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HAAR SHIFTS, COMMUTATORS, AND HANKEL OPERATORS

MICHAEL LACEY

Abstract. Hankel operators lie at the junction of analytic and real-variables.
We will explore this junction, from the point of view of Haar shifts and com-
mutators.

1. Haar Functions

We consider operators which satisfy invariance properties with respect to two
well-known groups. The first group we take to the translation operators

Try f(x) := f(x− y) , y ∈ R . (1.1)

Note that formally, the adjoint operator is (Try)
∗ = Tr−y. The collection of oper-

ators {Try : y ∈ R} is a representation of the additive group (R,+).
It is an important, and very general principle that a linear operator L acting on

some vector space of functions, which is assumed to commute with all translation
operators, is in fact given as convolution, in general with respect to a measure or
distribution, thus,

L f(x) =

∫
f(x− y) µ(dy) .

For instance, with the identity operator, µ would be the Dirac pointmass at the
origin.

The second group is the set of dilations on Lp, given by

Dil
(p)
λ f(x) := λ−1/pf(x/λ) , 0 < λ, p <∞ . (1.2)

Here, we make the definition so that ‖f‖p = ‖Dil
(p)
λ f‖p. The scale of the dilation

Dil
(p)
λ is said to be λ, and these operators are a representation of the multiplicative

group (R+, ∗). The Haar measure of of this group is dy/y.
Underlying this subject are the delicate interplay between local averages and

differences. Some of this interplay can be encoded into the combinatorics of grids,
especially the dyadic grid, defined to be D := {2k(j, j + 1) : j, k ∈ Z}.

The Haar functions are a remarkable class of functions indexed by the dyadic
grid D. Set

h(x) = −1(−1/2,0) + 1(0,1/2) ,
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hJ
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Figure 1. Two Haar functions.

a mean zero function supported on the interval (−1/2, 1/2), taking two values, with
L2 norm equal to one. Define the Haar function (associated to interval I) to be

hI := Dil2I hI (1.3)

Dil
(p)
I := Trc(I) Dil

(p)
|I| , c(I) = center of I. (1.4)

Here, we introduce the notion for the Dilation associated with interval I.
The Haar functions have profound properties, due to their connection to both

analytical and probabilistic properties. An elemental property is that they form a
basis for L2(R).

1.5. Theorem. The set of functions {1[0,1]} ∪ {hI : I ∈ D, I ⊂ [0, 1]} form

an orthonormal basis for L2([0, 1]). The set of functions {hI : I ∈ D} form an
orthonormal basis for L2(R).

2. Paraproducts

Products, and certain kind of renormalized products are common objects. Let
us explain the renormalized products in a very simple situation. We begin with
the definition of a paraproduct, as a bilinear operator. Define

h0
I = hI , h1

I = |h0
I | = Dil2I 1[−1/2,1/2] . (2.1)

The superscript 0 indicates a mean-zero function, while the superscript 1 indicates
a non-zero integral. Now define

Pǫ1,ǫ2,ǫ3(f1, f2) :=
∑

I∈D

〈f1, hǫ1I 〉√
|I|

〈f2, hǫ22 〉hǫ3I , ǫj ∈ {0, 1}. (2.2)

For the most part, we consider cases where there is one choice of ǫj which is equal
to one, but in considering fractional integrals, one considers examples where all ǫj
are equal to one. The triple (ǫ1, ǫ2, ǫ3) is the signature of the Paraproduct.

We have chosen this definition for specificity, but at the same time, it must be
stressed that there is no canonical definition, and the presentation of a paraprod-
uct can differ in a number of ways. Whatever the presentation, its single most
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important attribute is its signature. Indeed, in Proposition 5.3, we will see that a
paraproduct arises from a computation that, while not of the form above, is clearly
an operator of signature (0, 0, 0). All the important prior work on commutators,
see [1, 2, 6, 7, 9] can be interpreted in this notation. (The Lectures of M. Christ [5]
are recommended as a guide to this literature.) For instance, in the notation of
Coifman and Meyer [6, 7], a Pt denotes a 1, while a Qt denotes a 0.

Why the name paraproduct? This is probably best explained by the identity

f1 · f2 = P1,0,0(f1, f2) + P0,0,1(f1, f2) + P0,1,0(f1, f2) . (2.3)

Thus, a product of two functions is a sum of three paraproducts. The three in-
dividual paraproducts in many respects behave like products, for instance we will
see that there is a Hölder Inequality. And, very importantly, in certain instances
they are better than a product.

To verify (2.3), let us first make the self-evident observation that

1

|J |

∫

J

g(y) dy =
〈g, h1

I〉√
|I|

=
∑

J : J)I

〈g, hJ〉hJ(I) , (2.4)

where hJ(I) is the (unique) value hJ takes on I. In (2.3), expand both f1 and f2
in the Haar basis,

f1 · f2 =

{
∑

I∈D

〈f1, hI〉hI
}

·
{

∑

J∈D

〈f2, hJ〉hJ
}
.

Split the resulting product into three sums, (1) I = J , (2) I ( J (3) J ( I. In the
first case,

∑

I,J : I=J

〈f1, hI〉〈f2, hJ〉(hI)2 = P0,0,1(f1, f2) .

In the second case, use (2.4).

∑

I,J : I(J

〈f1, hI〉〈f2, hJ〉hI · 1
|I|

∫

I

hJ (y) dy =
∑

I

〈f1, hI〉
〈f2, h1

I〉√
|I|

hI

= P0,1,0(f1, f2) .

And the third case is as in the second case, with the role of f1 and f2 switched.
A rudimentary property is that Paraproducts should respect Hölder’s inequality,

a matter that we turn to next. This Theorem is due to Coifman and Meyer [6, 7].
Also see [14, 17, 18].

2.5. Theorem. Suppose at most one of ǫ1, ǫ2, ǫ3 are equal to one. We have the
inequalities

‖Pǫ1,ǫ2,ǫ3(f1, f2)‖q . ‖f1‖p1‖f2‖p2 , 1 < p1, p2 <∞ , 1/q = 1/p1+1/p2 . (2.6)
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3. Paraproducts and Carleson Embedding

We have indicated that Paraproducts are better than products in one way. These
fundamental inequalities are the subject of this section. Let us define the notion
of (dyadic) Bounded Mean Oscillation, BMO for short, by

‖f‖BMO = sup
J∈D

[
|J |−1

∑

I⊂J

〈f, hR〉2
]1/2

. (3.1)

3.2. Theorem. Suppose that at exactly one of ǫ2 and ǫ3 are equal to 1.
∥∥P0,ǫ2,ǫ3(f1, ·)

∥∥
p→p

≃ ‖f1‖BMO , 1 < p <∞ . (3.3)

Indeed, we have
∥∥P0,1,0(f1, ·)

∥∥
p→p

≃ sup
J

∥∥P0,1,0(f1, |J |−1/p1J)
∥∥
p
≃ ‖f1‖BMO . (3.4)

Here, we are treating the paraproduct as a linear operator on f2, and showing
that the operator norm is characterized by ‖f1‖BMO. Obviously, ‖f‖BMO ≤ 2‖f‖∞,
and again this a crucial point, there are unbounded functions with bounded mean
oscillation, with the canonical example being lnx. Thus, these paraproducts are,
in a specific sense, better than pointwise products of functions.

Proof. The case p = 2 is essential, and the only case considered in these notes.
This particular case is frequently referred to as Carleson Embedding, a term that
arises from the original application of the principal in the Corona Theorem.

Let us discuss the case of P0,1,0 in detail. Note that the dual of the operator

f2 −→ P0,1,0(f1, f2) ,

that is we keep f1 fixed, is the operator P0,0,1(f1, ·), so it is enough to consider
P0,1,0 in the L2 case.

One direction of the inequalities is as follows.

‖P0,ǫ2,ǫ3(f1, ·)‖2→2 ≥ sup
J

‖P0,ǫ2,ǫ3(f1, h
1
J)‖p

≥ ‖f1‖BMO

as is easy to see from inspection. Thus, the BMO lower bound on the operator
norm arises solely from testing against normalized indicator sets.

For the reverse inequality, we compare to the Maximal Function. Fix f1, f2, and
let

Dk = {I ∈ D :
|〈f2, hI〉|√

|I|
≃ 2k}

Let D∗
k be the maximal intervals in Dk. The L2-bound for the Maximal Function

gives us
∑

k

22k
∑

I∗∈D∗
k

|I∗| . ‖M f2‖2
2 . ‖f‖2

2 . (3.5)
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Then, for I∗ ∈ D∗
k we have

∥∥∥
∑

I∈Dk

I⊂I∗

〈f1, hI〉2khI
∥∥∥

2

2
= 22k

∑

I∈Dk

I⊂I∗

〈f1, hI〉2

≤ 22k‖f1‖2
BMO|I∗|

And so we are done by (3.5).
�

4. Hilbert Transform

It is a useful Theorem, one that we shall return to later, that the set of operators
L that are bounded from L2(R) to itself, and commute with both translations and
dilations have a special form. They are linear combinations of the Identity operator,
and the Hilbert transform. The latter operator, fundamental to this study, is given
by

H f(x) := p.v.

∫
f(x− y)

dy

y
. (4.1)

Here, we take the integral in the principal value sense, as the kernel 1/y is not
integrable. Taking advantage of the fact that the kernel is odd, one can see that
the limit below

lim
ǫ→0

∫

ǫ<|y|<1/ǫ

f(x− y)
dy

y
(4.2)

exists for all x, provided f is a Schwartz function, say. Thus, H has an unambiguous
definition on a dense class of functions, in all Lp. We shall take (4.2) as our general
definition of principal value. The Hilbert transform is the canonical example of a
singular integral, that is one that has to be defined in some principal value sense.

Observe that H, being convolution commutes with all translations. That is
also commutes with all dilation operators follows from the observation that 1/y
is a multiple of the multiplicative Haar measure. It can also be recovered in a
remarkably transparent way from a simple to define operator based upon the Haar
functions. Let us define

g = −1(−1/4,−1/4) + 1(−1/4,1/4) − 1(1/4,1/2) (4.3)

= 2−1/2{h(−1/2,0) + h(0,1/2)} (4.4)

Hf =
∑

I∈D

〈f, hI〉gI , (4.5)

where as before, gI = Dil
(2)
I g. It is clear that H is a bounded operator on L2. What

is surprising is that that it can be used to recover the Hilbert transform exactly.
The succinct motivation for this definition is that H(sin) = cos, so that if hI is a
local sine, then gI is a local cosine.

4.6. Theorem (S. Petermichl [20]). There is a non-zero constant c so that

H = c lim
Y→∞

∫ Y

0

∫ 2

1

Try Dil
(2)
λ H Dil

(2)
1/λTr−y

dλ

λ

dy

Y
. (4.7)
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hI gI

Figure 2. A Haar function hI and its dual gI .

As a Corollary, we have the estimate ‖H‖2 . 1, as H is clearly bounded on L2.
The operator h is referred to as a Haar shift or as a dyadic shift ([22]). Certain

canonical singular integrals, like the Hilbert, Riesz and Beurling transform admit
remarkably simple Haar shift variants, which fact can be used to prove a range of
deep results. See for instance [8,21,23,24]. For applications of this notion to more
general singular integrals, see [13, Section 4].

Proof. Consider the limit on the right in (4.7). This is seen to exist for each x ∈ R

for Schwartz functions f . While this is elementary, it might be useful for us to
define the auxiliary operators

Tj f :=
∑

I∈D
|I|≤2j

〈f, hj〉gj .

The individual terms of this series are rapidly convergent. As |I| becomes small,
one uses the smoothness of the function f . As |I| becomes large, one uses the fact

that f is integrable, and decays rapidly. Call the limit H̃f .
Let us also note that the operator Tj is invariant under translations by an integer

multiple of 2j . Thus, the auxiliary operator

2−j
∫ 2j

0

Tr−t f Trt dt

will be translation invariant. Thus H̃ is convolution with respect to a linear func-
tional on Schwartz functions, namely a distribution.

Concerning dilations, T is invariant under dilations by a power of 2. Now, dila-
tions form a group under multiplication on R+, and this group has Haar measure
dδ/δ so that the operator below will commute with all dilations.

∫ 1

0

Dil21/δ T Dil2δ
dδ

δ

Thus, H̃ commutes with all dilations.

Therefore, H̃ must be a linear combination of a Dirac delta function and convo-
lution with 1/y. (The function 1/|y| is also invariant under dilations, but the inner
product with this function is not a linear functional on distributions.) Applying

H̃ to a non negative Schwartz function yields a function with zero mean. Thus, H̃
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Figure 3. The graph of γ0 and γ−1.

must be a multiple of convolution with 1/y, and we only need to see that it is non
zero multiple.

Let us set Gj to be the operator

Gj f :=

∫ 2j

0

Trant
∑

I∈D
|I|=2j

〈Tran−t f, hI〉hI
dt

2j
.

This operator translates with translation and hence is convolution. We can write
Gj f = γj ∗ f . By the dilation invariance of the Haar functions, we will have

γj = Dil12j γ0. A short calculation shows that

γ0(y) =

∫ 1

0

hI(y + t)hI(y) dt

This function is depicted in Figure 3. Certainly the operator
∑

j Gj is convolution

with
∑

j γj(x). This kernel is odd and is strictly positive on [0,∞). This finishes
our proof.

�

5. Commutator Bound

We would like to explain a classical result on commutators.

5.1. Theorem. For a function b, and 1 < p <∞ we have the equivalence

‖[b,H]‖p→p ≃ ‖b‖BMO ,

where this is the non-dyadic BMO given by

sup
I interval

[
|I|−1

∫

I

∣∣∣∣f − |I|−1

∫

I

f(y) dy

∣∣∣∣ dx
]1/2

.
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We refer to this as a classical result, as it can be derived from the Nehari theorem,
as we will explain below. The lower bound on the operator norm is found by
applying the commutator to normalized indicators of integrals, and we suppress
the proof.

Both bounds are very easy, if one appeals to the Nehari Theorem. See our com-
ments on Nehari’s Theorem below. But, in many circumstances, different proofs
admit different modifications, and so we present a ‘real-variable’ proof, deriving
the upper bound from the Haar shift, and the Paraproduct bound in a transparent
way.

Replacing the Hilbert transform by the Haar Shift, we prove

‖[b,H]‖p→p . ‖b‖BMO (5.2)

The last norm is dyadic-BMO, which is strictly smaller than non-dyadic BMO.
But Theorem 4.6 requires that we use all translates and dilates to recover the
Hilbert transform, and so the non-dyadic BMO norm will be invariant under these
translations and dilations.

The Proposition is that [b,H] can be explicitly computed as a sum of Paraprod-
ucts which are bounded.

5.3. Proposition. We have

[b,H]f = P0,1,0(b,Hf) − H ◦ P0,1,0(b, f) (5.4)

+ P0,0,1(b,Hf) − H ◦ P0,0,1(b, f) (5.5)

+ P̃
0,0,0

(b, f) . (5.6)

In the last line, P̃
0,0,0

(b, f) is defined to be

P̃
0,0,0

(b, f) =
∑

I∈D

〈b, h0
I〉√
I

〈f, h0
I〉(h0

Ileft
+ h0

Iright
) .

Each of the five terms on the right are Lp-bounded operators on f , provided
b ∈ BMO, so that the upper bound on the commutator norm in Theorem 5.1
follows as an easy corollary. The paraproduct in (5.6) does not hew to our narrow
definition of a Paraproduct, but it is degenerate in that it is of signature (0, 0, 0),
and thus even easier to control than the other terms.

Proof. Now, [b,H]f = bHf − H(b · f). Apply (2.3) to both of these products. We
see that

[b,H]f =
∑

~ǫ=(1,0,0),(0,1,0),(0,0,1)

P~ǫ(b,Hf) − H P~ǫ(b, f) .

The choices of ~ǫ = (0, 1, 0), (0, 0, 1) lead to the first four terms on the right in (5.4).
The terms that require more care are the difference of the two terms in which a

1 falls on a b. In fact, we will have

P~ǫ(b,Hf) − H P~ǫ(b, f) = P̃
0,0,0

(b, f) .
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To analyze this difference quickly, let us write

〈Hf, hI〉 = sgn(I)〈f, hPar(I)〉

where Par(I) is the ‘parent’ of I, and sgn(I) = 1 if I is the left-half of Par(I), and
is otherwise −1. This definition follows immediately from the definition of gI in
(4.3). Now observe that

〈P~ǫ(b,Hf), h0
I〉 = 〈Hf,P~ǫ(b, h0

I)〉

=
〈b, h1

I〉√
|I|

· 〈Hf, h0
I〉

= 〈f, h0
Par(I),〉 sgn(I)

〈b, h1
I〉√

|I|
And on the other hand, we have

〈HP 1,0,0(b, f), hI〉 =
〈b, h1

Par(I)〉√
|Par(I)|

sgn(I)〈f, h0
Par(I)〉

Comparing these two terms, we see that we should examine the term that falls on
b. But a calculation shows that

√
2h1

I − h1
Par(I) = − sgn(I)h0

Par(I).

Thus, we see that this difference is of the claimed form.
�

6. The Nehari Theorem

We define Hankel operators on the real line. On L2(R), we have the Fourier
transform

f̂(ξ) =

∫
f(x) e−iξx dx .

Define the orthogonal projections onto positive and negative frequencies

P± f(x)
def
=

∫

R±

f̂(ξ) eiξx dx .

Define Hardy spaces H2(R)
def
= P+ L

2(R). Functions f ∈ H2(R) admit an analytic
extension to the upper half plane C+. As in the case of the disk, it is convenient
to refer to functions in H2(R) as analytic.

A Hankel operator with symbol b is then a linear operator from H2(C+) to

H2
+(C+) given by Hb ϕ

def
= P+ Mb ϕ. This only depends on the analytic part of b.

It is typical to include the notation C+ to emphasize the connection with analytic
function theory, and the relevant domain upon which one is working. Below, we
will suppress this notation.

The result that we are interested in is:
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6.1. Nehari’s Theorem ([19]). The Hankel operator Hb is bounded from H2 to
H2 iff there is a bounded function β with P+b = P+β. Moreover,

‖Hb‖ = inf
β : P+ β=P+ b

‖β‖∞ (6.2)

Less exactly, we have ‖Hb‖ ≃ ‖P+ b‖BMO, where we can take the last norm to be
non-dyadic BMO.

This Theorem was proved in 1954, appealing to the following classical fact.

6.3. Proposition. Each function f ∈ H1 is a product of functions f1, f2 ∈ H2. In
particular, f1 and f2 can be chosen so that

‖f‖H1 = ‖f1‖H2‖f2‖H2

Given a bounded Hankel operator Hb, we want to show that we can construct a
bounded function β so that the analytic part of b and β agree.

This proof is the one found by Nehari [19]. We begin with a basic computation
of the norm of the Hankel operator Hb:

‖Hb‖ = sup
‖ϕ‖

H2=1

sup
‖ψ‖

H2=1

∫
Hb ψ · ϕ dx

= sup
‖ϕ‖

H2=1

sup
‖ψ‖

H2=1

∫
P+ Mb ψ · ϕ dx

= sup
‖ϕ‖

H2=1

sup
‖ψ‖

H2=1

∫
(P+ b)ψ · ϕ dx

= sup
‖ϕ‖

H2=1

sup
‖ψ‖

H2=1

〈(P+ b), ψ · ϕ〉

(6.4)

But, the H1 = H2 · H2, as we recalled in Proposition 6.3. We read from the
equality above that the analytic part of b defines a bounded linear functional on
H1 a subspace of L1.

The Hahn Banach Theorem applies, giving us an extension of this linear func-
tional to all of L1, with the same norm. But a linear function on L1 is a bounded
function, hence we have constructed a bounded function β with the same analytic
part as b.

The calculation (6.4) is more general than what we have indicated here, a point
that we return to below.

Let us remark that the Hp variant of Nehari’s Theorem holds. On the one hand,
one has Hp ·Hp′ ⊂ H1, so that the upper bound on the norm ‖Hb‖Hp→Hp follows.

On the other, Proposition 6.3 extends to the Hp-Hp′ factorization, whence the
same argument for the lower bound can be used.

There is a close connection between commutators [b,H] and Hankel operators.
Indeed, we have

[b,H] = [b,H] = 2 P− bP+ −2 P+ bP− . (6.5)
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The two terms on the right can be recognized as two Hankel operators with orthog-
onal domains and ranges. Indeed, keep in mind the elementary identities P2

+ = P+,
P+ P− = 0, H = I−2 P−, and [b, I] = 0. Then, observe

P+[b,H] P− = −2 P+[b,P−] P−

= −P+ bP2
− + P+ P− bP− = −P+ bP−

P−[b,H] P− = P−[b,P+] P− = 0

There are two additional calculations, which are dual to these and we omit them.

7. Further Applications

The author came to the Haar shift approach to the commutator from studies
of Multi-Parameter Nehari Theorem [10, 16]. The paper [15] surveys these two
papers. This subject requires an understanding of the structure of product BMO
that goes beyond the foundational papers of S.-Y. Chang and R. Fefferman [3, 4]
on the subject.

In particular, as in Nehari’s Theorem, the upper bound on the Hankel operator
is trivial, as one direction of the factorization result is trivial: H2 ·H2 ⊂ H1. The
lower bound is however very far from trivial, as factorization is known to fail in
product Hardy spaces. Indeed, Nehari’s theorem is equivalent to so-called weak
factorization, one of the points of interest in the Theorem. See [10, 15, 16] for a
discussion of this important obstruction to the proof, and relevant references.

There are different critical ingredients needed for the proof of the lower bound.
One of them is a very precise quantitative understanding of the proof of the upper
bound. It is at this point that the techniques indicated in this paper are essential.
The fundamentals of the multi-parameter Paraproduct theory were developed by
Journé [11, 12]. The subject has been revisited recently to develop novel Leibnitz
rules by Muscalu, Pipher, Tao and Thiele [17, 18]. Also see [14].

An influential extension of the classical Nehari Theorem to a real-variable setting
was found by Coifman, Rochberg and Weiss [9]: Real-valued BMO on Rn can be
characterized in terms of commutators with Riesz Transforms. The real-variable
setting implies a complete loss of analyticity, making neither bound easy. Recently,
the author, with Pipher, Petermichl and Wick, have proved the multi-parameter
extension of the this result [13]. This paper includes in it a quantification of the
Proposition 5.3 to the higher dimensional setting, for (smooth) Calderón Zygmund
operators T: [b, T ] is a sum of bounded paraproducts, a crucial Lemma in that
paper. See [13, Proposition 5.11]. Such an observation is not new, as it can be
found in e. g. [1] for instance. Still the presentation of Proposition 5.3 in this paper
is as simple as any the author is aware of in the literature.
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