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ON CONNECTEDNESS VIA A SEQUENTIAL METHOD

HÜSEYİN ÇAKALLI AND OSMAN MUCUK

Abstract. Recently, the first author has introduced a concept ofG-sequential

connectedness in the sense that a non-empty subset A of a Hausdorff topo-
logical group X is G-sequentially connected if the only subsets of A which are

both G-sequentially open and G-sequentially closed are A and the empty set ∅.

In this paper we investigate further properties of G-sequential connectedness
and obtain some interesting results.

1. Introduction

The concept of connectedness and any concept related to connectedness play
a very important role not only in pure mathematics but also in other branches
of science involving mathematics, especially in geographic information systems,
population modeling, and motion planning in robotics. Connectedness is also more
important for covering groups of topological groups. See for example [5] for the
non-connected case.

In recent years many mathematicians have concentrated their attention in the
sequentially connectedness (see for example [26], [8] and [30]). In [7], Connor and
Grosse-Erdmann have investigated the impact of changing the definition of the
convergence of sequences on the structure of sequential continuity of real functions.
Cakallı [11] has extended this concept to the topological group setting and has
introduced the concepts of G-sequential compactness and G-sequential continuity ;
and has investigated some results in this generalized setting (see also [15]).

One is often relieved to find that the standard definition of connectedness in-
volving open and closed sets for topological spaces can be replaced by a sequential
definition of connectedness. The fact that many properties of connectedness of sets
can be easily derived using sequential arguments has been, no doubt, a source of
relief.

Recently, Cakallı [20] has defined G-sequential connectedness of a topological
group and investigated some results in this generalized setting.

The purpose of this paper is to investigate some further properties ofG-sequential
connectedness in topological groups, and present some substantial results which de-
velop the concept.
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2. Preliminaries

Before developing some results on G-sequential connectedness, we remind some
background as follows. Throughout this paper, N denotes the set of positive integers
and X denotes a Hausdorff topological group written additively, satisfying the
axiom of first countability. We use boldface letters x, y, z,. . . for sequences x =
(xn), y = (yn), z = (zn),. . . of terms of X. s(X) and c(X) respectively denote the
set of all X-valued sequences and the set of all X-valued convergent sequences.

Following the idea given in a 1946 American Mathematical Monthly problem [6],
a number of authors (Posner [35], Iwiński [31], Srinivasan [40], Antoni [1], Antoni
and Salat [2], Spigel and Krupnik [39]) have studied A-continuity defined by a reg-

ular summability matrix A. Some authors (Öztürk [34], Savaş [36], Savaş and Das
[37], Borsik and Salat [4]) have studied A-continuity for methods of almost con-
vergence and for related methods. See also [3] for an introduction to summability
matrices.

A sequence (xk) of points in X is said statistically convergent to an element `
of X if, for each neighborhood U of 0,

lim
n→∞

1

n
|{k ≤ n : xk − ` /∈ U}| = 0,

and written as st-limn→∞ xn = `. Statistical limit is an additive function on the
group of statistically convergent sequences of points in X (see [27] for the real case,
[9, 10, 13] for the topological group setting, and [32, 22] for the most general case,
i.e., the topological space setting).

A sequence (xk) of points in X is said lacunary statistically convergent to an
element ` of X if

lim
r→∞

1

hr
|{k ∈ Ir : xk − ` /∈ U}| = 0,

for every neighborhood U of 0, where Ir = (kr−1, kr] and k0 = 0, hr : kr −
kr−1 → ∞ as r → ∞, and θ = (kr) is an increasing sequence of positive integers.
For a constant lacunary sequence θ = (kr), the lacunary statistically convergent
sequences in a topological group form a subgroup of the group of all X-valued
sequences, and lacunary statistical limit is an additive function on this space (see
[9] for the topological group setting, and [28, 29] for the real case).

By a method of sequential convergence, or briefly a method, we mean an additive
function G defined on a subgroup cG(X) of s(X) into X [11]. A sequence x = (xn)
is said to be G-convergent to ` if x ∈ cG(X) and G(x) = `. In particular, lim
denotes the limit function lim x = limn xn on the group c(X). A method G is called
regular if every convergent sequence x = (xn) is G-convergent with G(x) = lim x.
Clearly if f is G-sequentially continuous on X, then it is G-sequentially continuous
on every subset Z of X, but the converse is not necessarily true since in the latter
case the sequences x’s are restricted to Z. This is demonstrated by an example in
[7] for a real function.

The notion of regularity introduced above coincides with the classical notion of
regularity for summability matrices and with regularity in a topological group for
limitation methods. See [3] for an introduction to regular summability matrices,
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[24] for an introduction to regular limitation (summability) methods, and see [41]
for a general view of sequences of reals or complex.

We recall the definition of G-sequential closure of a subset of X from [11] and
[15]. If A ⊂ X and ` ∈ X, then ` is in the G-sequential closure of A —which
is called G-hull of A in [7]— if there is a sequence x = (xn) of points in A such

that G(x) = `. Denote the G-sequential closure of a set A by A
G

and say that
a subset A is G-sequentially closed if it contains all of the points in its G-closure,

i.e., A
G ⊂ A. It is clear that φ

G
= φ and X

G
= X for a regular method G. If

G is a regular method, then A ⊂ A ⊂ A
G

and hence A is G-sequentially closed if

and only if A
G

= A. Note that even for regular methods, it is not always true that

(A
G

)
G

= A
G

.
Even for regular methods, the union of any two G-sequentially closed subsets of

X need not be a G-sequentially closed subset of X as seen considering Counterex-
ample 1 in [15].

Çakallı [11] has introduced the concept of G-sequential compactness and proved
that G-sequentially continuous image of any G-sequentially compact subset of X
is also G-sequentially compact [11, Theorem 7]. He has defined G-sequential con-
tinuity and obtained further results in [15] (see also [16, 14, 12, 25, 21, 17, 19] for
some other types of continuities which can not be given by any sequential method,
and [18] for some kinds of continuities which coincide with uniform continuity when
the domain of the function is connected). A function f : X → X is G-sequentially
continuous at a point u if given a sequence (xn) of points in X, G(x) = u implies
that G(f(x)) = f(u).

Recently Mucuk and Şahan [33] have investigated further properties ofG-sequen-
tial closed subsets of X. They have modified the definition of open subset to the
G-sequential case in the sense that a subset A of X is G-sequentially open if its

complement is G-sequentially closed, i.e., X \A
G

= X \ A, and obtained that the
union of any G-sequentially open subsets of X is G-sequentially open. From the
fact that for a regular sequential method G, G-sequential closure of a subset of X
includes the set itself it is easy to see that a subset A is G-sequentially open if and

only if X \A
G
⊆ X \A. If a function f is G-sequentially continuous on X, then the

inverse image f−1(K) of any G-sequentially closed subset K of X is G-sequentially
closed [11]. If a function f is G-sequentially continuous on X, then the inverse
image f−1(U) of any G-sequentially open subset U of X is G-sequentially open
[33, Theorem 12]. For a regular method G, the function fa : X → X,x 7→ a + x
is G-sequentially continuous, G-sequentially closed and G-sequentially open [33,
Corollary 3] for any constant a in X. If A and B are G-sequentially open, then so
also is the sum A+B [33, Theorem 15]. Mucuk and Şahan have also obtained that a
subset A of X is G-sequentially open if and only if each a ∈ A has a G-sequentially
open neighborhood Ua such that Ua ⊆ A [33, Theorem 4].

Fedeli and Donne [26], and Huang and Lin [30] have introduced sequential con-
nectedness. Cakallı [20] has recently introduced the concept of G-sequential con-
nectedness as follows.
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104 HÜSEYİN ÇAKALLI AND OSMAN MUCUK

Definition 1. A non-empty subset A of a topological group X is called G-sequen-
tially connected if there are no non-empty, disjoint G-sequentially closed subsets
U and V of X meeting A such that A ⊆ U

⋃
V . Particularly X is called G-

sequentially connected, if there are no non-empty, disjoint G-sequentially closed
subsets of X whose union is X.

The following Theorem is given in [20, Corollary 1].

Theorem 1. If G is a regular sequential method and A is a G-sequentially con-

nected subset of X, then so also is A
G
.

Theorem 2. [20, Theorem 3] Let {Ai | i ∈ I} be a class of G-sequentially connected
subsets of X. If

⋂
i∈I Ai is non-empty, then

⋃
i∈I Ai is G-sequentially connected.

Theorem 3. [20, Theorem 5] Let G be a regular sequential method, and H a
subgroup of X. If H is G-sequentially open, then it is G-sequentially closed.

Definition 2. [20, Definition 2] Let A be a subset of X. A subset F ⊆ A is called
G-sequentially closed in A if F = U ∩A for some G-sequentially closed subset U in
X. We say that a subset V ⊆ A is G-sequentially open in A if A\V is G-sequentially
closed in A. �

Here we remark that a subset B ⊆ A is G-sequentially open in A if and only if
B = A ∩ V for a G-sequentially open subset V of X.

3. Results

First, we introduce a concept of G-sequentially connected component of a point
x in X which extends the concept of an ordinary sequential connected component
of a point x in X.

Definition 3. The largest G-sequentially connected subset containing a point x
in X is called G-sequentially connected component of x and denoted by Cx

G.

We note that Cx
G coincides with the ordinary sequential connected component

of x when G = lim. We write π0X
G for the set of G-sequentially connected compo-

nents of all points in X and similarly write π0A
G for the set of all G-sequentially

connected components of all points in a subset A.

Lemma 1. Let x, y ∈ X. If x and y are in a G-sequentially connected subset A of
X, then x and y are in the same G-sequentially component of X.

Proof. Let x and y be contained in a G-sequentially connected subset A of X. Then
x, y ∈ A ⊆ Cx

G and x, y ∈ A ⊆ Cy
G. So Cx

G ⊆ Cy
G and Cy

G ⊆ Cx
G. Therefore

Cx = Cy. �

Lemma 2. The G-sequentially connected components of X form a partition of X.

Proof. It is obvious that G-sequentially connected components form a cover of
X. We prove that for x, y ∈ X if the components Cx

G and Cy
G intersect, then

Cx
G = Cy

G. Let z ∈ Cx
G ∩ Cy

G. Then z ∈ Cx
G ⊆ Cz

G and z ∈ Cy
G ⊆ Cz

G since
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Cz
G is the largest G-sequentially connected subset including z. On the other hand

Cz
G ⊆ Cx

G and Cz
G ⊆ Cy

G since x ∈ Cx
G ⊆ Cz

G and y ∈ Cy
G ⊆ Cz

G. Therefore

Cx
G = Cz

G = Cy
G, and so the proof is completed. �

Theorem 4. Let A,B ⊆ X. If A and B are G-sequentially homeomorphic, then
π0A

G and π0B
G have the same cardinality, i.e., there exists a bijection between

them.

Proof. Let f : A→ B be a G-sequentially homeomorphism. Define a map

π0(f) : π0A
G → π0B

G, f(Cx
G) = Cf(x)

G

induced by the function f : A → B. Since f is G-sequentially continuous, the
image of a G-sequentially connected subset is G-sequentially connected [20, The-

orem 1]. Hence if y ∈ Cx
G then by Lemma 1, f(x) and f(y) are in the same

G-sequentially connected component and so Cf(x)
G = Cf(y)

G. Therefore the map

π0(f) is well defined. Since f−1 is G-sequentially continuous, if Cf(x)
G = CG

f(y),

then G-sequentially components of x and y are same, i.e., Cx
G = Cy

G and there-

fore π0(f) is injective. Further since f(Cx
G) = Cy

G with y = f(x), the map π0(f)
is onto. �

Theorem 5. G-sequentially connected component of a point x in X is G-sequen-
tially closed for any regular sequential method G.

Proof. Since the G-sequentially connected component CG
x is G-sequentially con-

nected, by Theorem 1 the closure Cx
G

is G-sequentially connected. Since G is

regular Cx
G ⊆ Cx

G
but the largest G-sequentially connected subset including x is

Cx
G. Therefore Cx

G ⊆ Cx
G and so Cx

G is G-sequentially closed. �

Theorem 6. For a regular sequential method G, the G-sequentially connected com-
ponent of the identity is a G-sequentially closed, normal subgroup of X.

Proof. Write K for the G-sequentially connected component of the identity point 0.
By Theorem 5, K is G-sequentially closed. To prove that K is a subgroup, we prove
that K −K ⊆ K, where K −K is the set of all points x − y for x, y ∈ K. Since
K is a G-sequentially connected subset, for each x ∈ K, the set x − K is G-
sequentially connected as the image of G-sequentially connected subset K under a
G-sequentially continuous function. Then by Theorem 2

K −K =
⋃
x∈K

(x−K)

is G-sequentially connected as a union of G-sequentially connected subsets includ-
ing 0. But the largest G-sequentially connected subset including 0 is K. Therefore
K −K ⊆ K, i.e., K is a subgroup. Further for any a ∈ X the function

fa : X → X,x 7→ a+ x− a
is G-sequentially continuous. So fa(K) = a+K − a is a G-sequentially connected
subset including 0 ∈ X. Therefore a + K − a ⊆ K, which implies that K is
normal. �

Rev. Un. Mat. Argentina, Vol. 54, No. 2 (2013)
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LetX be a topological group and U a symmetric neighbourhood of the identity 0.
We say that X is generated by U , if each element of X can be written as a sum of
some elements in U .

Theorem 7. Let G be a regular sequential method. If X is generated by a G-
sequentially connected and symmetric neighbourhood U of the identity, then X is
G-sequentially connected.

Proof. We prove that every point of X is in the G-sequentially connected compo-
nent of 0. Let x ∈ X. Since X is generated by U , the point x can be written
as x = x1 + x2 + · · · + xn for some xi ∈ U . So x ∈ (U + U + · · · + U) which
is G-sequentially connected by [20, Lemma 7] and includes the identity point 0.
Therefore by Lemma 1, x and 0 are in the same G-sequentially connected compo-
nent. This proves that X has only one G-sequentially connected component, i.e.,
X is G-sequentially connected. �

In the following theorem we prove that a G-sequentially connected topological
group is generated by any G-sequentially open neighbourhood of the identity point
of X.

Theorem 8. Let G be a regular sequential method. If X is G-sequentially con-
nected, then X can be generated by any G-sequentially open and symmetric neigh-
borhood of the identity.

Proof. Let U be a G-sequentially open and symmetric neighbourhood of the iden-
tity point 0 ∈ X and let XU be the subgroup of X generated by U . Hence each
x ∈ XU can be written as a sum x = x1 + · · · + xn of the points in U and so
x ∈ (U + U + · · · + U). Therefore XU can be written as a union of the sums
U + U + · · · + U . Here by [33, Theorem 15] each sum U + U + · · · + U is G-
sequentially open and includes 0. By [33, Theorem 3] XU becomes G-sequentially
open and therefore by Theorem 3, XU is also G-sequentially closed. Since X is
G-sequentially connected it follows that XU = X. �

In the following definition of G-sequentially locally connectedness, by a G-
sequentially connected neighbourhood of a point x ∈ X we mean a G-sequentially
connected subset which contains a G-sequentially open subset including x.

Definition 4. Let G be a sequential method on X. We call X as G-sequentially
locally connected, if for any G-sequentially open neighbourhood U of x, there is a
G-sequentially connected neighbourhood V of x such that x ∈ V ⊆ U .

Theorem 9. X is G-sequentially locally connected if and only if G-sequentially
connected components of any G-sequentially open subset are G-sequentially open.

Proof. Let X be G-sequentially locally connected. Let A be a G-sequentially open
subset of X, C a G-sequentially connected component of A, and x ∈ C. Since X
is G-sequentially locally connected, there is a G-sequentially connected neighbour-
hood Ux of x such that Ux ⊆ A. But since the largest G-sequentially connected
subset of A containing x is C, we have that x ∈ Ux ⊆ C. Therefore by [33, Theorem
4], C is G-sequentially open.
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On the other hand if G-sequentially connected components of any G-sequentially
open subset is G-sequentially open, then X becomes G-sequentially locally con-
nected. �

A special case of Theorem 9 is that if X is G-sequentially locally connected,
then each G-sequentially connected component of X is G-sequentially open.

Theorem 10. Let G be a regular method on X and A,B ⊆ X. Let f : A → B
be an onto, G-sequentially continuous and G-sequentially open function. If A is
G-sequentially locally connected, then so also is B.

Proof. Suppose that f : A → B is an onto function which is G-sequentially con-
tinuous and G-sequentially open. Let a ∈ A and b ∈ B such that f(a) = b, and
let U be a G-sequentially open neighbourhood of b in B. Since f is G-sequentially
continuous, by [33, Theorem 12] f−1(U) is a G-sequentially open neighbourhood
of a. Since A is locally G-sequentially connected, there is a G-sequentially con-
nected neighbourhood of a such that V ⊆ f−1(U). This implies that f(V ) ⊆ U .
Here since f is G-sequentially open, f(V ) is G-sequentially open and since f is
G-sequentially continuous, f(V ) is G-sequentially connected. Therefore B is also
G-sequentially locally connected. �

4. Conclusion

The present work contains further results on G-sequentially connectedness in
first countable and Hausdorff topological groups. So that one may expect it to be
a more useful tool in the field of topology in modeling various problems occurring in
many areas of science, geographic information systems, population modeling and
motion planning in robotics. It seems that an investigation of the present work
taking ‘nets’ instead of ‘sequences’ could be done using the properties of ‘nets’
instead of using the properties of ‘sequences’. As the vector space operations,
namely, vector addition and scalar multiplication, are continuous in a cone normed
space so cone normed spaces are special topological groups, we see that the results
are also valid in cone normed spaces (see [38] for the definition of a cone normed
space). For further study, we also suggest to investigate the present work for the
fuzzy case. However, due to the change in settings, the definitions and methods of
proofs will not always be analogous to those of the present work (see [23] for the
definitions in the fuzzy setting).
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[9] H. Çakallı, Lacunary statistical convergence in topological groups, Indian J. Pure Appl.

Math. 26 (1995), no. 2, 113–119. MR 95m:40016.
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[19] H. Çakallı, Statistical ward continuity, Appl. Math. Lett. 24 (2011), no. 10, 1724–1728. MR
2012f:40020.

[20] H. Çakallı, Sequential definitions of connectedness, Appl. Math. Lett. 25 (2012), no. 3, 461–
465. MR 2856014.
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İstanbul, Turkey

hcakalli@maltepe.edu.tr; hcakalli@gmail.com

Osman Mucuk
Department of Mathematics, Erciyes University, Faculty of Science,
Kayseri, Turkey

mucuk@erciyes.edu.tr; mucukosman@gmail.com

Received: June 20, 2012

Accepted: February 26, 2013

Rev. Un. Mat. Argentina, Vol. 54, No. 2 (2013)

http://www.ams.org/mathscinet-getitem?mr=2198420
http://www.ams.org/mathscinet-getitem?mr=48:759
http://www.ams.org/mathscinet-getitem?mr=2009k:54009
http://arxiv.org/abs/1201.1795
http://www.ams.org/mathscinet-getitem?mr=86h:26003
http://www.ams.org/mathscinet-getitem?mr=22:12327
http://www.ams.org/mathscinet-getitem?mr=87m:26005
http://www.ams.org/mathscinet-getitem?mr=97m:26004
http://www.ams.org/mathscinet-getitem?mr=2012e:46032
http://www.ams.org/mathscinet-getitem?mr=95h:26004
http://www.ams.org/mathscinet-getitem?mr=81f:26001
http://www.ams.org/mathscinet-getitem?mr=58:29731

	1. Introduction
	2. Preliminaries
	3. Results
	4. Conclusion
	References

