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IMPORTANCE OF ZAK TRANSFORMS FOR HARMONIC

ANALYSIS

EDWARD N. WILSON

Abstract. In engineering and applied mathematics, Zak transforms have been effectively used
for over 50 years in various applied settings. As Gelfand observed in a 1950 paper, the variable
coefficient Fourier series ideas articulated in Andre Weil’s famous book on integration lead to
an exceedingly elementary proof of the Plancherel Theorem for LCA groups. The transform
for functions on R appearing in Zak’s seminal 1967 paper is actually a special case of the LCA
group transforms earlier introduced by Weil; Zak states this explicitly in his 1967 paper but the
mathematical community nonetheless chose to name the transform for him.

In brief, the properties of Zak transforms are simply reflections of elementary Fourier series
properties and the Plancherel Theorem for non-compact LCA groups is an immediate consequence
of the fact that Fourier transforms are averages of Zak transforms. It is remarkable that only a
small handful of mathematicians know this proof and that all textbooks continue to give much
harder and less transparent proofs for even the case of the group R. Generalized Zak transforms
arise naturally as intertwining operators for various representations of Abelian groups and allow
formulation of many appealing theorems.

Remark: The results discussed below represent joint work by E. Hernandez, H. Sikic, G.
Weiss, and the author.

1. The Abelian Group Plancherel Theorem

1.1. Overview. In textbooks on real analysis, one can find a variety of proofs
of the Plancherel Theorem for Rn, n ∈ N. All are lengthy, non-elementary, and
technical, e.g.:

� use of complex analysis to compute Fourier transforms of Gaussian functions
followed by use of approximate identities defined by Gaussians to extend the Fourier
transform from L1(Rn) ∩ L2(Rn) to a unitary operator on L2(Rn);

� alternative use of the Hermite function orthonormal basis for L2(Rn) and the
computation that Hermite functions are eigenfunctions of the Fourier transform
with eigenvalues which are fourth roots of 1;

� reversion to the 19th century interpretation of Fourier transforms as Riemann
sum limits of Fourier series and justification of this approach by somewhat delicate
dominated convergence arguments.
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In fact, as we will show, none of this is necessary. The proof of the Plancherel
Theorem for Rn via Zak transforms uses only basic Fourier series ideas and applies
with only syperficial changes in notation to every locally compact, Abelian group
(LCA group).

1.2. Notations and Definitions. Let G = (G,+) be an additive LCA group.

(i) The dual group Ĝ = (Ĝ,+) of G is the essentially unique LCA group for

which there is a continuous, bi-additive homomorphism (ξ, x) �→ ξ · x from Ĝ×G
into R/Z such that, with eξ(x) = ex(ξ) ≡ e2πiξ·x, every continuous homomorphism

from G (respectively, Ĝ) into the multiplicative group {z ∈ C : |z| = 1} is of the

form eξ for some ξ ∈ Ĝ (respectively, of the form ex for some x ∈ G). Existence

of Ĝ is shown in many standard texts, e.g. [R]. [For G = Rn = additive group of

n× 1 real column matrices, it is convenient to take Ĝ to be the group of 1×n real
row matrices with ξ · x a matrix product and similarly with all other Abelian Lie
groups.]

(ii) A lattice in G is a topologically discrete subgroupL ⊂ G for which TL = G/L
is compact in the quotient topology (e.g., the integer lattice Z

n in R
n).

Existence of lattices in G follows from Weil’s structural theorem. The connected
component G0 of 0 in G is the direct sum of a maximal, connected subgroup K
and a subgroup isomorphic and homomorphic to Rn, n ≥ 0, with G/G0 discrete.

(iii) Given a lattice L, there is a unique Haar measure µ = µL on G assigning
mass 1 to every L-tiling domain C ⊂ G (thus C is Borel measurable and G is
the disjoint union of the translates of C by members of L — if we wish, we can

take C to have compact closure). Then L⊥ = {j ∈ Ĝ : ∀k ∈ L, j · k is the zero

element in R/Z} is a lattice in Ĝ called the lattice dual of L and there is a unique

Haar measure µ̂ = (µ̂)L⊥ on Ĝ assigning mass 1 to every L⊥ — tiling domain.
Also, µ (respectively, µ̂) induces normalized Haar measure on the compact group

TL = G/L (respectively, on TL⊥ = Ĝ/L⊥) and {ej : j ∈ L⊥} is an orthonormal
basis for L2(TL) (respectively, {ek : k ∈ L} is an orthonormal basis for L2(TL⊥).

Examples. In the R
n case with L = Z

n, [0, 1)n is a L-tiling domain and the

matrix transpose map takes Zn to (Zn)
⊥
, so µ is Lebesgue measure on Rn and µ̂

is Lebesgue measure on (Rn)
∧
. When G is an n=dimensional Abelian Lie group

with finitely many connected components, there is a finite group F for which each
of the compact groups TL = G/L is isomorphic and homeomorphic to the product
of F and the standard n-torus Tn = R

n/Zn, n ≥ 0.

(iv) Using the notations in (iii), let MTL×TL⊥ and (MTL×TL⊥ )
∼ be the spaces of

C-valued measurable functions Φ and Φ∼ on G×Ĝ such that, for all (k, j) ∈ L×L⊥
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and all (x, ξ) ∈ G× Ĝ,

Φ(x+ k, ξ + j) = ek(ξ)Φ(x, ξ) a.e., (1.1)

Φ∼(x+ k, ξ + j) = e−j(x)Φ(x, ξ) a.e., (1.2)

and the L × L⊥ periodic functions |Φ|, |Φ∼| are in L2(TL × TL⊥).
Note that the magnitudes of Φ and Φ∼ are periodic in both variables by (1.1)

and (1.2). The norms of these functions are understood to be the L2 norms of their
magnitudes as functions on the compact group TL×TL⊥ relative to the normalized
Haar measure induced by µ× µ̂.

(v) Using the notations in (iii), for f ∈ L2(G,µ) and g ∈ L2(Ĝ, µ̂), the Zak
transforms ZLf and Z∼

L⊥g of f and g are the a.e. well defined Fourier series
expressions

(ZLf)(x, ·) =
∑
k∈L

f(x+ k)e−k(·) (1.3)

(Z∼
L⊥g)(·, ξ) =

∑
j∈L⊥

g(ξ + j)ej(·) (1.4)

Note that not only are the roles of x and ξ reversed in (1.3) and (1.4) but, as in
(1.1) and (1.2), we also have a change of sign in the exponents.

1.3. Theorem. Using the above notations, for each choice of L,
(i) f �→ ZLf is a unitary map from L2(G,µ) onto MTL×TL⊥ whose inverse is

a.e. well defined by

f(x) = ((ZL)−1Φ)(x) =

∫
TL⊥

Φ(x, ξ)dµ̂(ξ); (1.5)

(ii) g �→ Z∼
L⊥g is a unitary map from L2(Ĝ, µ̂) onto (MTL×TL⊥ )∼ whose inverse

is a.e. well defined by

g(ξ) = ((Z∼
L⊥)

−1Φ∼)(x) =
∫
TL

Φ∼(x, ξ)dµ(x); (1.6)

(iii)

Φ∼(x, ξ) = (UΦ)(x, ξ) = e−2πiξxΦ(x, ξ) (1.7)

defines a unitary map U from MTL×TL⊥ onto (MTL×TL⊥ )
∼.

Proof. (i) For each L-tiling domain C ⊂ G, translation invariance of µ gives

‖f‖2L2(G,µ) =

∫
C

∑
k∈L

|f(x+ k)|2 (1.8)

so (f(x+k))k∈L ∈ �2(L) for a.e. x ∈ G. Since {e−k : k ∈ L} is an orthonormal basis
for L2(TL⊥), (ZLf)(x, ·) ∈ L2(TL⊥) for a.e. x and a simple change of summation
index argument shows that ZLf satisfies the transformation condition (1.1) with
(1.8) then yielding ZLf ∈ MTL×TL⊥ . Moreover, (1.5) holds since f(x) is the 0th

Fourier coefficient of the L⊥-periodic function (ZLf)(x, ·). Conversely, when we
start with Φ ∈ MTL×TL⊥ and f is defined by (1.5), the transformation law (1.1)
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implies that, for a.e. x, f(x + k) is the (−k)th Fourier coefficient of the L2(TL⊥)
function Φ(x, ·) from which it follows that f ∈ L2(G,µ) and Φ = ZLf .

(ii) We merely repeat the arguments in (i) with the roles of x and ξ reversed
and using the transformation law (1.2) in place of (1.1).

(iii) is merely an elementary computation showing that U converts the trans-
formation law (1.1) for Φ to the transformation law (1.2) for Φ∼ along with the
trivial observation that U doesn’t change magnitudes. �

1.4. Corollary 1 (The Plancherel Theorem for LCA Groups). Using the
above notations, for each choice of a lattice L ⊂ G and corresponding dual lattice
L⊥ ⊂ Ĝ,

(i) the unitary map FG = (Z∼
L⊥)

−1 ◦ U ◦ ZL from L2(G,µ) onto L2(Ĝ, µ̂) is

described on the dense subspace L1(G,µ) ∩ L2(G,µ) ⊂ L2(G,µ) by

(FGf)(ξ) = f̂(ξ) =

∫
G

f(x)e−ξ(x)dµ(x); (1.9)

(ii) when g ∈ L1(Ĝ, µ̂) ∩ L2(Ĝ, µ̂),

((FG)−1g)(x) = ((ZL)−1 ◦ U−1 ◦ ZL⊥g)(x)

= (FĜg)(−x) =
∫
Ĝ

g(ξ)ex(ξ)dµ̂(ξ) (1.10)

[In particular, of course, (i) not only proves the existence of a unique unitary

extension to L2(G) of the Fourier transform f �→ f̂ on (L1∩L2)(G,µ) but gives an
explicit expression for this extension, (ii) gives the standard formula relating FĜ
to the inverse of FG, and (i) and (ii) show that the only pairs of Haar measures

µ, µ̂ on G, Ĝ for which the Plancherel Theorem holds are µ = µL, µ̂ = (µ̂)L⊥ for
some dual lattice pair L, L⊥.]

Proof. (i) For f ∈ L1(G,µ)∩L2(G,µ), we use the definitions of ZLf and U in (1.3)
and (1.7) along with the inversion formula (1.6) for ZL⊥ to obtain, for each choice
of a L-tiling domain C ⊂ G,

((Z∼
L⊥)

−1 ◦ U ◦ ZLf(ξ) = Ce
−2πiξ·x(ZLf)(x, ξ)dµ(x)

=

∫
C

∑
k∈L

f(x+ k)e−2πiξ·(x+k)

= (by translation invariance of µ)∫
G

f(y)e−ξ(y)dµ(y)

= f̂(ξ).

(ii) follows from a similar computation using (1.4) and (1.5) in place and (1.6),

the only changes being reversal of the roles of G and Ĝ changes in the exponents
for Z⊥

L⊥ and U−1. �
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1.5. Corollary 2. (Poisson Summation Formula) When f satisfies the smoothness

and decay properties needed to have both ZLf and Z∼
L⊥ f̂ pointwise well-defined

and jointly continuous in an open neighborhood of (0,0),

∑
k∈L

f(k) =
∑
j∈L⊥

f̂(j). (1.11)

Proof. From Theorem 1.3 and Corollary 1, Z∼
L⊥ f̂ = UZLf . Since (UZLf)(0, 0) =

(ZLf(0, 0) =
∑
k∈L

f(k) while (Z∼
L⊥ f̂)(0, 0) =

∑
j∈L⊥

f̂(j), we obtain (1.11). �

1.6. Remarks. Corollary 2 is not surprising since all standard proofs of the Pois-
son Summation Formula rest on lattice periodization of Fourier integrals and that
is precisely what is going on with Zak transforms. Zak transforms can be viewed
as discretizations of Fourier integrals and, for the case G = R, can be compared
with other discretizations such as the short-time Fourier transform and the Discrete
Cosine transform. However, Corollary 1 yields the intriguing converse statement
that Fourier integrals are just averages of Zak transforms for any choice of a lat-
tice. Since periodization techniques have been used for over 100 years in harmonic
analysis, and since A. Weil’s 1940 book [W] on integration on locally compact topo-
logical groups alludes to a proof of the Plancherel Theorem for classical Abelian
groups via Fourier series ideas with I. Gelfand being sufficiently impressed by this
approach to sketch Weil’s argument for R in a 1950 paper [G] on eigenfunction
expansions, it is surprising that only a small handful of mathematicians have paid
any attention. Perhaps part of the reason is that the Zak transform for R is often
presented as a somewhat arcane way to turn L2(R) into L2(T2) and its applica-
tions are customarily described as part of the discretization machinery germane
to certain problems in mathematical physics and applied harmonic analysis. In-
deed, Zak’s motivation for the transform he introduced in 1967 was to provide a
tool for some problems in quantum mechanics. The above discussion is intended
to suggest that the Zak transform ought to be seen as a fundamental tool for ev-
ery aspect of Abelian harmonic analysis with the Fourier transform being just a
by-product of Zak transforms and with passage to Zak transform image spaces
for calculations equivalent to but often considerably less technical than passage to
Fourier domains. We will illustrate this point of view in a forthcoming expository
article on square integrable sampling functions, showing how use of the interme-
diate Zak space MTL×TL⊥ makes unnecessary the customary separate distinction
between sampling functions with compact support in the time domain and those
with compact support in the Fourier domain. To say the least, such illustrations
substantially change the perspective on Fourier transforms and suggest that intro-
ductory courses in real analysis should follow-up standard coverage of elementary
measure theory and Fourier series for T = R/Z with definition of the Zak transform
ZZ and at least a sketch of the above argument showing how ZZ leads quickly and
“painlessly” to the Plancherel Theorem for R.
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2. Generalized Zak Transforms for Abelian Group Representations.

2.1. Overview. The isometry and transformation condition properties discussed
above for ZL are succinctly expressed in the language of group representations by
saying that the unitary map ZL intertwines the restriction to L of the regular rep-
resentation f(·) �→ f(x+ ·) of G on L2(G,µ) with the modulation representatioin
Φ(x, ·) �→ e�(·)Φ(x, ·) of L on the Zak space MTL×TL⊥ . This suggests going on
to define and apply generalized Zak transforms intertwining certain unitary rep-
resentations of LCA groups with modulation representations. One can also look
at operator-valued analogs for non Abelian groups, the limitation being that a
non-Abelian discrete group L has a Plancherel Formula if and only if L is a finite
extension of an Abelian group. We won’t take time below to discuss non-Abelian
generalizations.

2.2. General Setting for (Abelian) Zak transforms. (i) (�, x) �→ � · x is a
stability-free action of a countable additive group L on a set X . Thus k · (� · x) =
(k + �) · x for all x ∈ X and all k, � ∈ L with � · x = x⇔ � = 0.

(ii) There is a σ-finite measure ν on X for which L2(X, ν) is a separable Hilbert
space and for which ν is quasi L-invariant in the sense that, for each � ∈ L, x �→ � ·x
is measurable and we have a Radon-Nikodym derivative J�(x) =

dν(� · x)
dν(x)

defined

and > 0 for a.e. x. Then, by the chain rule for Radon-Nikodym derivatives,

J�+k(x) = J�(k · x)Jk(x) a.e.

and

(D�f)(x) = J�(x)
1
2 f(� · x)

defines a unitary representation D of L on L2(X, ν).
(iii) The action is regular in the sense that there exists a measurable set C such

that X is the disjoint union of the set � · C, � ∈ L. Hence, X is also the disjoint
union of the orbits L · x as x ranges over C. (Obviously, C plays the role of a
L-tiling domain for the special case when L is a lattice in X = G and � ·x = �+x).

Remarks: (i) In practice, we start with a continuous action of a non-discrete
LCA group G on a locally compact, Hausdorff space X ′ (perhaps a topological
manifold), take L to be a lattice in G, take C to be a Borel subset of X ′ for which
L ·C is a ν -null set and (� ·C) ∩C = ∅ for each � ∈ L \ {0}, then take X = L ·C.
But C could then be replaced by any measurable subset of X containing exactly
one point from each L-orbit.

(ii) In general, when a quasi L-invariant measure ν exists, one can construct a
finite L-invariant measure µ which is equivalent to ν in the usual measure sense.
But, for examples of actions of discrete Abelian matrix groups on Rn and, more
generally, actions by commuting manifold diffeomorphisms along the integral curves
of commuting vector fields, there will be a natural choice for ν, e.g. Lebesgue
measure on Rn and the measure defined by a Riemannian volume form in the
manifold case. In such cases, replacement of ν by µ is artificial and doesn’t add
anything new.
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2.3. Notations and Definitions. In the above general setting:
(i) (L̂,+) is the compact, additive LCA group dual to L and µ̂ is normalized

Haar measure on L̂ with {e� : � ∈ L} the orthonormal basis of L2(L̂, µ̂) defined as
in §1 by e�(ξ) = e2πi�·x.

(ii) For ψ ∈ L2(X, ν), the generalized Zak transform Zψ of ψ relative to the

action of L and the measure ν is the L2(L̂, µ̂) -valued function on X well defined
ν-a.e. by

Zψ(x, ·) =
∑
�∈L

(D�ψ)(x)e−�(·). (2.1)

2.4. Remarks: The computations we made earlier in the case of the translation
action of L ⊂ G on G generalize easily to yield the following:

(i) (ZD�ψ)(x, ξ) = e�(ξ)(Zψ)(x, ξ) a.e. (2.2)

so ψ �→ Zψ intertwines the unitary representation D of L on L2(X,µ) and the
modulation representation of L on the image under Z of L2(X,µ);

(ii) For any choice of an orbit-cross section set C ⊂ X as above,∫
C

∫
L̂
|Zψ(x, ξ)|2dµ̂(ξ)dν(x) =

∫
C

∑
�∈L

J�(x)|ψ(� · x)|2dν(x)

=
∑
�∈L

∫
�·C

|ψ(y)|2dν(y) = ‖ψ‖2L2(X,ν)

(2.3)

Defining the initial expression in (2.3) to be ‖Zψ‖2M, it follows that Z is an isometry

from L2(X, ν) onto the Hilbert space M of measurable functions Φ from X × L̂
into C satisfying the transformation condition D�(Φ(·, ξ)) = e�(ξ)Φ(·, ξ) a.e. and

‖Φ‖2M =

∫
C

∫
L̂
|Φ(x, ξ)|2dµ̂(ξ)dν(x) < ∞. Indeed, for Φ ∈ M, f = Z−1Φ is a.e.

well defined by

f(x) =

∫
L̂
Φ(x, ξ)dµ̂(ξ).

2.5. More Notations and Definitions. In the context of 2.2 – 2.4, for φ, ψ ∈
L2(X, ν),

(i) the bracket function [φ, ψ] = [φ, ψ]D is the member of L1(L̂, µ̂) well defined
a.e. by

[φ, ψ](ξ) =

∫
C

Zφ(x, ξ)Zψ(x, ξ)dν(x); (2.4)

[Note that by the computations in 2.4 and use of the Cauchy-Schwartz inequal-
ity, (φ, ψ) �→ [φ, ψ] is a bounded, sesquilinear, Hermitian symmetric map from

L2(X, ν)×L2(X, ν) into L1(L̂, µ̂) and has the positive semi-definite property [ψ, ψ] ≥
0.]

(ii) pψ is the L1(L̂, µ̂) weight function [ψ, ψ];
(iii) supp pψ = {ξ : pψ(ξ) �= 0} (well defined modulo a µ̂-null set);
(iv) when ψ ∈ L2(X, ν) \ {0}, the D-cyclic subspace < ψ >D is the closure in

L2(X, ν) of the span of Bψ = {D�ψ : � ∈ L}.
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Theorem 2.1. Using the above notations, for φ, ψ non-zero members of L2(X, ν)
and � ∈ L,

(i) [D�φ, ψ] = e�[φ, ψ] = [φ,D−�ψ];

(ii) < D�φ, ψ >L2(X,ν)=

∫
L̂
e�[φ, ψ]dµ̂ =< φ,D�ψ >L2(X,ν);

(iii) < φ >D⊥< ψ >D⇔ [φ, ψ] = 0 a.e.;

(iv) φ �→ Jψ(φ) = [φ, ψ]

p
1
2

ψ

χsupp pψ

is a unitary map from < ψ >D onto the closed subspace ZHψ of L2(L̂, µ̂) consisting
of members of L2(L̂, µ̂) which vanish a.e. off supp pψ. In particular, using (i), Jψ
intertwines D on < ψ >D with the modulation representation of L on Hψ.

Sketch of the Proof. (i) and (ii) are easy calculations using the transformation
and isometry properties of Z, (iii) follows easily from (ii), and (iv) is another routine
calculation using (i), (iii), and the “inner product” properties of [·, ·].

Corollary 2.7. For each non-zero ψ ∈ L2(X,µ), the spanning set Bψ for
< ψ >D

(i) is an orthonormal basis ⇔ pψ = 1 a.e.;

(ii) is a Riesz basis ⇔ both ‖pψ‖∞ and ‖ 1

pψ
‖∞ are finite;

(iii) is a frame ⇔ there are positive constants A, B with

Aχsupp pψ ≤ pψ ≤ Bχsupp pψ a.e.

(where we take A = B = 1, Bψ is said to be a Parseval frame).

Proof. Immediate from the properties of modulation representations and the fact

that Jψ(D�ψ) = e�p
1
2

ψ . �

Remark: The above list of connections between properties of the generating set Bψ
for < ψ >D and properties of the weight function pψ can be expanded considerably
to discuss many other connections between Bψ and pψ (e.g., see [HSWW]). Also, as
discussed by Heil and Powell in [HP], the non-averaged weight function qψ = |Zψ|
controls the properties of the Gabor system generated by ψ in the Rn case.
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