and gC = kssC ⊕ CJ ⊕ s+ ⊕ s−. Correspondingly, we
have K = KssZ, where Z is isomorphic to SO(2, R), and Kss ∩ Z is finite.

An irreducible unitary representation of G is called holomorphic if its underlying
Harish-Chandra module has a non zero vector v which is annihilated by s−. An
irreducible irreducible unitary representation of G is called a discrete series repre-
sentation if its coefficients are square integrable on G with respect to a given Haar
measure.

The exceptional connected simple Lie groups whose quotient by a maximal com-
pact subgroup carries an invariant complex structure has been classified by E. Car-
tan. They are the connected groups with Lie algebras e6(−14) and e7(−25). The
respective complexified Cartan decompositions are :

e6 = e6(−14)C
= so(10, C) + CJ + (s+ ⊕ s−).

Here, s± are the half spin 16-dimensional representations.

e7 = e7(−25)C
= e6 + CJ + (̟1 ⊕ ̟6).

Here, ̟⋆ are the two fundamental representations of dimension twenty seven of
the complex simple algebra e6.

In this paper, for g = e6(−14) and g = e7(−25) we give list closed connected
reductive subgroups H of G such that an holomorphic discrete series of G has an
admissible restriction to H . In [6], we gave several results concerning restrictions
of more general discrete series for more general reductive groups, in particular,
we introduced a sufficient condition —we call it condition (C)— which implies
admissibility of restriction, and allows to compute multiplicities of restrictions by
mean of a Blattner-Kostant type formula involving a partition function. However,
there exist many cases of admissibility where condition (C) is not satisfied —many
examples are given in [6], all of them for compact groups H . One of our interests
in studying precisely what happens for holomorphic discrete series of exceptional
groups, besides our wish to understand the full picture, is to find other interesting
examples. In particular, we give several non compact examples.

We would like to point out that in his Ph.D. thesis [21], S. Simondi has obtained
the results on admissibility when rank of L is equal to rank of K, they follow from
Theorem 1. His technique is different from the one is used in this note.

The author would like to express his gratitude to Michel Duflo for the enlighten
comments on the topics of this note.
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2. Some general results

2.1. A criterium for admissibility of restriction. We recall some results which
we will use in our proofs. Let G be a connected simple Lie group with finite center,
choose a maximal compact group K, and Cartan decomposition g = k ⊕ s. We
denote by KC the corresponding complex group. Let H be a closed connected
reductive subgroup. We assume that L := H ∩ K is a maximal compact subgroup
of H .

In [6], we prove a result which reduces the problem of admissibility of restriction
of discrete series to the case of compact subgroups :

Proposition 1. Let (π, V ) be a discrete series for G. Then its restriction to H is
admissible if and only if its restriction to L is admissible.

There are many criteria for admissibility of the restriction to a subgroup of an
irreducible unitary representation (π, V ) of G (see e. g. [13], [14]). When the
subgroup is compact, we will use a criterium in term of the associated variety
which we explain. We denote by (π, Vf ) the representation of gC in the space of
K-finite vectors of V . Vogan [26] defined the associated variety V(Vf ), which is
a Zariski-closed KC-invariant cone of dual s∗C of sC. Let us denote by C[V(Vf )]
the ring of regular functions on V(Vf ). The following criterium is known (see in
particular Huang and Vogan [9], Kobayashi [12], Vergne [25]).

Proposition 2. Let (π, V ) be an irreducible unitary representation of G. Then its
restriction to L is admissible if and only if C[V(Vf )]LC = C, that is the only LC

invariant regular functions on V(Vf ) are the constant.

Assume now that G/K is hermitian symmetric. The criterium is particularly
pleasant for holomorphic discrete series (see [12], [6], [25]) :

Proposition 3. Let (π, V ) be a holomorphic discrete series of G. Then V(Vf ) is
the orthogonal of s− in s∗C. Thus its restriction to L is admissible if and only if
S[s+]LC = C.

The most obvious example of proposition 3 is the group K. The restriction
to K of an holomorphic discrete series is admissible (in fact it is true for any
unitary irreducible representation of G), and we have also S[s+]KC = C. Thus our
problem of restriction is a particular case of a well known problem in invariant
theory (see [22],[23]): Find pairs of connected reductive groups complex linear
groups A ⊂ B ⊂ GL(s+) such that S[s+]A = S[s+]B.

Remark 1. If L is semi-simple, the condition S[s+]LC = C holds if and only if LC

has an open orbit in s+.

The subgroups Z and Kss of K deserve a special attention. For completeness,
we recall the following well known result (which can serve as an illustration of
proposition 3)

Proposition 4. Let (π, V ) be a holomorphic discrete series of G. Its restriction
to Z (and also to any closed subgroup H ⊂ G which contains Z) is admissible.

Rev. Un. Mat. Argentina, Vol 49-2



70 J. VARGAS

To study the restriction to Kss, recall that Hermitian symmetric spaces G/K
are divided in two categories: the tube type, and the non tube type. One of the
many equivalent definitions of tube type is (see [7]):

The Hermitian symmetric spaces G/K is of non tube type if and only if S[s+]KssC =
C .

We will also say that g is of tube type. Hermitian symmetric spaces of tube type
are related to simple Jordan algebras [7]; They are interesting because they have
associated Zeta functions. However, from our point of view, non tube type is more
interesting:

Proposition 5. Let (π, V ) be a holomorphic discrete series of G. Its restriction
to Kss is admissible if and only if G/K is not of tube type.

The list of Hermitian symmetric spaces G/K of tube type is well known (see
[7]). Among the two exceptional ones, e6(−14) is not of tube type, and e7(−25) is of
tube type. Thus we have the following preliminary results, which explains why the
case e6(−14) is richer.

Theorem 1. Let (π, V ) be a holomorphic discrete series of G with Lie algebra
e6(−14). Its restriction to Kss is admissible.

Theorem 2. Let (π, V ) be a holomorphic discrete series of G with Lie algebra
e7(−25). Its restriction to Kss (and to any of its closed subgroups L) is not admis-
sible.

2.2. Condition (C). We recall what is condition (C) of [6] in the particular case
of a holomorphic discrete series. We choose a Cartan subgroup T of K, and denote
by Φ ⊂ it∗ be set the roots of T in gC. We choose a positive system Ψ ⊂ Φ such
that the set of non compact roots Ψn is exactly the set of roots of T in s+. We
denote by C ⊂ it∗ the closed convex pointed cone generated by Ψn.

We assume that U := L ∩ T is a Cartan subgroup of L. Let u⊥ ⊂ t∗C be the
orthogonal of u. Here is condition (C):

(C) : C ∩ u⊥ = {0}.

We rephrase condition (C). Let C⊤ ⊂ t the cone dual to C/i ⊂ t∗; It is a closed
convex cone whose interior C⊤

int contains J . Then condition (C) is equivalent to
condition (C’):

(C′) : C⊤
int ∩ u 6= {0}.

Condition (C) depends only on the maximal torus∗ U of L. We have:

Theorem 3. Let (π, V ) be a holomorphic discrete series of G. Let U ⊂ T be a
compact connected torus. Then the restriction of (π, V ) to U is admissible if and
only if condition (C) holds.

∗For non holomorphic discrete series, it is usually not true.
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Proof. As a KC-module, V is isomorphic to F ⊗ S[s+], where F is an irreducible
representation of KC. Thus, as a T module, it is a finite direct sum of Cµ ⊗ S[s+],
where Cµ is a one dimensional representation of T with weight µ ∈ it∗. The
weights of T in S[s+] are exactly the weights of T contained in C, occurring with
finite multiplicity. The theorem follows. �

If condition (C) is satisfied for a torus U ⊂ T , it is also satisfied for some one
dimensional torus U1 ⊂ U . Then U1 satisfies condition (C) if and only if u1 has
a basis B which belongs to C⊤

int. In particular, Z satisfies condition (C) (which is
a way of proving proposition 4), and also all one dimensional torus U1 not to far
away from Z.

On the other hand, it is easy to see that condition (C) is never satisfied for
l ⊂ kss. Thus, for g = e6(−14), the group Kss is an easy example where there is
admissibility and condition (C) does not hold.

2.3. Formulation of the problem. Let us explain more precisely what has to
be done in general. We fix a compact connected semisimple group D ⊂ Kss with
a Cartan subgroup A ⊂ T . Let B be the connected component group of the
centralizer of D in T . Then AB is a Cartan subgroup of DB.

Consider a connected closed groups L ⊂ K such that Lss = D. Up to conju-
gation, it will be of the form L = BLD, where BL, the connected center of L, is
a closed connected subgroup of B. Note that B contains the center Z of K. For
clarity, we distinguish two cases.

First, assume there is admissible restriction of holomorphic discrete series of G
to D — or equivalently, that s+ is a D-prehomogeneous space. Then there will be
admissible restriction to any subgroup H containing D.

We assume now that the restriction of holomorphic discrete series of G to D is
not admissible. Since b contains J , the restriction of a holomorphic discrete series
(π, V ) of G to the group BD is admissible. Let us choose a positive Weyl chamber
Γ ⊂ i(a + b)∗ for the group BD. Let CD,V ⊂ Γ the set of highest weights of the
irreducible representations of BD which occur in V , and CD ⊂ Γ the asymptotic
cone of CD,V . It is known that CD is a closed convex polyhedral cone, independent
of V , contained in the projection on i(a + b)∗ of the cone C ⊂ it∗. We identify the
orthogonal a⊥ of b in a + b to b∗. We consider the cone Cb

D = CD ∩ a⊥ ⊂ ib∗. The
fact that the restriction of holomorphic discrete series of G to D is not admissible
is equivalent to the fact that the cone Cb

D is not reduced to {0}. We consider its
dual cone Cb⊥

D ⊂ b, and its interior Cb⊥
D,int. Note that J belongs to Cb⊥

D,int.

Theorem 4. Let (π, V ) be a holomorphic discrete series of G. Suppose that its
restriction to D is not admissible. Then the restriction of (π, V ) to L is admissible
if and only if one of the two following equivalent conditions hold:

(CL) : Cb
D ∩ b⊥L = {0}.

or
(C′

L) : Cb⊤
D,int ∩ bL 6= {0}.
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Thus, discrete series of G have admissible restriction to L if and only if L contains
a closed subgroup L1 = B1D, where b1 ⊂ b is a one-dimensional subspace which
intersects Cb⊤

D,int.

Theorem 4 suggests a method to find all closed connected reductive groups
H ⊂ G for which there is admissible restriction of holomorphic discrete series.

1. For each closed connected semisimple subgroup D ⊂ Kss, determine whether
there is admissibility of restriction of holomorphic discrete series. This step is not
too difficult, for instance this is never the case when g is of tube type, and we will
give below the complete answer for g = e6(−14).

2. When it is not the case, compute (with the notation as above) the algebra b

and the cone Cb⊥
D ⊂ b. This will give the list of closed connected subgroup L ⊂ K

such that Lss = D for which there is admissibility of restriction of holomorphic
discrete series.

For each particular D, this is probably a feasible task, and we give several
examples. However, we do not know an useful statement for all D.

3. Given L as in 2, list the closed connected reductive subgroups H ⊂ G such
that H ∩ K = L.

2.4. Some cones. We use the notations of the previous subsection. We assume
moreover that T normalizes D, or, equivalently, that T = AB. This means that
dC is the sum of the root spaces for a certain subset ΦD of roots, and of the space
aC generated by the corresponding coroots. We give some bounds on the cone CD.

For this we need to recall some important facts proven in [20]. Let r be the real
rank of g. There exists a set {γ1, . . . , γr} ⊂ Ψn of pairwise strongly orthogonal roots
such that the highest weights of the representations of KC occurring in S[s+] are
exactly those which belong to the cone generated by γ1, γ1+γ2, . . . , γ1+γ2+· · ·+γr.
We recall that γ1 is the highest weight of the KC-module s+, that γ2 is the maximal
element (for a suitable order) among the roots orthogonal to γ1, etc...

This means that CKss
is the cone generated by γ1, γ1 +γ2, . . . , γ1 +γ2 + · · ·+γr.

Moreover, CD is a polyhedral cone such that CKss
⊂ CD ⊂ C.

For later use, we introduce some related notations. We will label the simple
compact roots as α1,. . . , αd, and the unique simple non compact root will be
denoted by β. Note that γ1 is the corresponding fundamental weight, and that
γ1 = woβ, where wo is the longest element of the Weyl group of KC.

2.5. Non compact H. For this subsection G denotes one of the groups E6(−14),
E7(−25). We fix a holomorphic discrete series representation (π, V ) for G. Then,

Theorem 5. For a maximal connected reductive subgroup H of G, (π, V ) restricted
to H is admissible if and only if the center of K is a subgroup of H.

When H is so that (G, H) a symmetric space, the theorem is a result of Kobayashi,
[12], [15].

In [3] is shown that a maximal connected subgroup of G is either parabolic or
reductive. For sake of completeness we list the maximal reductive subalgebras of
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g. The classification of maximal connected subgroups of G was completed by [16].
Some of the subalgebras has a compact abelian one dimensional factor which may
not be the center of k.

e6(−14) e7(−25)

so(10) ⊕ z e6 ⊕ z

so(2, 8) ⊕ so(2) e6(−26) ⊕ R

so⋆(10) ⊕ so(2) e6(−14) ⊕ so(2)
su(5, 1) ⊕ sl(2, R) so⋆(12) ⊕ su(2)
su(2, 4) ⊕ su(2) su⋆(8)
f4(−20) su(6, 2)
sp(2, 2) so(10, 2) ⊕ sl(2, R)
g2 ⊕ su(2, 1) g2 ⊕ sp(3, R)
su(2, 1) ⊕ su(2, 1) ⊕ su(3) f4(−20) ⊕ sl(2, R)

Proof. The subgroups H listed on the first seven lines corresponds to symmet-
ric pairs (G, H). The result follows from Kobayashi [12]. Under his hypothesis,
Kobayashi has shown that the multiplicity function is bounded. We do not know
if this fact holds for other pairs (G, H).

For g2 ⊕ su(2, 1) we have that the center of the maximal compact subgroup of
e6(−14) is contained in su(2, 1). Hence, owing to Proposition 4 there is admissible
restriction to the subgroup. In fact, center of K is contained in SU(2,1). For this,
we consider the usual imbedding Spin(7) × Spin(3) as a subgroup of Spin(10).
Then, s+ restricted to Spin(7) is equivalent to twice the spin representation of
Spin(7).
Counting dimensions, we get s+ restricted to G2 ⊂ Spin(7) is equivalent to twice
V7 ⊕ C. Here, V7 (resp. C) is the seven dimensional (resp. one dimensional)
irreducible representation for G2. It follows from a computation that the Cartan
decomposition of su(2, 1) is spin(3) ⊕ z ⊕ p+ ⊕ p− where p+ is a subspace of the
two copies of the trivial representation. From this we get that the center of k is
contained in su(2, 1).

The maximal compact subgroup of G2 × Sp(3, R) is G2 × U(3). We show the
center of U(3) is the center of K. In fact, in [16] is stated G2 ×SU(3) is a maximal
subgroup of E6. Hence, the projection of the center of U(3) on the direction of E6

is trivial. Proposition 4 yields (π, V ) has admissible restriction to G2 × Sp(3, R).
Next, we dealt with f4(−20) + sl2 in e7(−25). Let β denote the noncompact simple

root for the holomorphic system in e7(−25) and let α be the compact simple root
adjacent to β. We claim that of sl2∩k is spanned by i(Λβ−Λα). The root system for
the immersion of e6(−14) in e7(−25) is spanned by β +α and the five compact simple
roots different from α. Hence, i(Λβ−Λα) belongs to the centralizer of e6(−14). Since,
[16], f4(−20) is a subalgebra of e6(−14), and the centralizer of f4(−20) in e7 is sl2 [1],
the claim follows. Thus, a maximal compact subgroup of F4(−20)×SL2 is Spin(9)×
exp(Ri(Λβ −Λα)). Moreover, the so(2) factor of the immersion spin(10)⊕ so(2) in
e6 is spanned by iΛα.
Now, ̟1 restricted to Spin(10) is equivalent to s+ ⊕ C10 ⊕ CYβ . Also, Λα takes
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on the values 2, 1, 0 on each irreducible factor. Hence Λβ − Λα takes on the values
−1, 0, 1. Therefore, Spin(9)× exp(Ri(Λβ − Λα)) fix nonzero vectors in ̟1.

�

It may happen there is admissible restriction to a non compact subgroup which
is not a maximal subgroup. In fact, we have,

Theorem 6. A holomorphic discrete series for E6(−14) has admissible restriction
to any of the subgroups

SO⋆(10), SO(2, 8), SU(4, 1) × SU(2).

We notice that none of the subgroups listed above contain the center of K. A
consequence of Theorem 2 and Theorem 8 is

Theorem 7. If a holomorphic Discrete Series of an exceptional group has an
admissible restriction to H, then center of L is a torus.

Theorem 7 does not hold for classical groups because Proposition 3 yields that
holomorphic Discrete series for SU(2n, 1) has an admissible restriction to Sp(n).

3. The case g = e6(−14)

In this section, g = e6(−14). Following [8], we label the Dynkin diagram as
follows.

α4α2α1 α3 β

α5

The real rank is 2. We have γ1 = α1 + 2α2 + 3α3 + 2α4 + 2α5 + β, and γ2 =
α1 + α2 + α3 + α4 + β.

We provide it∗ with the invariant scalar product for which (α, α) = 2 for each
root.This scalar product produces an isomorphism λ → Hλ from it∗ to it, and Hα

is the coroot corresponding to α.
Let ̟β be the fundamental weight corresponding to β. We have ̟β = 1

3 (2α1 +
4α2 + 6α3 + 5α4 + 3α5 + 4β). We note that iH̟β

= J .
Since, by theorem 1, there is admissible restriction to Kss, we consider proper

maximal subgroups of Kss. We show

Theorem 8. Let (π, V ) be a holomorphic discrete series representation for E6(−14)

Then,
i) (π, V ) restricted to Kss = Spin(10) is admissible.

ii) Let U(5) → SO(10) denote the usual imbedding and let Û(5) denote the

analytic subgroup of Spin(10) associated to u(5), then the restriction of π to Û(5)
is admissible.

iii) For any other maximal subgroup L of Kss, (π, V ) restricted to L is not
admissible.

iv) Let L be a closed proper subgroup of Û(5). Then π restricted to L is not an
admissible representation.
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Proof. To begin with, we recall the Cartan decomposition of e6(−14) = so(10) +

so(2)⊕ s+⊕ s−, where s+, s− are the two spin representations of so(10). Let ŜU(5)

(resp. Z5) denote the simple factor of Û(5) (resp. the center of U(5)).

Owing to Proposition 3, Theorem 8 follows from:

a) S[s+]Spin(10) = C, b)S[s+]Û(5) = C,
c) S[s+]L 6= C for a maximal subgroup L of Kss not locally

isomorphic to U(5).

d) For subgroup L1 ⊆ Z5 and maximal subgroup L2 ⊆ ŜU(5), or

L1 = {e} and L2 = ŜU(5). Then S[s+]L1L2 6= C.

In [2], we find a proof of S[s+]Spin(10) = C. Thus a) follows.
To continue, we fix an orthogonal basis ǫ1, · · · , ǫ5 of it⋆ so that a system of positive
compact roots is {ǫi ± ǫj , i < j} and the weights of the representation s+ are
1
2 (±ǫ1 ± ǫ2 ± ǫ3 ± ǫ4 ± ǫ5) with and odd number of +. The positive roots of u(5)
are {ǫi − ǫj , i < j}. Let J5 denotes an infinitesimal generator of Z5 chosen so that
J5(ǫ1 + · · · ǫ5) = i. The u(5)−module s+ decomposes as

V 1
2 (ǫ1+ǫ2+ǫ3+ǫ4+ǫ5) ⊕ Vǫ1−

1
2 (ǫ1+ǫ2+ǫ3+ǫ4+ǫ5) ⊕ Vǫ1+ǫ2+ǫ3−

1
2 (ǫ1+ǫ2+ǫ3+ǫ4+ǫ5).

In [10] page 98, we find a proof that

(SL(2m + 1), Λ1(C2m+1)⋆ ⊕ Λ2(C2m+1))

is a prehomogeneous space. Hence, SU(5)C has an open orbit in

Vǫ1 ⊕ Vǫ1+ǫ2+ǫ3

Therefore, Û(5)C has an open orbit in s+. Hence, S[s+]Û(5) = C and b) follows.
Since, SU(5) acts trivially on the factor V 1

2 (ǫ1+ǫ2+ǫ3+ǫ4+ǫ5), it follows d) for L1 =

{e}, L2 = ŜU(5). Since, an element of V 1
2 (ǫ1+ǫ2+ǫ3+ǫ4+ǫ5) times un element of any

of the other irreducible factors is invariant under Z5 we obtain d) for the other
extreme case.

In order to show c) we list, up to conjugation, the maximal connected closed
subgroups of SO(10). These subgroups have been classified by Dynkin in [5]. They
are:

• SO(r) × SO(s) for r + s = 10, U(5).
• L ⊆ SO(10), for L a connected, simple subgroup so that R10 is an abso-

lutely irreducible representation.

To continue, we assume S[s+]L = C for each maximal subgroup L of Spin(10) not
locally isomorphic to U(5). From this we derive a contradiction.
As before, s+ : Spin(10) −→ Gl(s+) denote the half spin representation. To begin
with, we consider ρ : L −→ Spin(10) an irreducible, simple, maximal subgroup.
Then(s+ ◦ ρ, s+) decomposes as the sum irreducible L−modules

V1 ⊕ · · · ⊕ Vr .
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We set ρj equal to the projection onto Vj followed by s+◦ρ. Owing to our hypothesis,

it follows S[Vj ]
ρj(L) = C for j = 1, · · · , r. In [2], [10], [11] [17] we find the list

of triples (L, ρj , Vj) where: L is a simple algebraic group, ρj is an irreducible

representation and S[Vj ]
ρj(L) = C. The list is:

(An, Λ1, C
n+1), (A2n, Λ2, C

n(2n+1)), (Cn, Λ1, C
2n).

We first verify none of the Vj is equivalent to (Cn, Λ1). Since the ten dimensional
irreducible representation of SL2 is symplectic, we have n ≥ 2. For L of type
Cn, n ≥ 2 and r = 1 we obtain n = 8, a contradiction. For L of type Cn, n ≥ 2 and
r ≥ 2 the symplectic form lead us to S[s+]L 6= C, another contradiction.

For L of type An, n ≥ 2, if at least one Vj is equivalent to (A2k, Λ2), then n = 2k and
k(2k+1) ≤ 16, hence, L is one of A2, A4. SL(3) has two irreducible representations
of dimension ten whose highest weight are (3, 0, 0) = 3Λ1,−wo(3Λ1), neither of
these two representations are orthogonal [3]. SL(5) also has two ten dimensional
representations of highest weight Λ2 or Λ3, [3] neither of them is orthogonal.
We are left to analyze the situation all Vj are equivalent to (An, Λ1), n ≥ 2. Since
L is a subgroup of Spin(10) we have n ≤ 5. The case n even was analyzed in
the previous paragraph. The ten dimensional irreducible representations of SL(4)
have highest weight 2Λ1 or 2Λ3 they are not orthogonal. SL(6) has no irreducible
representation of dimension ten.

To conclude the proof of c) we show

S[s+]so(p)⊕so(q) 6= C for p ≥ 1, q ≥ 1, p + q = 10.

We recall the following facts, for a proof, see [1], [3] Table 1.

• A half spin representations (s±) for Spin(2k) restricted to
Spin(2k − 1) is equivalent to the spin representation (s).

• The spin representation for Spin(2k+1) restricted to Spin(2k) is equivalent
to the sum of the two half spin representations.

• An irreducible spin representation for Spin(9), Spin(8), Spin(7) is orthog-
onal.

• An irreducible spin representation for Spin(5), Spin(4) is symplectic.

For p = 9, q = 1, s+ restricted to Spin(9) is equivalent to the spin representa-
tion of Spin(9). Since the spin representation of Spin(9) is orthogonal, we obtain
S[s+]so(9)⊕so(1) 6= C.

For p = 8, q = 2 s+
|Spin(8)

= s+ ⊕ s−, besides Spin(2) acts on s± by ± 1
2 . Let b±

denote a Spin(8) invariant quadratic form in s±. Then b+b− is invariant under
Spin(8) × Spin(2).

For p = 7, q = 3, s+
|Spin(7)

= s ⊕ s. Hence, s+
|Spin(7)×Spin(3)

= s ⊠ C2. In [11] it is

shown it is not an irreducible prehomogeneous vector space.

For p = 6, q = 4, s+
|Spin(6)

= (s+ ⊕ s−) ⊕ (s+ ⊕ s−).

Here, L = SL(4)×SL(2)+×SL(2)− and the restriction of s+ to L is equivalent to

C4
⊠ C2

⊠ C ⊕ (C4)⋆
⊠ C ⊠ C2
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Hence, the restriction of s+ to L is equivalent to

C4×2 ⊕ C4×2

with action

(T, A, B)−1(X, Y ) = (T−1XA, T tY B)

T ∈ SL(4), A, B ∈ SL(2), X, Y ∈ C4×2

An invariant polynomial function is p(X, Y ) = det(Y tX). By duality S[s+]SO(4)×SO(6)

6= C. Actually, the invariant polynomial functions are the polynomial ring in p.

Finally we examine p = q = 5. Here, the restriction of s+ to Spin(5) × Spin(5) is
equivalent to s ⊠ s. In [11] Apendix, it is shown that this representation is not a
prehomogeneous vector space. Hence,
S[s+]Spin(5)×Spin(5) 6= C and we have verified c).

We now show d). For this we recall the work of [5] on the maximal subgroups
of SU(5). Up to conjugation, the maximal connect subgroups of SU(5) are among
the subgroups

SO(5), S(U(k) × U(5 − k)) k = 1, 2, 3, 4, (SU(2), ρ)

Here, ρ is the five dimensional irreducible representation of SU(2).
Either the representation of SO(5) or SU(2) is orthogonal, [3], hence, an invariant
for Z5 times one of these two groups, is given by an element of V 1

2 (ǫ1+ǫ2+ǫ3+ǫ4+ǫ5)

times the invariant quadratic form.
s+ restricted to SU(4) × SU(1) is equivalent to

C ⊕ (C4 ⊕ Ce5) ⊕ (Λ3(C4) ⊕ Λ2(C4) ∧ Ce5).

The representation of S(U(4) × U(1)) in C4 ⊕ Λ3(C4) is orthogonal, the action of
J5 in

V 1
2 (ǫ1+ǫ2+ǫ3+ǫ4+ǫ5) ⊕ Vǫ1−

1
2 (ǫ1+ǫ2+ǫ3+ǫ4+ǫ5) ⊕ Vǫ1+ǫ2+ǫ3−

1
2 (ǫ1+ǫ2+ǫ3+ǫ4+ǫ5)

is respectively
5

6
i, −

3

6
i,

1

6
i.

Hence, after multiplying a suitable power of the invariant quadratic form times
a power of an element in V 1

2 (ǫ1+ǫ2+ǫ3+ǫ4+ǫ5) we obtain an invariant for the group

Z5S(U(4) × U(1)).
The decomposition of s+ under SU(3) × SU(2) is

C ⊠ C ⊕ (C3
⊠ C ⊕ C ⊠ C2)

⊕ (Λ3(C3) ⊠ C ⊕ Λ2(C3) ⊠ Λ1(C2) ⊕ Λ1(C3) ⊠ Λ2(C2)).

Applying duality of representations we find in S[C2 ⊕ Λ1(C2)] an element of de-
gree two

∑
r XrYr, which is U(2)−invariant. Also, in S[C3 ⊕ Λ2(C3)] there is an
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invariant, under U(3), of degree two
∑

j ZjWj . It readily follows that
∑

r

(1 ⊗ Xr)
∑

j

(Zj ⊗ 1)(Wj ⊗ Yr)

is invariant under U(3) × U(2). As for the previous case it follows there is an
invariant under Z5S(U(3) × U(2)). Thus, we have verified d) and we conclude the
proof of Theorem 8.

�

Finally, we analyze the admissibility of (π, V ) restricted to specific reductive
subgroups of E6(−14). Let ρj denote the fundamental weight of spin(10) associated
to αj . The centralizer of ρj in spin(10) is equal to a semisimple Lie algebra rj plus
the line spanned by Hρj

.
We fix a, b real numbers, j runs from 1 to 5
We define lj,a,b to be the subalgebra spanned by rj together with the vector aJ +
bHρj

. We only consider a, b such that the analytic subgroup associated to lj,a,b

is compact. Either l4,a,b, or l5,a,b is isomorphic to u(5). l4,0,1, l5,0,1 are the usual
two immersions of u(5) in spin(10). From now on, we write Tj,a,b for the analytic
subgroup of K associated to R(aJ + bHρj

).

Proposition 6. A holomorphic discrete series for E6(−14) has an admissible re-
striction to the subgroups:

T1,a,b iff |a| > |
b

2
| ; T2,a,b iff |a| > |b|;

T3,a,b iff |a| > |
3b

2
| ; T4,a,b iff (a −

5b

4
)(a +

3b

4
) > 0;

T5,a,b iff (a +
5b

4
)(a −

3b

4
) > 0;

L4,a,b iff (a −
5b

4
) 6= 0 ;

L5,a,b iff (a +
5b

4
) 6= 0 .
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