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TRANSLATIONS, NORM-ATTAINING FUNCTIONALS, AND

ELEMENTS OF MINIMUM NORM

FRANCISCO JAVIER GARCÍA-PACHECO

Abstract. In this paper we continue a work that James started in 1971 about

norm-attaining functionals on non-complete normed spaces by proving that
every functional on a normed space is norm-attaining if and only if every

proper, closed, convex subset with non-empty interior can be translated to

have a non-zero, minimum-norm element. We also study this type of spaces
when they are non-complete. Finally, we consider translations and elements

of maximum norm.

1. Introduction

In the year 1964 James proved a characterization of reflexivity in the class of
Banach spaces in terms of norm-attaining functionals (see [3]).

Theorem 1.1 (James, 1964). A Banach space X is reflexive if and only if every
functional on X is norm-attaining.

Afterwards, James was asked for the possibility of removing the completeness
hypothesis. As a negative answer, he came up with the following counterexample
(see [4]).

Theorem 1.2 (James, 1971). There exists a non-complete normed space on which
every functional is norm-attaining.

This result of James motivated Blatter to characterize reflexivity in the class of
all normed spaces (see [2]).

Theorem 1.3 (Blatter, 1976). A normed space X is reflexive if and only if every
closed, convex subset of X has a minimum-norm element.

In 2005 Blatter’s Theorem 1.3 was slightly improved (see [1]).

Theorem 1.4 (Aizpuru and Garćıa-Pacheco, 2005). A normed space X is reflexive
if and only if every bounded, closed, convex subset of X with non-empty interior
has a minimum-norm element.

The next step is to provide a characterization of normed spaces on which every
functional is norm-attaining.
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2. A geometric characterization of normed spaces on which every
functional is norm-attaining

We intend to characterize all those normed spaces on which every functional
attains its norm. Given a normed space X and a subset M of X, we will let
SA (M) denote the set of functionals on X whose real part attains its supremum
on M . Sometimes, NA (X) is used to denote SA (BX).

Theorem 2.1. Let X be a normed space. Let M be a closed, convex subset of X
and let x ∈ bd (M) (the boundary of M). The following conditions are equivalent:

(1) There is a translate of M with a non-zero element of minimum-norm; in
other words, there exists a ∈ X such that x + a is a non-zero minimum-
norm element of M + a.

(2) There exists f ∈ SX∗∩NA (X)∩SA (M) such that Re f attains its supremum
on M at x.

(3) There exists a closed ball B with non-empty interior such that x ∈M ∩B
and M ∩ int (B) = ∅.

Proof. Assume that there exists a closed ball B with non-empty interior such that
x ∈M ∩B and M ∩ int (B) = ∅. The Hahn-Banach Theorem allows us to deduce
the existence of an element f ∈ SX∗ such that Re f (u) > Re f (m) for every
u ∈ int (B) and every m ∈M . Since cl (int (B)) = B,

x ∈ {m ∈M : Re f (m) = sup Re (f) (M)} .
We will show that −f is norm-attaining. Let b be the center of B. Since x ∈ bd (B)
we have that the radius of B is ‖x− b‖. We will show that

Re (−f)

(
x− b
‖x− b‖

)
= 1.

For all z ∈ UX (0, ‖x− b‖) (the open ball of center 0 and radius ‖x− b‖) we have
that Re (−f) (z + b) < Re (−f) (x), therefore Re (−f) (z) < Re (−f) (x− b). Thus,

‖x− b‖ = sup Re (−f)UX (0, ‖x− b‖)
≤ Re (−f) (x− b)
≤ ‖x− b‖ .

Assume now that f ∈ SX∗∩NA (X)∩SA (M) is such that Re f attains its supremum
on M at x. Let y ∈ f−1 (1) ∩ BX and consider a = −y − x. We will prove that
x+ a is a minimum-norm element of M + a. Let m ∈M . Then

‖m+ a‖ ≥ |f (m+ a)|
= |f (m)− 1− f (x)|
≥ 1 + Re f (x)− Re f (m)

≥ 1

= ‖x+ a‖ .
Finally, if there exists a ∈ X such that x+a is a non-zero minimum-norm element of
M+a, then B := BX (−a, ‖x+ a‖) verifies that x ∈M∩B andM∩int (B) = ∅. �
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We are in the right position to state and prove a characterization of normed
spaces on which every functional is norm-attaining.

Theorem 2.2. Let X be a normed space. The following conditions are equivalent:

(1) Every functional on X is norm-attaining.
(2) If M is a proper, closed, convex subset of X with non-empty interior, then

for every x ∈ bd (M) there exists a ∈ X such that x + a is a non-zero
minimum-norm element of M + a.

(3) If M is a proper, closed, convex subset of X with non-empty interior, then
there exist x ∈ bd (M) and a ∈ X such that x+ a is a non-zero minimum-
norm element of M + a.

Proof. Suppose first that NA (X) = X∗. Let M be a proper, closed, convex subset
of X with non-empty interior. Let x be any point in the boundary of M . The
Hahn-Banach Theorem allows us to deduce the existence of a functional f ∈ SX∗
such that Re f (u) < Re f (x) for every u ∈ int (M). Note that Re f attains its
supremum on M at x since cl (int (M)) = M . In accordance with Theorem 2.1
there exists a ∈ X such that x+ a is a non-zero minimum-norm element of M + a.
Conversely, assume that (3) holds. Let f ∈ SX∗ and consider the proper, closed,
convex set M = Re f−1 ([1,∞)) that has non-empty interior. By hypothesis, there
exist x ∈ bd (M) and a ∈ X such that x + a 6= 0 and x + a is a minimum-
norm element of M + a. Observe that M + a = Re f−1 ([1 + Re f (a) ,∞)). Since
0 /∈M + a we have that 1 + Re f (a) > 0. Therefore,

‖x+ a‖ = dist (0,M + a) = 1 + Re f (a)

and Re f (x+ a) = 1 + Re f (a), which means that

Re f

(
x+ a

‖x+ a‖

)
= 1. �

Corollary 2.3. Let X be a Banach space. The following conditions are equivalent:

(1) X is reflexive.
(2) Every proper, closed, convex subset of X with non-empty interior can be

translated to have a non-zero minimum-norm element.

The end of this section is aimed at showing that if every functional on a normed
space X is norm-attaining, then a bigger class of proper, closed, and convex subsets
of X (containing those which have non-empty interior) can be found so that every
element of it can be translated to have a non-zero minimum-norm element. For
this we will strongly rely on the Bishop-Phelps Support Point Theorem (see [5,
Theorem 2.11.9]).

Lemma 2.4. Let X be a Banach space. Let M be a proper, closed, convex subset
of X. Assume either one of the following conditions holds:

(1) There are a ∈ X and δ > 0 so that sup (Re f (M + a)) ≥ δ for all f ∈ SX∗ .
(2) There are a ∈ X and f ∈ SX∗ such that Re f (M + a) = {0}.

Then every x ∈ bd (M) is a support point of M ; in other words, there is a non-zero
real functional on X attaining its supremum on M at x.
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72 FRANCISCO JAVIER GARCÍA-PACHECO

Proof. Notice that we may assume that a = 0. Let us suppose first that condi-
tion (1) above holds. In accordance with the Bishop-Phelps Support Point The-
orem there exist a sequence (xn)n∈N ⊂ bd (M) converging to x and a sequence
(fn)n∈N ⊂ SX∗ so that Re fn (xn) = sup (Re fn (M)). By the ω∗-compactness of
BX∗ , there exists a subnet (fni

)i∈I that is ω∗-convergent to some f ∈ BX∗ . Next,
(fni

(xni
))i∈I converges to f (x) and thus Re f (x) = sup (Re f (M)). In order to

see that f 6= 0 it suffices to realize that Re f (x) ≥ δ, because Re fni
(xni

) ≥ δ for
all n ∈ N. Finally, assume that condition (2) above holds. We trivially have that
M = {m ∈M : Re f (m) = sup (Re f (M))}. �

Remark 2.5. If M is a proper, closed, convex subset of a normed space X with
non-empty interior, then there are a ∈ X and δ > 0 so that sup (Re f (M + a)) ≥ δ
for all f ∈ SX∗ . Indeed, it suffices to take a to be the opposite of the center of a
closed ball contained in M and δ the radius of this ball.

Lemma 2.4 together with Theorem 2.1 afford the following result.

Theorem 2.6. Let X be a normed space. Assume that every functional on X is
norm-attaining. Let M be a proper, closed, convex subset of X verifying (1) or
(2) in Lemma 2.4. Then M can be translated to have a non-zero minimum-norm
element.

Proof. Observe that in order to be able to use Theorem 2.1 it is sufficient to apply
Lemma 2.4 to the completion of X. �

3. Non-complete normed spaces on which every functional is
norm-attaining

As we mentioned earlier at the beggining of this chapter, in 1972 James gave
an example of a non-complete normed space on which every functional is norm-
attaining (see [4]).

Example 3.1 (James, 1971). Consider the infinite dimensional, separable, reflex-
ive real Banach space

Y := `1∞ ⊕2 `
2
∞ ⊕2 `

3
∞ ⊕2 · · · ⊕2 `

n
∞ ⊕2 · · · .

The subspace of Y given by

X := span
{(
x1

1;x2
1, x

2
2;x3

1, x
3
2, x

3
3; . . .

)
∈ Y : |xn1 | = · · · = |xnn| for all n ∈ N

}
is non-complete and verifies that NA (X) = X∗.

In the same paper (see [4]) James also noticed the following property verified
by non-complete normed spaces on which every functional is norm-attaining. We
remind the reader that a normed space is said to be rotund when its unit sphere
is free of non-trivial segments (see [5]).

Theorem 3.2 (James, 1971). If X is a non-complete normed space on which every
functional is norm-attaining, then the completion of X is reflexive but not rotund.

The previous result motivates the following definition.
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Definition 3.3. Let X be a normed space.

(1) We say that X is almost-reflexive if NA (X) = X∗.
(2) We say that X is dense-reflexive if the completion of X is a reflexive Banach

space.

The reformulation of James’ Theorem 3.2 in the terms of the previous definition
follows.

Remark 3.4 (James, 1971). Let X be a normed space. If X is almost-reflexive,
then X is dense-reflexive. However, the converse is not true. Indeed, if X is
an infinite dimensional, rotund, reflexive Banach space, then every non-complete
subspace of X is dense-reflexive but not almost-reflexive.

From James’ Example 3.1 more examples of almost-reflexive normed spaces can
be constructed. Indeed, let X be a non-complete almost-reflexive normed space.
Take Z to be any reflexive Banach space. It is obvious that X⊕2Z is non-complete
and almost-reflexive. On the other hand, observe that both reflexivity and dense-
reflexivity are isomorphic properties in the class of normed spaces. By taking into
consideration James’ Theorem 3.2 one can realize that almost-reflexivity is not an
isomorphic property in that class. Indeed, letX be a non-complete, almost-reflexive
normed space. Let Y denote the completion of X. Observe that Y admits an
equivalent rotund norm because it is reflexive. Hence, X cannot be almost-reflexive
endowed with this new norm. We will show that non-complete, almost-reflexive
normed spaces can actually be equivalently renormed to be non-almost-reflexive
and non-rotund. We remind the reader that exp (BX) stands for the set of exposed
points of the unit ball of a normed space X, that is, the points x ∈ SX such that
there exists f ∈ SX∗ verifying that {y ∈ SX : f (y) = 1} = {x} (see [5]).

Lemma 3.5. Let X and Y be Banach spaces. Then:

(1) co (SX × SY ) = BX⊕∞Y .
(2) exp (BX⊕∞Y ) = exp (BX)× exp (BY ).

Proof.

(1) It is sufficient to show that

co (SX × SY ) ⊇ SX⊕∞Y = (SX × BY ) ∪ (BX × SY ) .

Let (x, y) ∈ SX × BY . There are y1, y2 ∈ SY and α ∈ [0, 1] such that
y = αy1 + (1− α) y2. Therefore,

(x, y) = α (x, y1) + (1− α) (x, y2) ,

and (x, y) ∈ co (SX × SY ). Likewise, it can be proved that if (x, y) ∈
BX × SY then (x, y) ∈ co (SX × SY ).

(2) Let (x, y) ∈ exp (BX⊕∞Y ). There exists (f, g) ∈ SX∗⊕1Y ∗ such that Re f(x)+
Re g(y) = 1 and Re f (a) + Re g (b) < 1 for all (a, b) ∈ SX⊕∞Y \ {(x, y)}.
Then

1 = Re f (x) + Re g (y) ≤ ‖f‖ ‖x‖+ ‖g‖ ‖y‖ ≤ ‖f‖+ ‖g‖ = 1.
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74 FRANCISCO JAVIER GARCÍA-PACHECO

Therefore, Re f (x) = ‖f‖ ‖x‖ = ‖f‖ and Re g (y) = ‖g‖ ‖y‖ = ‖g‖. From
these two equalities we deduce that (x, y) ∈ exp (BX) × exp (BY ). Con-
versely, let (x, y) ∈ exp (BX)× exp (BY ). Let f ∈ SX∗ and g ∈ SY ∗ denote
functionals that characterize x and y as exposed points of BX and BY ,

respectively. Then,
(
f
2 ,

g
2

)
∈ SX∗⊕1Y ∗ characterizes (x, y) as an exposed

point of BX⊕∞Y . �

Theorem 3.6. Let X be an infinite dimensional reflexive Banach space. There
exists an equivalent norm ‖·‖′ on X such that

(
X, ‖·‖′

)
is not rotund and has no

dense proper almost-reflexive subspaces.

Proof. In the first place, every reflexive Banach space can be equivalently renormed
to be rotund, therefore we can suppose that X is already rotund. Let f ∈ SX∗
and x ∈ SX such that f (x) = 1. Consider the non-rotund Banach space Y =
Kx⊕∞ ker (f). By Lemma 3.5, we have that

co (exp (BY )) = co
(
exp (BKx)× exp

(
Bker(f)

))
= co

(
SKx × Sker(f)

)
= BY .

Finally, observe that if Z is a dense, almost-reflexive subspace of Y , then exp (BY ) ⊆
BZ , which implies that Z = Y . �

We would like to finish this section by showing our interest in finding dense-
reflexive normed spaces which are not isomorphic to any almost-reflexive normed
space. The candidate we have in mind is the following:

W :=
⋂{

span
(
exp

(
B‖·‖

))
: ‖·‖ is an equivalent norm on X

}
,

where X is any infinite dimensional, reflexive, Banach space. We believe that W
is dense in X. If so, then any proper dense subspace of W is dense-reflexive and
can never be almost-reflexive under any equivalent renorming of X.

4. Translations and elements of minimum norm

In the second section of this paper we characterized the normed spaces on which
every functional is norm-attaining as those normed spaces in which every proper,
closed, convex subset with non-empty interior can be translated to have a non-
zero minimum-norm element. We will show now the existence of a certain type
of non-complete normed spaces containing bounded, closed, convex subsets with
non-empty interior which cannot be translated to have a non-zero minimum-norm
element.

Lemma 4.1. Let X be a normed space. If x ∈ X \ {0} and 0 < r < ‖x‖, then(
1− r

‖x‖

)
x and

(
1 +

r

‖x‖

)
x

are a minimum-norm element and a maximum-norm element of BX (x, r), respec-
tively.
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Proof. Let y ∈ BX (x, r). Then

‖x‖ ≤ ‖x− y‖+ ‖y‖ ≤ r + ‖y‖ ,

and

‖y‖ ≤ ‖y − x‖+ ‖x‖ ≤ r + ‖x‖ ,
therefore ∥∥∥∥(1− r

‖x‖

)
x

∥∥∥∥ ≤ ‖y‖ ≤ ∥∥∥∥(1 +
r

‖x‖

)
x

∥∥∥∥ .
�

Theorem 4.2. Let X be a non-complete normed space whose completion Y is
rotund. There exists a bounded, closed, convex subset M of X with non-empty
interior that cannot be translated to have a non-zero minimum-norm element.

Proof. Let y ∈ SY \ SX . Let M := BY
(
y, 1

2

)
∩X. Assume that there exists a ∈ X

such that M + a has a minimum-norm element m+ a 6= 0 with m ∈ M . We have
that M + a = BY

(
y + a, 1

2

)
∩X. Since 0 /∈ M + a, we deduce that ‖y + a‖ > 1

2 .

On the other hand, M + a is dense in BY
(
y + a, 1

2

)
. Thus,

dist (0,M + a) = dist

(
0,BY

(
y + a,

1

2

))
.

The rotundity of y allows us to deduce that BY
(
y + a, 1

2

)
has a unique element of

minimum-norm. Therefore, by Lemma 4.1

m+ a =
‖y + a‖ − 1

2

‖y + a‖
(y + a) ,

which implies that y ∈ X. This is a contradiction. �

In certain types of complete spaces a totally different situation occurs.

Theorem 4.3. If X is a Banach space such that NA (X) has non-empty interior
in X∗, then every bounded, closed, convex subset of X can be translated to have a
non-zero minimum-norm element.

Proof. Let M be a bounded, closed, convex subset of X. The completeness of X
places us in the right position to apply the Bishop-Phelps Theorem to deduce that
SA (M) is dense in X∗. Since NA (X) has non-empty interior, we must have that
SX∗ ∩ NA (X) ∩ SA (M) 6= ∅. Finally, apply Theorem 2.1. �

5. Translations and elements of maximum-norm

This section is the continuation of a series of results that appear in [1]. Every-
thing starts with the following result.

Theorem 5.1. Let X be a normed space. If M is a closed, convex subset of X with
a non-zero maximum-norm element m, then there exists a ∈ X such that m+a 6= 0
and m+ a is a minimum-norm element of M + a.
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Proof. Consider

a = − m

‖m‖
−m.

If x ∈M , then

‖x+ a‖ =

∥∥∥∥x− 1 + ‖m‖
‖m‖

m

∥∥∥∥
≥ 1

‖m‖
|‖m‖ ‖x‖ − (1 + ‖m‖) ‖m‖|

= |‖x‖ − (1 + ‖m‖)|
= 1 + ‖m‖ − ‖x‖
≥ 1

= ‖m+ a‖ .

As a consequence, m+ a is a minimum-norm element of M + a. �

The point of this section is to show that the reverse situation does not hold in
general; in other words, the existence of a non-zero minimum-norm element does
not imply the existence of a translation mapping the non-zero minimum-norm
element to a maximum-norm element.

Theorem 5.2. Let X be a normed space with the Radon-Riesz property that fails
to have the Schur property. There exists a bounded, closed, convex subset M of
X with a non-zero minimum-norm element m ∈M such that no translation exists
which maps m to a non-zero maximum-norm element.

Proof. Since X fails to have the Schur property, we can pick a sequence (yn)n∈N
in SX which is ω-convergent to 0. By passing to a subsequence and by considering
(−yn)n∈N if necessary, we can assume without loss of generality that there exist
f ∈ SX∗ and x ∈ SX such that f (x) = 1 and Re f (yn) ≥ 0 for every n ∈ N. Next,
denote xn := yn + x for every n ∈ N. Then (xn)n∈N is ω-convergent to x but
none of its subsequences converges to x. We will show that x is a minimum-norm
element of

M := co ({xn : n ∈ N} ∪ {x}) .
Indeed, let λx+ λ1xn1 + · · ·+ λkxnk

∈ co ({xn : n ∈ N} ∪ {x}). Then

‖λx+ λ1xn1
+ · · ·+ λkxnk

‖ ≥ Re f (λx+ λ1xn1
+ · · ·+ λkxnk

)

= 1 + λ1 Re f (y1) + · · ·+ λk Re f (yk)

≥ 1

= ‖x‖ .

Suppose we could find a ∈ X so that x + a is a maximum-norm element of M +
a. Then (xn + a)n∈N is ω-convergent to x + a and there exists a subsequence of
(‖xn + a‖)n∈N which converges to ‖x+ a‖. Since X has the Radon-Riesz property,
there exists a subsequence of (xn + a)n∈N converging to x+a; in other words, there
exists a subsequence of (xn)n∈N converging to x. This is a contradiction. �
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Corollary 5.3. If X is an infinite dimensional almost-reflexive normed space, then
X can be equivalently renormed to have a bounded, closed, convex subset M with
a non-zero minimum-norm element x ∈ M such that no translation exists which
maps x to a maximum-norm element.

Proof. It suffices to observe that every reflexive space can be equivalently renormed
to be locally uniformly rotund, and in particular to have the Radon-Riesz property.

�

Lemma 5.4. Let X be a real normed space. Assume that x ∈ X and f ∈ X∗ are
so that δ := f (x) > 0 and t := ‖x‖ > 0. Then:

(1) If there exists r > 0 such that BX (x, r)∩f−1 (δ) ⊆ SX (0, t), then BX
(
x, r4

)
∩

SX (0, t) ⊆ f−1 (δ).
(2) If there exists r > 0 such that BX (x, r)∩SX (0, t) ⊆ f−1 (δ), then BX

(
x, r2

)
∩

f−1 ([0, δ]) ⊆ BX (0, t) and BX
(
x, r2

)
∩ f−1 (δ) ⊆ SX (0, t).

Proof.

(1) In the first place, we will show that ‖f‖ = δ
t . Obviously,

f
(x
t

)
=
δ

t
,

therefore ‖f‖ ≥ δ
t . If y ∈ BX and f (y) > δ

t then we can take 0 < α < 1
small enough to assure that f (α (ty) + (1− α)x) > 0 and

δ
α (ty) + (1− α)x

f (α (ty) + (1− α)x)
∈ BX (x, r) ∩ f−1 (δ) ,

which means that

t =

∥∥∥∥δ α (ty) + (1− α)x

f (α (ty) + (1− α)x)

∥∥∥∥
=

δ

f (α (ty) + (1− α)x)
‖α (ty) + (1− α)x‖

≤ δ

f (α (ty) + (1− α)x)
t,

and δ < f (α (ty) + (1− α)x) ≤ δ, which is impossible. In the second
place, we will show that r ≤ t. Let y ∈ SX (x, r) ∩ f−1 (δ). Then 2x− y ∈
SX (x, r) ∩ f−1 (δ). Therefore,

2r = ‖y − (2x− y)‖ ≤ 2t.

Finally, if y ∈ BX
(
x, r4

)
, then

f (y) ≥ f (x)− |f (y)− f (x)| ≥ δ − δ

t

r

4
≥ δ

2
.
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Now, take any y ∈ BX
(
x, r4

)
∩ SX (0, t). Then∥∥∥∥ δy

f (y)
− x
∥∥∥∥ =

1

f (y)
‖δy − f (y)x‖

=
1

f (y)
‖δy − δx+ δx− f (y)x‖

≤ δ

f (y)
‖y − x‖+

1

f (y)
|f (x)− f (y)| t

≤ δ

f (y)
‖y − x‖+

t

f (y)

δ

t
‖y − x‖

= 2
δ

f (y)
‖y − x‖

≤ 4 ‖y − x‖
≤ r.

Therefore,

δy

f (y)
∈ BX (x, r) ∩ f−1 (δ) ⊆ SX (0, t) ;

in other words,

t =

∥∥∥∥ δy

f (y)

∥∥∥∥ =
δ

f (y)
t

and f (y) = δ.
(2) In the first place, let us see that ‖f‖ = δ

t . Obviously,

f
(x
t

)
=
δ

t
,

therefore ‖f‖ ≥ δ
t . If y ∈ BX and f (y) > δ

t then we can take 0 < α < 1
small enough to assure that

t
α (ty) + (1− α)x

‖α (ty) + (1− α)x‖
∈ BX (x, r) ∩ SX (0, t) ,

which means that

δ = f

(
t
α (ty) + (1− α)x

‖α (ty) + (1− α)x‖

)
=

t

‖α (ty) + (1− α)x‖
f (α (ty) + (1− α)x)

>
t

‖α (ty) + (1− α)x‖
δ,
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and t < ‖α (ty) + (1− α)x‖ ≤ t, which is impossible. Next, let y ∈
BX

(
x, r2

)
∩ f−1 ([0, δ]) with ‖y‖ > t. Then∥∥∥∥ ty‖y‖ − x

∥∥∥∥ =
1

‖y‖
‖ty − ‖y‖x‖

=
1

‖y‖
‖ty − tx+ tx− ‖y‖x‖

≤ t

‖y‖
‖y − x‖+

1

‖y‖
|‖x‖ − ‖y‖| t

≤ 2
t

‖y‖
‖y − x‖

< 2 ‖y − x‖
≤ r.

Therefore,

ty

‖y‖
∈ BX (x, r) ∩ SX (0, t) ⊆ f−1 (δ) ;

in other words,

δ = f

(
ty

‖y‖

)
≤ t

‖y‖
δ < δ,

which is a contradiction. Finally, since ‖f‖ = δ
t , we have that BX

(
x, r2

)
∩

f−1 (δ) ⊆ SX (0, t). �

Theorem 5.5. Let X be a real normed space. The following conditions are equiv-
alent:

(1) There exists a norm-attaining f ∈ SX∗ such that f−1 (1) ∩ BX has empty
interior relative to SX .

(2) There exists a bounded, closed, convex subset M of X with non-empty
interior and with a non-zero minimum-norm element x such that there is
no translation mapping x to a maximum-norm element.

Proof. Assume that (1) holds. Let us pick x ∈ SX such that f (x) = 1. Let
M := BX (x, 1) ∩ f−1 ([1,∞)) and C := BX (x, 1) ∩ f−1 (1). Suppose that there is
a ∈ X such that x+a is a maximum-norm element of M+a. Then, ‖x+ a‖ 6= 0 and
M+a ⊆ BX (0, ‖x+ a‖). Let us show that C+a ⊂ SX (0, ‖x+ a‖). If c+a ∈ C+a
with c ∈ C, then, by assuming that c 6= x, we can find d ∈ C such that x ∈ (c, d).
Now, x + a ∈ (c+ a, d+ a), which means that ‖c+ a‖ = ‖x+ a‖ = ‖d+ a‖,
because x+ a is a maximum-norm element of M + a. On the other hand, C + a =
BX (x+ a, 1) ∩ f−1 (1 + f (a)). Next, we will show that 1 + f (a) < 0. Otherwise,
pick y ∈ M such that f (y) > 1. Now, ‖y + a‖ ≥ f (y + a) > 1 + f (a) = ‖x+ a‖,
which contradicts the fact that x+a is a maximum-norm element of M+a. Finally,
since

BX (x+ a, 1) ∩ (−f)
−1

(−1− f (a)) ⊂ SX (0, ‖x+ a‖) ,

Rev. Un. Mat. Argentina, Vol. 54, No. 1 (2013)



80 FRANCISCO JAVIER GARCÍA-PACHECO

we deduce, according to the first paragraph of Lemma 5.4, that

BX

(
x+ a,

1

4

)
∩ SX (0, ‖x+ a‖) ⊂ (−f)

−1
(−1− f (a)) ,

which is impossible since f−1 (1)∩BX has empty interior relative to SX . Conversely,
assume that (2) holds and consider M to be a bounded, closed, convex subset of X
with non-empty interior so that M has a non-zero minimum-norm element x ∈M
and cannot be translated mapping x into a maximum-norm element. Let f ∈ SX∗
verify that f (u) < f (m) for all u ∈ UX (0,dist (0,M)) and all m ∈ M . Clearly,
f (x) = dist (0,M) = ‖x‖, that is, f is norm-attaining. Since M is bounded we
can consider a number K > diam (M) such that M ⊆ BX (0,K). Suppose that

(−f)
−1

(K) ∩ BX (0,K) has non-empty interior relative to SX (0,K). Then, there

exists z ∈ (−f)
−1

(K) ∩ BX (0,K) and r > 0 such that BX (z, r) ∩ SX (0,K) ⊆
(−f)

−1
(K). By the second paragraph of Lemma 5.4,

BX
(
z,
r

2

)
∩ (−f)

−1
([0,K]) ⊆ BX (0,K) .

Observe that by takingK large enough we may assume that r
2 ≥ diam (M). Finally,

consider the translated set M + (z − x). If m ∈M , then

m+ (z − x) ∈ BX (z,diam (M)) ⊆ BX
(
z,
r

2

)
,

and

0 ≤ K − diam (M)

≤ K − ‖m− x‖
≤ −‖m‖+K + ‖x‖
= −f (m)− f (z) + f (x)

= (−f) (m+ (z − x))

= −f (m)− f (z) + f (x)

≤ −dist (0,M) +K + dist (0,M)

= K.

Thus, m+ (z − x) ∈ BX (0,K). And ‖x+ (z − x)‖ = ‖z‖ = K, which means that
x+ (z − x) is a maximum-norm element of M + (z − x), reaching a contradiction.

�

Corollary 5.6. Let X be a complex normed space. There exists a bounded, closed,
convex subset M with non-empty interior so that M has a non-zero minimum-norm
element x ∈M but cannot be translated mapping x to a maximum-norm element.

Proof. It is sufficient to observe that the unit sphere of any normed complex space
is free of convex sets with non-empty interior relative to the unit sphere. �

Theorem 5.7. Let X be a real normed space with dim (X) > 1. Assume that
f−1 (1) ∩ BX has non-empty interior relative to SX for every f ∈ NA (X) ∩ SX∗ .
Then:

Rev. Un. Mat. Argentina, Vol. 54, No. 1 (2013)



ON MINIMUM-NORM ELEMENTS 81

(1) X is smooth.
(2) exp (BX) = ∅.
(3) char (X) = card (NA (X) ∩ SX∗).
(4) X is not separable.

Proof.

(1) Let x ∈ SX . We will show that x is a smooth point of BX . If it is not,
then there are f 6= g ∈ SX∗ such that f (x) = g (x) = 1. We have that
f+g

2 ∈ SX∗ and(
f + g

2

)−1

(1) ∩ BX =
(
f−1 (1) ∩ BX

)
∩
(
g−1 (1) ∩ BX

)
= bdSX

(
f−1 (1) ∩ BX

)
∩ bdSX

(
g−1 (1) ∩ BX

)
.

Therefore,
(
f+g

2

)−1

(1)∩BX cannot have non-empty interior with respect

to SX .
(2) If x ∈ exp (BX), then there exists f ∈ SX∗ such that {x} = f−1 (1) ∩ BX .

This contradicts the fact that f−1 (1) ∩ BX has non-empty interior with
respect to SX .

(3) We first remind the reader that char (X) stands for the density character
of X. On the one hand, char (X) = char (SX). On the other hand,

SX = cl

(⋃̇{
intSX

(
f−1 (1) ∩ BX

)
: f ∈ NA (X) ∩ SX∗

})
.

Finally, the map

f ∈ NA (X) ∩ SX∗ 7−→ intSX

(
f−1 (1) ∩ BX

)
is a bijection.

(4) Assume that X is separable. Then we have that NA (X) ∩ SX∗ is count-
able. If Y is a 2-dimensional subspace of X, then SY ∗ is uncountable. By
the Hahn-Banach Theorem, we can extend all the elements in SY ∗ to an
uncountable set contained in NA (X) ∩ SX∗ , which is impossible. �

At this point, we feel obligated to let the reader know that so far we have not
been able to find a real normed space verifying the hypothesis of Theorem 5.7.

Corollary 5.8. Let X be a real normed space with dim (X) > 1. Then:

(1) If X is separable, then there exists a bounded, closed, convex subset M
with non-empty interior so that M has a non-zero minimum-norm element
x ∈M and cannot be translated mapping x to a maximum-norm element.

(2) If X is not separable, then it can be equivalently renormed to possess a
bounded, closed, convex subset M with non-empty interior so that M has a
non-zero minimum-norm element x ∈M but cannot be translated mapping
x to a maximum-norm element.
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Proof. The results follow from Lemma 5.7 and from the easy fact that every normed
space can be equivalently renormed so that its new unit ball has an exposed point.

�
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