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OPTIMAL NON-LINEAR MODELS

AKRAM ALDROUBI, CARLOS CABRELLI, AND URSULA MOLTER

Abstract. This paper is a survey about recent results on sparse representa-
tions and optimal models in different settings. Given a set of functions, we

show that there exists an optimal collection of subspaces minimizing the sum
of the square of the distances between each function and its closest subspace

in the collection. Further, this collection of subspaces gives the best sparse

representation for the given data, in a sense defined later, and provides an
optimal model for sampling in a union of subspaces.

1. Introduction

A new paradigm for signal sampling and reconstruction recently developed by
Lu and Do [19] (see also [9]) starts from the point of view that signals live in
some union of subspaces M = ∪i∈IVi, instead of a single vector space M = V
such as the space of band-limited functions also known as the Paley-Wiener space.
This new paradigm is general and includes (when M = V ) the classical Shannon
sampling theory and its extensions [6], as well as sampling of signals with finite rate
of innovation (see e.g., [20, 16]). In the new framework, when we have more than
one subspace, the signal space modelM = ∪i∈IVi is non-linear and the techniques
for reconstructing a signal f ∈ ∪i∈IVi from its samples {f(xj)}j are involved and
the reconstruction operators are non-linear.

Since for each class of signals the starting point of this new theory is the knowl-
edge of the signal space M = ∪i∈IVi, the first step for implementing the theory
is to find an appropriate signal model M = ∪i∈IVi from a set of observed data
F = {f1, . . . , fm}. For the classical sampling theory, the problem of finding the
shift-invariant space model M = V from a set of observed data has been studied
and solved in [4],[3]. For the new sampling paradigm, the problem consists in prov-
ing the existence and finding subspaces V1, · · · , Vl, that minimize the expression

e(F ,
{
V1, . . . , Vl

}
) =

m∑
i=1

min
1≤j≤l

d2(fi, Vj), (1)
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218 A. ALDROUBI, C. CABRELLI AND U. MOLTER

over all choices of l subspaces, from an appropriate class C in some Hilbert space
H. Here F = {f1, . . . , fm} ⊂ H is a set of observed data and d is the distance
function in H.

It is well known that the problem of sampling and reconstruction of signals with
finite rate of renovation is closely related to the developing theory of compressed
sensing (see e.g., [12, 11, 13, 14, 15, 21] and the references therein). Compressed
sensing proposes to find a vector x ∈ RN from the knowledge of the values, when
applied to x, of a relatively small set of functionals {ψk : k = 1, . . . , p} (where p <<
N). Obviously, the problem of finding x from the set {yk = 〈x, ψk〉 : k = 1, . . . , p}
is ill-posed. However, it becomes meaningful if x is assumed to be sufficiently
sparse.

A typical assumption of sparsity is that x has at most n non-zero components
(‖x‖0 ≤ n), where n ≤ 2p << N . As a consequence of this assumption of sparsity,
the vector x belongs to some union of subspaces, each of which is generated by
exactly n vectors from the canonical basis of RN . In matrix formulation this
problem can be stated as follows: find x ∈ RN with ‖x‖0 ≤ n from the matrix
equation y = Ax where A is a p×N matrix and y is a given vector in Rp.

A related problem consists in finding an approximation to the vector y using
a sparse vector x. Formally, this problem can be stated as follows: find min

x
‖x‖0

subject to the constraint ‖Ax−y‖2 ≤ ε for some given ε. The above two problems,
their analysis, extensions, and efficient algorithms for finding their solutions can
be found in [1, 2, 10, 12, 11, 13, 14, 15, 18, 22] and the references therein.

If in the above problems the matrix A is also an unknown to be found together
with the set of unknown vectors {xi : i = 1, . . . ,m} ⊂ RN , then these problems
become the problems of finding a dictionary A from the data {yi : i = 1, . . . ,m} ⊂
Rp obtained by sampling the sparse vectors {xi : i = 1, . . . ,m} ⊂ RN see e.g., [2,
1, 18]. In this context, the columns of A are called atoms of A. Under appropriate
assumptions on the data and dictionary, the problem has a unique solution up to
a permutation of the columns of A [2, 1]. Finding the solution to this problem
by exhaustive methods is computationally intractable, but the K-SVD algorithm
described in [1] provides a computationally effective search algorithm.

The problem of finding the signal model for signals with finite rate of innovation
consists of finding a set M = ∪i∈IVi, formed by subspaces Vi that are infinite
dimensional, in general, but usually structured, e.g., each Vi is a shift-invariant
space. However, the signal modeling problem as described by (1) is closely related
to the dictionary problem for sparse data, described in the previous paragraph.

To see this relation, let us formulate the dictionary problem as follows: given a
class of signals, determine if there exists a dictionary of small size, such that each
of the signals can be represented with minimal sparsity.

More precisely, assume that we have a class of m signals, where m is a very large
number. We want to know whether there exists a dictionary, such that every signal
in the class is a linear combination of at most n atoms in the dictionary. Clearly,
to make the problem meaningful and realistic the length of the dictionary should
be small compared with m.
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OPTIMAL NON–LINEAR MODELS 219

It follows, that if for a given set of data such a dictionary exists, then the data
can be partitioned into subsets each of which belongs to a subspace of dimension
at most n (i.e. to the subspace generated by the atoms that the signal uses in its
representation). That is, each subset of the partition can be associated to a low
dimensional subspace.

Conversely, if our class of signals can be partitioned into l subsets, such that the
signals in each subset belong to a subspace of dimension no bigger than n, then
by choosing a set of generators from each of the subspaces, we can construct a
dictionary of length at most ln with the property that each of the signals can be
represented using at most n atoms in the dictionary.

This suggests that the problem of finding a dictionary where the signals have
sparse representation can be solved by finding a small collection of low dimensional
subspaces containing our signals, and viceversa.

So, we will say that the class of signals is (l, n)-sparse if there exist l subspaces of
dimension at most n, such that the signals in our class belong to the union of these
l subspaces. From the above discussion, it is clear that if our data is (l, n)-sparse
then there exists a dictionary of length at most ln.

Now assume that for a given l and n our data is not (l, n)-sparse. Then we can
still try to determine if there exists a collection of optimal subspaces providing the
needed sparsity. More precisely, if ε > 0 is given, we want to determine if there
exists a collection of l subspaces of dimension at most n, such that the total error,
that is the sum of the squares of the distance of each signal to the union of the
subspaces, is not larger than ε, (see formula (1)). In that case we will say that our
data is (l, n, ε)-sparse.

As before it is clear that if our data is (l, n, ε)-sparse, then a dictionary of length
at most ln exists such that every signal in our class can be approximated using a
linear combination of at most n atoms from the dictionary, with total error not
larger than ε.

Note that this definition of sparsity is an intrinsic property of the data and the
space where they belong to, and does not depend on any fixed dictionary.

A relevant and important question is then, given a class of signals and a small
number n, which is the minimun possible ε such the data is (l, n, ε)-sparse?

In this paper we present a survey about a general scheme, developed in detail
in [5], that allows to solve the problem described in (1), thereby finding the signal
model for the new signal sampling paradigm described in [19], finding a new method
for solving the segmentation subspace problem that is optimal in the presence of
noise [23], and solving the (l, n, ε)-sparsity problem (in the sense defined above) for
a given set of data, in different contexts. Specifically, given a set F of m functions
and numbers l, n such that n, l < m, it can beshown that there exist no more than
l subspaces of dimension no bigger than n that provide the minimum ε such that
the functions in F are (l, n, ε)-sparse. When the minimum ε is zero, the data is
(l, n)-sparse. We also present an algorithm to find the solution subspaces, which
has been successfully applied in [8]. Note that there may be several choices of
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subspaces that produce the same error. We can identify all those solutions which
are called optimal solutions.

It is important to remark here that an optimal solution can have less than l
subspaces, and the dimensions of the subspaces can be less than n. Since the
minimization we consider is over unions of no more than l subspaces, where the
dimension of the subspaces is no bigger than n, some of the optimal solutions for
a given (l, n) (that is, some of the solutions that give the smallest ε) will yield the
minimum l0 ≤ l such that the data is (l0, n, ε)-sparse, that is l is set to be just an
upper bound for the number of allowable subspaces. Furthermore, the number n
constraining the dimension of the subspaces is also only an upper bound, that is,
an optimal solution can have subspaces of dimension strictly less than n.

Since it is possible to have several optimal solutions (all giving exactly the same
ε), some of these solutions may have more subspaces of smaller dimensions and
others may have less subspaces of bigger dimensions (always smaller or equal than
n). A good variable to look at might be the sum of the dimensions of the subspaces
involved in the unions. Since with our methods we are in fact able to find all
the optimal solutions, we can choose the most convenient one for each particular
application we have in mind.

2. Setting of the Problem

Let H be a Hilbert space. For x, y ∈ H let us denote by d(x, y) = ‖x − y‖H.
Given a finite subset F ⊂ H and a closed subspace C of H, we denote by E(F , C)
the total distance of the data set F to the subspace C, i.e.

E(F , C) =
∑
f∈F

d2(f, C). (2)

We set E(F , C) = 0 for F = ∅ and any subspace C of H.
Let C be a family of closed subspaces of H containing the zero subspace. We

will say that C has the Minimal Approximation Property (MAP) if for any finite
set F of vectors in H there exist a subspace C0 ∈ C that minimizes E(F , C) over
all the subspaces C ∈ C. That is,

E(F , C0) = min
C∈C

E(F , C) ≤ E(F , C), ∀ C ∈ C. (3)

Any subspace C0 ∈ C satisfying (3) will be called an optimal subspace for F .
Note that if F = ∅ then every subspace in C is optimal. We will choose the zero
subspace in that case. For the rest of this section we will assume that the class C
has the Minimal Approximation Property.

Next, since we are interested in models that are union of subspaces, we will
arrange the subspaces in finite bundles that will be our main objects, and define
the distance (error) between a bundle and a set of vectors.

To do this, let us fix m, l ∈ N with 1 ≤ l ≤ m and let F = {f1, ..., fm} be a finite
set of vectors in H.

Define V to be the set of sequences of elements in C of length l, i.e.

V = V(l) =
{
{V1, . . . , Vl} : Vi ∈ C, 1 ≤ i ≤ l

}
.
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We will call these finite sequences bundles. For V ∈ V with V = {V1, ..., Vl}, we
define,

e(F ,V) =
∑
f∈F

min
1≤j≤l

d2(f, Vj). (4)

Note that e(F ,V) is a non-linear function of F . Hence, for the problems described
in the introduction, what we want is to minimize e over all possible bundles of
subspaces. To show that all these problems have indeed a (constructive) solution,
we need some definitions (for details we refer the reader to [5]).

Let us denote by Π = Πl the set of all l-sequences P = {F1, · · · ,F l} of subsets
of F satisfying the property that for all 1 ≤ i, j ≤ l,

F i ⊂ F , F = ∪l
s=1Fs, and F i ∩ F j = ∅ for i 6= j.

Note that we allow some of the elements of P ∈ Π to be the empty set. By
abuse of language we will still call the elements of Πl partitions (of F).

For P ∈ Πl, P = {F1, ...,F l} and V ∈ V,V = {V1, ..., Vl} we define,

Γ(P,V) =
l∑

i=1

E(F i, Vi). (5)

So Γ measures the error between a fixed partition P and a fixed bundle V.
Note that when trying to compute e(F ,V), for each f ∈ F we first have to

find the subspace Vj(f) in V (see remark after the definition of e(F ,V)) that is
closest to f and then compute d2(f, Vj(f)). While for Γ, since a partition is given
and we just compute the distance of each function to its corresponding space (not
the closest one necessarily). The surprising fact is that e and Γ can indeed be
compared. (see Lemma 1, [5]).

This comparison actually allows us to prove our main theorem.

Theorem 1. Let H be a Hilbert space, m, l positive integers with l ≤ m and
F = {f1, ..., fm} a set of vectors in H. Then there exists a bundle V0 ∈ V such
that

e(F ,V0) = inf{e(F ,V) : V ∈ V}.

Remark. If 0 < l1 < l2, then for any V ∈ V(l1), V = {V1, . . . , Vl1} the bundle
V′ = {V1, . . . , Vl1 , {0}, . . . , {0}} belongs to V(l2) and therefore the error decreases
(or no increases) when l (the number of subspaces) increases. Note that in case
that the number of subspaces equals the number of data, the error is zero, since
we can pick for each data signal the subspace spanned by itself.

It is important to remark here that optimal bundles can have the zero subspace
as some of its components. So, if l0 is the number of subspaces that have dimension
greater than zero, in some optimal bundle V0, then the bundle with l0 components
obtained after the l− l0 zero components are removed from V0, is also an optimal
bundle for the Problem when V(l) is replaced by V(l0). Thus as mentioned in the
introduction, the number l is simply a set to be an a priori upper bound on the
number of subspaces, and the optimal solution(s) can have any number of subspaces
l0 ≤ l.
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As a consequence, we show the following important particular cases:

2.1. Best Approximation by Bundles of SIS (Shift Invariant Spaces). For
the purpose of this paper, a shift-invariant space will be a subspace of L2(Rd) of
the form:

S(Φ) := closureL2 span{ϕi(x− k) : i = 1, . . . , n, k ∈ Zd} (6)

where Φ = {ϕ1, ..., ϕn} is a set of functions in L2(Rd). These spaces are often
used as standard signal and image models. For example, if n = 1, d = 1 and
φ(x) = sinc(x), then the underlying space is the space of band-limited functions
(often used in communications). We have the following theorem.

Theorem 2. Let F = {f1, ..., fm} vectors in L2(Rd), then there exist a bundle
S0 = {S0

1 , ..., S
0
l } ∈ S such that

e(F ,S0) =
m∑

i=1

min
1≤j≤l

d2
2(fi, S

0
j ) ≤

m∑
i=1

min
1≤j≤l

d2
2(fi, Sj) (7)

over all bundles S = {S1, . . . , Sl} ∈ S.

2.2. Best Non-Linear Approximation by Bundles of Subspaces in RN . Let
F = {f1, . . . , fm} be a set of vectors in RN and n ≤ m, and let us denote by Ln

the set of all subspaces of dimension smaller (or equal) than n.
Define B = B(l) to be the set of non-empty bundles of length l in Ln. We then

have:

Theorem 3. Let F = {f1, . . . , fm} be vectors in RN , and let l and n be given
(l < m, n < N), then there exist a bundle V0 = {V 0

1 , . . . , V
0
l } ∈ B, such that

e(F ,V0) =
n∑

i=1

min
1≤j≤l

d2
2(fi, V

0
j ) = inf{e(F ,V) : V ∈ B}.

Let P0 = {F0
1, ...,F

0
l } be the best partition of F associated to the optimal bundle

V0 = {V 0
1 , ..., V

0
l } , using the theorem of Eckardt Young [17] for each h = 1, ..., l

and such that F0
h 6= ∅, a set of generators forming an orthonormal base can be

obtained for the optimal space V 0
h in terms of the singular values and singular

vectors of the matrix Ah associated to the subset F0
h. Further, e(F ,V0), is given

in terms of the singular values of Ah.

2.3. The MAP property. The main ingredient in both of the important special
cases presented above, was that the space had the MAP property. Recall that a
family C of closed subspaces of H containing the zero subspace has the MAP if
for any finite set F of vectors in H there exist a subspace C0 ∈ C that minimizes
E(F , C) over all the subspaces C ∈ C. That is,

E(F , C0) = min
C∈C

E(F , C) ≤ E(F , C), ∀ C ∈ C. (8)

It is therefore relevant to characterize when such a family has this property. In
[7] the authors were able to find sufficient conditions on the subspaces in order to
have the MAP property.
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Top: Original Image. Middle (FL): Edges. Bottom (FR): Remaining points.

Precisely, let us parametrize C by the set of orthogonal projections Π(H) ⊂ B(H)
and let Q = {I−PC : C ∈ C} ⊂ Π(H). We form new classes C+ and Q+ by adding
all positive operators to C, Q respectively. Then, it is not difficult to show that
([7])

Theorem 4. Assume that C+ is closed in the weak star operator topology. Then
C satisfies the MAP .
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In fact, we have necessary and sufficient for the MAP in both the finite and infi-
nite dimensional cases. For brevity, we give the theorem for the finite dimensional
case. The infinite dimensional case is more involved and use geometric concepts
such as as the tangent hull and the convex hull of Q+. For the finite dimensional
case we have ([7]):

Theorem 5. Suppose H has finite dimension. Then Q satisfies MAP if and only
if Q ⊂ Q+.

2.4. Application to Signal Segmentation. These results can be used to suc-
cessfully segment images, as the following two examples show: ([8]).

Example. Segmentation of objects using F = {(∇Iij , Iij)} where Iij is the image
intensity at position ij and ∇ is the discrete gradient at that position. The algo-
rithm partitions the set F into two sets, FL and FR. The data points for which the
gradient dominates, are in FL, the others, in FR obtaining essentially a partition
into edges and “the rest”.
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[9] Magaĺı Anastasio and Carlos Cabrelli. Sampling from a union of subspaces with frame gen-

erators. Sampling Theory in Signal and Image Processing, to appear 2009.

[10] R. Baraniuk, M. Davenport, Ronald A. DeVore, and M. Wakin. A simple proof of the re-

stricted isometry property for random matrices. Preprint, 2007.

[11] E. Candès and J. Romberg. Quantitative robust uncertainty principles and optimally sparse

decompositions. Foundations of Comput. Math., 6:227–254, 2006.

[12] E. Candès, J. Romberg, and Terence Tao. Robust uncertainty principles: Exact signal re-
construction from highly incomplete frequency information. IEEE Trans. on Information
Theory, 52:489–509, 2006.

[13] E. Candès and Terence Tao. Near optimal signal recovery from random projections: Universal
encoding strategies? IEEE Trans. on Information Theory, 52:5406–5425, 2006.

Rev. Un. Mat. Argentina, Vol 50-2



i
i

i
i

i
i

i
i

OPTIMAL NON–LINEAR MODELS 225

[14] Ronald A. DeVore. Deterministic constructions of compressed sensing matrices. Preprint,

2007.

[15] David L. Donoho. Compressed sensing. IEEE Trans. on Information Theory, 52:1289–1306,
2006.

[16] Pier Luigi Dragotti, M. Vetterli, and T. Blu. Sampling moments and reconstructing sig-
nals of finite rate of innovation: Shannon meets strang-fix? IEEE Transactions on Signal

Processing, 55:1741–1757, 2007.

[17] C. Eckart and G. Young. The approximation of one matrix by another of lower rank. Psy-

chometrica, 1:211–218, 1936.

[18] R. Gribonval and M. Nielsen. Sparse decompositions in unions of bases. IEEE Trans. Inf.

Theory, 49:3320–3325, 2003.

[19] Y. Lu and M. N. Do. A theory for sampling signals from a union of subspaces. IEEE Trans-

actions on Signal Processing, 2007.

[20] I. Maravic and M. Vetterli. Sampling and reconstruction of signals with finite rate of in-

novation in the presence of noise. IEEE Transactions on Signal Processing, 53:2788–2805,
2005.

[21] Holger Rauhut, K. Schass, and P. Vandergheynst. Compressed sensing and redundant dic-
tionaries. Preprint, 2006.

[22] J. A. Tropp. Greed is good: Algorithmic results for sparse approximation. IEEE Trans. Inf.

Theory, 50:2231–2242, 2004.

[23] R. Vidal, Y. Ma, and S. Sastry. Generalized principal component analysis (gpca). IEEE

Transactions on Pattern Analysis and Machine Intelligence, 27:1–15, 2005.

Akram Aldroubi

Department of Mathematics,
Vanderbilt University,

Nashville, TN 37240, USA

akram.aldroubi@vanderbilt.edu

Carlos Cabrelli and Ursula Molter

Departamento de Matemática
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