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GLOBAL Lp ESTIMATES FOR DEGENERATE

ORNSTEIN-UHLENBECK OPERATORS:

A GENERAL APPROACH

ERMANNO LANCONELLI

Abstract. We present a new approach to prove global Lp estimates for de-
generate Ornstein-Uhlenbeck operators in RN . We then show how to pave
the way to extend such a technique to classes of general Hörmander opera-
tors. Several historical notes related to Calderón-Zygmund’s singular integrals
theory in Euclidean and in non-Euclidean settings are also provided.

1. Some historical notes

In a paper dated 1906, Beppo Levi [Le] solved the Dirichlet problem

∆u = f, in Ω ⊂ R
2, u|∂Ω = 0

by minimizing the Dirichlet energy Integral in a new functional space that fifty
years later J. Deny and J.L. Lions [DeL] generalized to higher dimensions, and
called it of Beppo Levi-type. This space can be identified with what we call today
the Sobolev space W 1,2

0 .
The theory of boundary value problems in Sobolev spaces is one of the most

important parts of the modern theory of PDE’s. A major breakthrough was done
by Calderón and Zygmund in 1952, with their celebrated theorem on Lp-continuity
of singular integrals. Let u ∈ C∞

0 (RN ) and f be such that

∆u = f.

Then, if N ≥ 3,

u(x) = −f ⋆ Γ(x) = −
∫

RN

f(y) Γ(x− y) dy, Γ(z) = CN
1

|z|N−2
.

Hence

∂i,ju(x) =

∫

RN

f(y) Γi,j(x− y)dy, i, j = 1, . . . , N,

where

Γi,j(z) = ∂i,jΓ(z) = ωi,j(z)
1

|z|N with

∫

|z|=1

ωi,jdσ = 0.
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58 E. LANCONELLI

Since Γi,j is not in L1
loc(R

N ), the last convolution needs to be understood in a weak
sense:

P.V.

∫

RN

f(y) Γi,j(x− y) dy := lim
ε→0

∫

ε<|x−y|< 1
ε

f(y) Γ(x− y) d y.

Calderón and Zygmund proved that this limit exists in the topology of Lp(RN ),
f ∈ Lp(RN ), 1 < p < ∞, [CaZ]. As a consequence:

‖∂xixju‖Lp(RN ) ≤ Cp,N ‖∆u‖Lp(RN ) i, j = 1, . . . , N, (1)

a fundamental inequality for studying the Laplace equation in Sobolev spaces. In
their work Calderón and Zygmund used a celebrated covering lemma by mean of
cubes in RN . The cubes are crucial for (1) since they reflect the shape of the level
sets of Γ. The Calderón-Zygmund covering lemma basically exploits the following
property: every cube of side r can be covered by at most 2N non overlapping cubes
of side r

2 .
At the beginning of the ’70s, Coifman and Weiss [CoW] extended the Calderón-

Zygmund covering lemma to general quasimetric spaces (X, d) of homogeneous type.
Let X be a non empty set and let d : X ×X → [0,∞[. On says that (X, d) is a
quasimetric space if

(i) d(x, y) > 0 if x 6= y,
(ii) d(x, y) ≤ C(d(x, z) + d(z, y)) and d(x, y) ≤ Cd(y, x), for a suitable C > 0

independent of x and y.

The quasimetric space (X, d) is said to be of homogeneous type if, moreover,

(iii) there exists M > 0 such that every d-ball of radius r contains at most M
d balls of radius r

2 , M independent of r.

Important examples of spaces of homogeneous type are the doubling quasi metric
spaces. Precisely, (X, d, µ) is a doubling quasi metric space if (X, d) satisfies the
previous properties (i), (ii) and if µ is a nonnegative measure such that the open
d-balls are µ-measurable and satisfy the following doubling property:

0 < µ(B(x, 2r) ≤ A µ(B(x, r)),

for every x ∈ X and r > 0, A > 0 independent of x and r.
One can expect that Calderón-Zygmund’s technique applies to “any” linear sec-

ond order PDE endowed with a fundamental solution having level sets shaped as
the balls of a doubling quasi metric space.

In 1963, before the work of Coifman and Weiss, Calderón-Zygmund’s theory was
extended by B.F. Jones [Jo] to the heat operator in RN+1

H : = ∆ − ∂t.

It is well known that the Gauss-Weierstrass kernel

Γ(x, t) :=

{

0, if t ≤ 0

(4π)−
N
2 exp(− |x|2

4t ), if t > 0

is the fundamental solution of H with pole at the origin. Moreover, the function

d((x, t), (x′, t′)) = ((x − x′)4 + (t− t′)2)
1
4
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is a metric in RN+1 which is translation invariant and homogeneous of degree two
with respect to the anisotropic dilations

δr(x, t) = (r x, r2 t).

The heat operator has similar properties: this implies that the level sets of its
fundamental solution Γ(x− x′, t− t′) have a shape comparable with the one of the
d-balls.

In 1966, E.B. Fabes and N. Rivière [FabR] extended Jones’ work: they stud-
ied singular integrals involving kernels of the kind K(x − y), x, y ∈ RN , with K
homogeneous with respect to general anisotropic dilations

δr (x1, . . . , xN ) = (rσ1 x1, . . . , r
σN xN ).

Calderón-Zygmund’s covering lemma, and its applications to PDE’s and Har-
monic Analysis, have been extended in hundreds of directions: we directly refer to
Stein’s monograph [St] for a wide and deep exposition of the subject, and a huge
list of references. For our purposes, here we only want to mention the 1974 work
by Folland [Fo], dealing with the application of the theory of singular integrals to
the study of linear second order PDO’s with underlying homogeneous Lie group
structures.

To put Folland’s results in the right perspective, we need to recall the celebrated
notion of Hörmander’s operator in RN . The partial differential operator

L =

m
∑

j=1

X2
j +X0

is called a Hörmander operator if

Xj =

N
∑

k=1

akj ∂xk
≡ (a1j , . . . , a

N
j )T , j = 0, 1, . . . ,m,

with akj ∈ C∞(RN ) and

dim(Lie{X0, X1, . . . , Xm}(x)) = N, ∀ x ∈ R
N . (H)

This is the well known Hörmander’s rank condition: it implies the hypoellipticity
of L, see [H]. A considerable amount of work has been devoted to Hörmander’s op-
erators, but apart from the fundamental papers by Folland [Fo] and by Rothschild
and Stein [RS], mainly to the sum of squares

m
∑

j=1

X2
j , (2)

and to their heat-type counterpart

m
∑

j=1

X2
j − ∂t. (3)
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60 E. LANCONELLI

Prototypical examples are, respectively, the sub-Laplacians and the heat opera-
tors on stratified Lie groups. Among the main contributors to the theory of op-
erators of types (2) and (3) we want to mention Sánchez-Calle [Sa], Fefferman
and Sánchez-Calle [FeS], Jerison and Sánchez-Calle [JeS], Kusuoka and Strook
[KuS1][KuS2][KuS3], Varopoulos, Saloff-Coste and Coulhon [VSC].

As a matter of fact, Hörmander’s operators in the general form

L =

m
∑

j=1

X2
j +X0

with the drift term X0, which is not merely a derivative along a constant direction,
are of great interest. Indeed, they appear in several settings, both theoretical and
applied, for example, in the following instances:

(a) as Kolmogorov operator of stochastic equations (see Da Prato and Zabczyk
[DaZ1],[DaZ2]);

(b) in PDE’s models in Diffusion Theory and in Finance (see Lanconelli, Pas-
cucci and Polidoro [LaPP], and Pascucci [Pa]);

(c) in Computer Vision (see Mumford [Mu]);
(d) Curvature Brownian motion (see Wung, Zhou, Masle and Chirikjian

[WZMC]);
(e) Phase-noise Fokker-Planck equations (see August and Zucker [AZ]).

A few examples of complete Hörmander operators are the following.
EXAMPLE 1. Degenerate Ornstein-Uhlenbeck operator. It is well known, the

classical Ornstein-Uhlenbeck operator in RN given by ∆ + x · ∇ (see [OU]).
Now, let us consider in R2n the linear second order PDO

A = ∆Rn +
n
∑

j=1

(xn+j∂xj + xj∂xn+j) =: ∆Rn + Y0.

We callA a degenerate Ornstein-Uhlenbeck operator which is the “stationary” coun-
terpart of the Kolmogorov-Fokker-Planck operator in R2n × R

L := A− ∂t.

L is a prototypical operator of the ones introduced by Kolmogorov in 1934 in
studying diffusion processes from a probabilistic point of view (see [Kol]). If we let
Xj := ∂xj , j = 1, . . . n, and

Y := Y0 − ∂t =

n
∑

j=1

(xn+j∂xj + xj∂xn+j)− ∂t,

then we can write

A =

n
∑

j=1

X2
j + Y0, and L =

n
∑

j=1

X2
j + Y.

Moreover, since [Xj , Y0] = [Xj, Y ] = ∂xn+j , for j = 1, . . . , n, we have

Lie {X1, X2, ..., Xn, Y0} = span{∂x1
, . . . , ∂xn , ∂xn+1

, . . . , ∂x2n , Y0}
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so that,

Lie {X1, X2, ..., Xn, Y } = span{∂x1
, . . . , ∂xn , ∂xn+1

, . . . , ∂x2n , Y }.
Then, A and L are Hörmander operators in R2n and in R2n+1, respectively.

EXAMPLE 2 (Forward and backward Mumford operators). In 1994, D. Mum-
ford [Mu] introduced the following partial differential operators of Fokker-Planck
type:

Mf = ∂2
x1

+ cosx1 ∂x2
+ sinx1 ∂x3

− ∂t, in R
3 × R,

Mb = (x2∂x1
− x1∂x2

+ ∂x3
)2 + ∂x1

+ ∂t in R
3 × R.

Mf and Mb are called forward and backward Mumford operators, respectively.
They appear in a mathematical model created by Mumford in Computer Vision
[M]. It is quite easy to verify thatMf andMb, which are of the type sum of squares
plus drift, satisfy the Hörmander rank condition. Partial differential operators of
Fokker-Planck type, very similar to the Mumford ones, have been also considered
in the papers by Wung, Zhou, Masle and Chirikjian [WZMC], and by August and
Zucker [AZ], quoted above.

EXAMPLE 3 (Non-autonomous Kolmogorov operators). Da Prato and Lunardi
recently studied in [DaL2] a class of non-autonomous Kolmogorov operators with
periodic coefficients containing, in particular, the following one:

L = ∂2
x1

+ (cos t ∂x2
+ sin t ∂x3

)2 − (∂t + x1∂x4
) in R

4 × R.

It is easily seen that L falls into the class of general Hörmander operators.
Let us now come back to the PDO operators studied by Folland in [Fo]. They

are operators of the Hörmander form:

L =
m
∑

j=1

X2
j +X0, in R

N

and such that

(i) There exists a Lie group G = (RN , ◦) such that the Xj ’s are left translation
invariant on G,

(ii) There exists a family of anisotropic dilations in RN , like the ones already
considered by Fabes and Rivière,

δr (x1, . . . , xN ) = (rσ1 x1, . . . , r
σN xN ),

compatible with ◦, and such that X1, . . . , Xm are δr-homogeneous of degree one
while X0 is δr homogeneous of degree two.

When we say that the family (δr)r>0 is compatible with ◦ we mean that

δr(x ◦ y) = δr(x) ◦ δr(y) and δr(x
−1) = (δr(x))

−1,

and in such case one says that G = (RN , ◦, δr) is a homogeneous Lie group.
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62 E. LANCONELLI

We stress that the classical ∆ and H = ∆− ∂t belong to the Folland class. The
Lie group underlying these operators is the Euclidean one. The relevant dilations
are δr(x) = r x and δr(x, t) = (r x, r2t), respectively.

Using the theory of singular integrals in homogeneous Lie groups, Folland [Fo]
proved the following Lp estimates:

‖XiXj u‖Lp(RN ) ≤ ‖Lu‖Lp(RN ), u ∈ C∞
0 (RN ),

i, j = 1, . . . ,m, 1 < p < ∞.
We emphasize that, in this general context, the usual Euclidean norm and dis-

tance are replaced respectively by

‖(x1, . . . , xN )‖ =

N
∑

j=1

|xj |
1
σj , and d(x, y) = ‖y−1 ◦ x‖.

We close this section by stressing that the degenerate Ornstein-Uhlenbeck oper-
ator

A = ∆Rn +

n
∑

j=1

(xn+j∂xj + xj∂xn+j )

in not contained in the Folland class. Indeed, there are no dilations in RN making
A homogenous of some positive degree. On the other hand, Lp a priori estimates
similar to the previous ones, like

‖∂xi,xj u‖Lp(R2n) ≤ c{‖Au‖Lp(R2n) + ‖u‖Lp(R2n)}, i, j = 1, . . . , n,

are crucial in studying the initial value problem for the Kolmogorov-Fokker-Planck
equation

L := A− ∂t = ∆Rn +

n
∑

j=1

(xn+j∂xj + xj∂xn+j) − ∂t.

With Bramanti, Cupini and Priola, we proved such estimates using a new technique,
that seems to work also for more general classes of complete Hörmander operators.

2. A general class of Ornstein-Uhlenbeck operators

In a paper with S. Polidoro [LaP] we studied general Ornstein-Uhlenbeck oper-
ators of the following form:

A = div (A∇) + 〈x,B∇〉 , (4)

where A and B are constant N ×N matrices, with A ≥ 0, and 〈 , 〉, ∇ denote, re-
spectively, the inner product and the usual gradient in RN . When A = B = IN , the
identity N ×N matrix, A becomes the classical Ornstein-Uhlenbeck operator. In
this general form A is degenerate elliptic. Its regularity properties are determined
by the matrix

C(t) =

∫ t

0

E(s)AET (s)ds, E(s) = exp(−sBT ).

In [LaP] we proved that the following conditions are equivalent:

(i) C(t) > 0 for any t > 0;
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(ii) rankLie (X1, X2, ..., XN , Y0) = N, at any x ∈ RN ,

where Y0 = 〈x,B∇〉 while, if A = (ai,j)
N
i,j=1, Xj =

∑N
j=1 aij∂xj . We also proved

that C(t) > 0 for any t > 0 if and only if, with respect to a suitable basis of RN ,
the matrices A and B take the following form

A =

[

A0 0
0 0

]

, B =















∗ B1 0 . . . 0
∗ ∗ B2 . . . 0
...

...
...

. . .
...

∗ ∗ ∗ . . . Br

∗ ∗ ∗ . . . ∗















, (5)

where A0 = (aij)
p0

i,j=1 is a p0 × p0 symmetric and positive definite matrix, with

p0 ≤ N . Moreover, for every j = 1, . . . , r the block Bj has dimension pj−1×pj and
rank pj , j = 1, 2, . . . , r. Finally: p0 ≥ p1 ≥ . . . ≥ pr ≥ 1 and p0+p1+ . . .+pr = N .

We notice that the prototypical Ornstein-Uhlenbeck

A = ∆Rn +
n
∑

j=1

(xn+j∂xj + xj∂xn+j)

can be written as in (4) by taking N = 2n and

A =

[

In 0
0 0

]

, B =

[

0 In
In 0

]

.

In the very recent work [BrCLP], with M. Bramanti, G. Cupini and E. Priola, we
proved the following theorem.

Theorem 2.1. Let A be the operator in (4) and p ∈ (1,∞). Then, for every
u ∈ C∞

0

(

RN
)

:
∥

∥

∥
∂2
xixj

u
∥

∥

∥

Lp(RN )
≤ c

{

‖Au‖Lp(RN ) + ‖u‖Lp(RN )

}

for i, j = 1, 2, ..., p0 (6)

‖Y0u‖Lp(RN ) ≤ c
{

‖Au‖Lp(RN ) + ‖u‖Lp(RN )

}

.

Moreover, for every α > 0,
∣

∣

∣

{

x ∈ R
N :

∣

∣

∣
∂2
xixj

u (x)
∣

∣

∣
> α

}∣

∣

∣
≤ c

α

{

‖Au‖L1(RN ) + ‖u‖L1(RN )

}

∣

∣

{

x ∈ R
N : |Y0u (x)| > α

}∣

∣ ≤ c

α

{

‖Au‖L1(RN ) + ‖u‖L1(RN )

}

The constant c is independent of u.

Before proceeding, some motivational and bibliographical remarks are in order.

REMARK 1. The operator A is the infinitesimal generator of the Ornstein-
Uhlenbeck semigroup, the Markov semigroup associated to the stochastic differen-
tial equation:

dξ(t) = BT ξ(t)dt+
√
2A

1/2
0 dW (t) , t > 0, ξ(0) = x,

where W (t) is a standard Brownian motion taking values in R
p0 .
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64 E. LANCONELLI

It describes the random motion of a particle in a fluid. A and its parabolic
counterpart A−∂t have several interpretations, in physics and finance: we directly
refer to the survey papers [LaPP] and [P] for a presentation and a bibliography on
this subjects.

REMARK 2. Our result is a first step towards existence and uniqueness for the
Cauchy problem for A, as well as towards the characterization of the domain of A
in Lp spaces.

REMARK 3. Global estimates for A in Hölder spaces where proved by Da
Prato and Lunardi, in the non degenerate case (p0 = N), and by Lunardi in the
degenerate case, see [DaL1 ] and [Lu1]. Metfune, Prüss, Rhandi and Schnaubelt
proved global Lp estimates, for the non degenerate Ornstein-Uhlenbeck operator
[MePRS]. Global estimates in L2 with respect to invariant Gaussian measure where
proved by Lunardi and by Farkas and Lunardi, in the non degenerate and in the
degenerate case, respectively, see [Lu2], [FaL]. In all these papers, a semigroups
approach is used. More recently, Di Francesco and Polidoro [DiP] proved local
Hölder estimates for A as a consequence of analogous estimates for its parabolic
counterpart L =: A− ∂t. They used a direct approach based on the properties of
a Lie group structure underlying the operator L.

Our approach to the Lp estimates is closer to the one used by Di Francesco and
Polidoro. Indeed, our starting idea for proving (6), is to look at A as the stationary
counterpart of the Kolmogorov-Fokker-Planck operator in RN × R

L := A− ∂t = div (A∇) + 〈x,B∇〉 − ∂t = div (A∇) + Y

where Y = 〈x,B∇〉 − ∂t. For this operator we proved the estimate
∥

∥

∥
∂2
xixj

u
∥

∥

∥

Lp(S)
≤ c ‖Lu‖Lp(S) for i, j = 1, 2, ..., p0 (7)

for any u ∈ C∞
0 (S) , where S is the strip R2n × ]−1, 1[. From this inequality the

Lp estimate (6) for A trivially follows.
The crucial properties we used to prove (7) are the following ones:
(I) There exists a composition law in in RN ×R making K = (RN ×R, ◦) a Lie

group such that L is left translation invariant on K. The composition law is given
by

(x, t) ◦ (x′, t′) = (x′ + E(t′)x, t+ t′)

and first explicitly appeared in [LaP].
(II) L has a global fundamental solution taking the form

Γ(z, ζ) = γ(ζ−1 ◦ z),

where γ is nonnegative, smooth out of the origin, and summable in a neighbor-
hood of infinity in the strip S, together with its second derivatives ∂2

xixj
γ, i, j =
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1, . . . p0. The function is explicitly given by

γ (z) =

{

0 for t ≤ 0
(4π)−N/2√
detC(t)

exp
(

− 1
4

〈

C−1 (t)x, x
〉

− tTrB
)

for t > 0.

These ingredients allow to get the following representation formula

∂2
xixj

u = − (PV )(∂2
xixj

γ ∗ Lu) + ci.j Lu
where

(i) ∗ is convolution on K and
(ii) ci.j are suitable real constants.

We also used another crucial fact: the strip S can be endowed with a structure
of what we called local quasimetric space whose balls “fit” the level sets of ∂2

xixj
γ.

Given a nonempty set X and a function d : X ×X → [0,∞[ we say that (X, d)
is a local quasi metric space if

(a) d(x, y) > 0 if x 6= y
(b) d(z, ζ) ≤ C d(ζ, z) if d(z, ζ) ≤ 1
(c) d(z, ζ) ≤ C ( d(z, w) + d(w, ζ)) if d(z, w) , d(w, ζ) ≤ 1.

The starting idea to endow S with a metric whose balls fit the level set of the
fundamental solution Γ is to link the properties of L = A− ∂t with the ones of its
principal part L0 = A0 − ∂t, with A0 := div(A∇) + 〈x,B0 ∇〉 and B0 is obtained
by annihilating the ⋆ blocks in B:

B0 =















0 B1 0 . . . 0
0 0 B2 . . . 0
...

...
...

. . .
...

0 0 0 . . . Br

0 0 0 . . . 0















.

L0 is homogeneous of degree 2 w.r. to the group of dilations in RN+1

δr := diag (r Ip0
, r3 Ip1, . . . , r

2r+1 Ipr , r
2).

Then, if ‖ · ‖ is any norm δr-homogeneous of degree 1, then we let

d(z, ζ) :=‖ ζ−1 ◦ z ‖
where ζ−1 ◦ z is the operation on K, the Lie group related to L. We proved that
(S, d) is a local quasi metric space. Moreover, by exploiting the Lie left invariance
of d and the homogeneity of ‖ · ‖ with respect to δr, we easily recognized that

|Bd(z0, r)| = rQ|Bd(0, 1)|, where Q = p0 + 3p1 + · · ·+ (2r + 1)pr + 2.

Hereafter, if B ⊂ S, |B| stands for the Lebesgue measure of B. Moreover Bd de-
notes the d-ball. From these last identities we then obtained the following doubling
property

|Bd(z0, 2r) ∩ S| ≤ A |Bd(z0, r) ∩ S|, for every z0 ∈ S and r > 0.

All these facts allow us to use a very recent result by M. Bramanti on singular
integrals on nonhomogeneous local quasimetric spaces (see [Br1]), to obtain a “local
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version” of the Lp estimate (7). Then, again exploiting the left invariance of L on
the Lie group K, together with a suitable covering lemma in local quasi metric
spaces endowed with a doubling measure, we finally get the complete proof of (7).

We would like to mention that the result of M. Bramanti on which our Lp

estimates rest, uses several ideas and results from the deep paper [NTV] by F.
Nazarov, S. Treil, A. Volberg, on the Calderón-Zygmund theory in nonhomogeneous
metric spaces. In his extension of the results in [NTV], Bramanti also used some
ideas from a paper by E. Fabes, I .Mitrea, and M. Mitrea [FaMM].

We would like to close this section with a comparison remark. The operators
A and L are contained in the general class of the Hörmander operators. However
the previous Lp estimates cannot be derived from Folland’s and Rothschild and
Stein’s works. Indeed, Folland considered operators with underlying structures of
homogeneous Lie groups. Our group K is non-nilpotent, hence nonhomogeneous.

Rothschild and Stein’s work [RS] only contains local estimates. Our estimates
are global (on RN ) or related to unbounded domains (the strip S).

3. General Hörmander operators: construction of Lie groups and

existence of global fundamental solutions

To get Lp a priori estimates for general Hörmander operators in RN by over-
coming the restriction of dealing with homogeneous groups (as in Folland’s work)
or with local estimates (as in Rothschild and Stein’s work) one can try to use the
techniques we introduced for degenerate Ornstein-Uhlenbeck operators.

This would require to deal with operators

(i) left translation invariant on some Lie group in RN and
(ii) equipped with a global fundamental solution left invariant on the group.

For these reasons, we addressed the following two questions, of some interest on
their own.

Problem (P1) Given a system {X0, X1, . . . , Xm} of vector fields in RN

satisfying the Hörmander rank condition

dim(Lie{X0, X1, . . . , Xm}(x)) = N, ∀ x ∈ R
N (H)

is there a Lie Group G = (RN , ◦) (not necessarily homogeneous nor nilpotent) such
that the Xj ’s are left invariant on G (so that L =

∑m
j=1 Xj +X0 is left invariant

on G)?

Problem (P2) Does there exist a function γ ∈ C∞(RN\{0}), γ ≥ 0 such that

Γ(x, y) = γ(y−1 ◦ x), x, y ∈ R
N , x 6= y

is a fundamental solution for L?
We have solved problems (P1) and (P2) for a class of Hörmander operators

containing, e.g.,

(1) The Kolmogorov-Fokker-Planck operator L, already studied with S. Poli-
doro, evolution counterpart of the previous degenerate Ornstein-Uhlenbeck
operators:

L := div (A∇) + 〈x,B∇〉 − ∂t;
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(2) The Fokker-Planck operators introduced by Mumford in computer vision:

Mf = ∂2
x1

+ cosx1∂x2
+ sinx1∂x3

− ∂t

Mb = (x2∂x1
− x1∂x2

+ ∂x3
)2 + ∂x1

+ ∂t;

(3) Non-autonomous Kolmogorov operators with periodic coefficients like

L = ∂2
x1

+ (cos t ∂x2
+ sin t ∂x3

)2 − (∂t + x1∂x4
)

contained in the class recently studied by Da Prato an Lunardi.
In order to show our answer to problem (P1), we need to recall some notation

and basic results from Lie groups theory in RN . The set

T (RN) := {X =

N
∑

k=1

akj ∂xk
} ≡ {(a1, . . . , aN)T } = C∞(RN ,RN )

is a Lie algebra when endowed with its natural linear structure and the Lie bracket
operation

[X,Y ] := XY − Y X.

The set a ⊂ T (RN ) is called a Lie algebra of vector fields in R
N if a is linear and

closed with respect to [·, ·].
Let a be a Lie algebra of vector fields in RN and let x ∈ RN . Then

a(x) = {X(x) : X ∈ a}
is a linear subspace of RN . Its dimension is called the rank of a at x:

rank a(x) := dim a(x).

We stress that, in general, dim a(x) ≤ dim a for every x ∈ R
N . The Lie algebra

generated by a family Z ⊂ T (RN ) is defined as follows:

Lie Z := intersection of the Lie algebras containingZ.

Given X ∈ T (RN ) we denote with exp(tX)(x) the solution to the Cauchy problem
{

γ̇ = X(γ)
γ(0) = x.

A vector field X ∈ T (RN) is said to be complete, if exp(tX)(x) is well defined for
every t ∈ R and x ∈ RN .

Now, we are able to state a crucial necessary condition for ((P1)).
Let a := Lie{X0, X1, . . . , Xm} and assume (P1) is solvable. Then

(H1) Every X ∈ a is complete and

dim a = N

(see e.g. [BLU], Corollary 1.2.23 and Proposition 1.2.7).
Condition (H1) has the following important consequence: the map

Exp : a → R
N , Exp(X) = exp(tX)(0)|t=1
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is well defined, and smooth. Moreover, since Exp(X) = X(0) + o(X) as X → 0,
Exp is a diffeomorphism from W , a neighborhood of 0 in a to V , a neighborhood
of 0 in RN . Then, if we let

Log := (Exp/W )−1

the following maps are well defined for every x, y ∈ V :

x ◦ y := exp(Log(y))(x), x−1 := Exp(−Log(x)). (8)

We explicitly remark that, if it would exist a composition law ◦ making the X ′
j left

invariant, then ◦ would satisfy (8).
Our main result regarding problem (P1) is the following theorem, obtained in

collaboration with A. Bonfiglioli in [BoL].

Theorem 3.1. Let X = {X0, X1, . . . , Xm} ⊂ T (RN) be a family of real analytic
vector fields satisfying the Hörmander rank condition and suppose that a := Lie(X)
satisfies (H1). Assume the maps

(i) (x, y) 7→ x ◦ y and
(ii) x 7→ x−1

defined in (8) admit a real analytic extension to all R
N × R

N and to all R
N ,

respectively.
Then G = (RN , ◦) is a Lie group whose Lie algebra is a.

We proved the existence of a global fundamental solution for a Hörmander
operator under the following assumptions (L1) and (L2). We say that the operator

L =

m
∑

j=1

X2
j +X0 (9)

satisfies (L1) if one of the following conditions holds:

(i) L is asymptotically elliptic along ν ∈ RN , ν 6= 0, i.e.
m
∑

j=1

〈Xj(x), ξ〉2 > 0, ∀ x, ξ ∈ R
N , |x| > M, |ξ − ν| < δ

for suitable positive constants M and δ;
(ii) L is homogeneous with respect to to a group of dilations (δr)r>0, and not

totally degenerate at the origin, i.e.
m
∑

j=1

〈Xj(0), ξ〉2 > 0, for a suitable ξ 6= 0.

We say that the operator (9) satisfies (L2) if it is of parabolic type, i.e., if it can be
written as

L =

N−1
∑

i,j=1

ai,j(x)∂
2
xi,xj

+

N−1
∑

j=1

bj(x)∂xj ± ∂xN .

With the previous definitions at hand, we can state our main result regarding
problem (P2). Its proof is contained in [BoL].
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Theorem 3.2. Let L =
∑m

j=1 X
2
j +X0 be a Hörmander operator in RN satisfying

conditions (L1) and (L2). Then there exists a function Γ s.t.

(i) The map (x, y) 7→ Γ(x, y) is defined, non-negative and smooth away from
the set {(x, y) ∈ RN : x = y}.

(ii) For every fixed y, x ∈ RN , Γ(·, y) and Γ(x, ·) are locally integrable and, for
every test function ϕ:

L
∫

RN

Γ(·, y)ϕ(y) dy = −ϕ =

∫

RN

Γ(·, y)Lϕ(y) dy.

(iii) If L is left invariant on a Lie group G = (RN , ◦), and the Lebesgue measure
is left invariant on G, then

Γ(x, y) = Γ(y−1 ◦ x, 0) for every x, y ∈ R
N .

Let us now show examples to which our main theorems apply.

EXAMPLE 1. The Kolmogorov-Fokker-Planck operator

A = div (A∇) + 〈x,B∇〉 − ∂t

satisfies all the hypotheses of Theorem 3.1 and of Theorem 3.2.
It is left translation invariant on the Lie group K = (RN × R, ◦) with the com-

position law

(x, t) ◦ (y, τ) = (y + E(τ)x, t + τ),

where E(τ) = exp(−τB).
Then we rediscovered a result first appeared in [LaPo].

EXAMPLE 2. The forward Mumford operator

Mf = ∂2
x1

+ cosx1∂x2
+ sinx1∂x3

− ∂t

satisfies all the hypotheses of Theorem 3.1. It is left translation invariant on the
Lie group Mf = (R3 × R, ◦) with composition law

(x, t)◦(y, τ) = (x1+y1, x2+y2 cos x1−y3 sin x1, x3+y2 sin x1+y3 cos x1, t+τ).

REMARK. We want to emphasize that, in this case, the relevant Exp map is
not a global diffeomorphism.

Since the operator Mf is of parabolic type, and elliptic along (1, 0, . . . , 0), by
Theorem 3.2 it has a global fundamental solution, which is left invariant on Mf

because, as it can be easily verified, the Lebesgue measure is left invariant on this
group.

EXAMPLE 3. The backward Mumford operator

Mb = (x2∂x1
− x1∂x2

+ ∂x3
)2 + ∂x1

+ ∂t

is left translation invariant on the Lie group Mb = (R3 × R, ◦) with composition
law

(x, t)◦(y, τ) = (x1 cos y3+x2 sin y3+y1, x2 cos y3−x1 sin y3+y2, x3+y3, t+τ).
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This Lie group is isomorphic to Mf . The operator Mb has a global fundamental
solution which is left invariant on Mf .

EXAMPLE 4. The Da Prato-Lunardi-type operator, the non autonomous Kol-
mogorov operator with periodic coefficients

L = ∂2
x1

+ (cos t ∂x2
+ sin t ∂x3

)2 − (∂t + x1∂x4
),

satisfies all the hypotheses of our main theorems. It is left translation invariant on
the Lie group G = (R4 × R, ◦) with composition law

(x, t)◦(y, τ) = (x1+y1, x2+y2 cos t−y3 sin t, x3+y2 cos t+y3 sin t, x4+y4+τx1, t+τ).

L is of parabolic type, and elliptic along (1, 0, . . . , 0). Then it has a global funda-
mental solution, which is left invariant on G.
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