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VECTOR VALUED T(1) THEOREM AND LITTLEWOOD–PALEY

THEORY ON SPACES OF HOMOGENEOUS TYPE

PABLO SEBASTIÁN VIOLA

Abstract. Singular integral operators associated to kernels valued on Hilbert

spaces are studied in the setting of spaces of homogeneous type. By following
the work of David and Journé (Ann. of Math. (2) 120 (1984), no. 2, 371–397),

a T1-Theorem is obtained in this context. This result is applied to prove a

Littlewood–Paley estimate.

1. Introduction and main result

In this paper, vector-valued singular integral operators T are studied, in the
setting of a space of homogeneous type (X, d, µ) of order θ, where the measure µ
is non-atomic.

The classical theory of Calderón-Zygmund’s operators, contained in the cele-
brated work [CZ], was generalized in different directions and contexts in the last
century. In 1984, David and Journé in [DJ] give necessary and sufficient conditions
for the L2(Rn) continuity of such operators. The central tool in that work is the
Cotlar Lemma (see [C]), that allows them to develop the L2 theory without using
the Fourier transform. This fact later aids to David, Journé and Semmes ([DJS]
and Aimar ([A]) to extend these results to the context of spaces of homogeneous
type.

On the other hand, the theory of vector valued Calderón-Zygmund operators was
started in the work of Benedeck, Calderón and Panzone in [BCP] and developed in
[RFRT] and [RFT]. It has been shown that this theory has important applications
in the study of the classical analysis and, in particular, in the theory of weights.

However, the generalization of the “T1-Theorem” in this context is obtained in
2004 by Figiel in [F] for the case of the Lebesgue spaces Lp(Rn, X), 1 < p < ∞,
where X is a Banach space satisfying the UMD condition.

Also, Hytönen and Weis (see [HW]) extend the T1-Theorem to the case of
different Banach spaces, both satisfying the UMD condition. In the two works
mentioned above there are no explicit examples of operators such that the vector
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26 PABLO SEBASTIÁN VIOLA

valued T1-Theorem can be applied. Recently in [VV] this approach is used to
obtain Lp-boundedness of the oscillation of the Riesz transforms.

One purpose of this work is to analyze the behavior of the quadratic differences
of operators Tε, having pointwise limε→0 Tεf(x) = Tf(x), in spaces with general
measures, by using a vector valued T1-Theorem.

More precisely, given a family of operators T = {Tε}ε>0 such that the existence
of the limε→0 Tεf(x) for almost every x is known, we investigate the speed of
convergence of the family {Tε}ε>0. To this end we consider square functions G(Tf)
given by

G(Tf)(x) =
( ∞∑
i=1

∣∣Tεif(x)− Tεi+1f(x)
∣∣2 )1/2

, for εi ↓ 0. (1)

The consideration of this problem goes back to the 1930’s and it was mainly an-
swered by Littlewood and Paley. During the last years, in order to measure the
speed of convergence, other expressions such as the ρ-variation and the oscillation
operators have been considered as well, see [JKRW, CJRW1, CJRW2, VV] and the
references therein.

In the rest of the paper, H will denote a Hilbert space. When omitted, it can
be assumed that H is some scalar, real or complex, field. The inner product in H
will be denoted by (·, ·)H.

In what follows we provide the definitions that we need to properly state our
first Theorem.

Definition 1. A function K : X ×X \∆→ H is said a standard kernel if there
is a number 0 < δ ≤ θ such that

|K(x, y)|H ≤ Cd(x, y)−1, (2)

for all x, y ∈ X,x 6= y, and

|K(x, y)−K(x′, y)|H + |K(y, x)−K(y, x′)|H ≤ C
d(x, x′)δ

d(x, y)1+δ
, (3)

for all x, x′, y ∈ X, with d(x, x′) ≤ d(x, y)/2A.
Here C is a positive constant that does not depend on x, x′, y. We also say that

K has smoothness exponent δ.

Definition 2 (Function spaces). We say that a function f : X → H belongs to
Lpµ(X,H), 1 ≤ p ≤ ∞ if

‖f‖p :=
( ∫
|f |pH dµ

)1/p
<∞.

In a similar way the spaces L∞ are defined.
Given a function g : X → H and a number 0 < β ≤ θ, we define

|g|β,H := sup
x,y∈X,x 6=y

|g(x)− g(y)|H
d(x, y)β

.
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We say that g ∈ Λβ(X,H) if the seminorm |g|β,H is finite. In addition, we write

g ∈ Λβ0 (X,H) if g is supported in a ball. In addition, we define the norm

‖g‖β,H := ‖g‖L∞µ (X,H) + |g|β,H.

The space of continuous linear functions on Λβ0 (X,H) is denoted by (Λβ0 (X,H))′.

Definition 3. Let us consider a standard kernel K with smoothness exponent δ.

We say that T : Λβ0 (X) → (Λβ0 (X,H))′ is a singular integral operator asso-

ciated to the kernel K if T is linear continuous and for any f ∈ Λβ0 (X) and

g ∈ Λβ0 (X,H) with disjoint supports, the following equality holds:

〈Tf, g〉 =

∫∫
(K(x, y), g(x))H f(y) dµ(x)dµ(y). (4)

If T can be extended to a bounded operator T : L2
µ(X)→ L2

µ(X,H), we say that
T is a Calderón-Zygmund operator.

Definition 4. Given a singular integral operator T , its adjoint operator T ∗ is
defined by

〈T ∗g, f〉 = 〈Tf, g〉 ,
for all functions f ∈ Λβ0 (X) and g ∈ Λβ0 (X,H).

Definition 5. We say that a singular integral operator T satisfies the Weak
Boundedness Property with exponent β if, given a ball B, the following in-
equality holds

|〈Tf, g〉| ≤ C µ(B)1+2β‖f‖Λβ(X)‖g‖Λβ(X,H), (5)

for any f ∈ Λβ0 (X) and g ∈ Λβ0 (X,H) both supported in B.

We investigate conditions on an operator T : Λβ0 (X) → Λβ0 (X,H)′ such that it
can be extended to a bounded operator T : L2

µ(X)→ L2
µ(X,H).

The main results of the paper are the following.

Theorem 6. If T is a continuous linear operator, in the sense of Definition 3, asso-
ciated to an H-valued standard kernel K, satisfying a Weak Boundedness Property
and such that

T1 = 0H

and

T ∗(1h) = 0,

for any vector h ∈ H, then T is a Calderón-Zygmund operator.

Remark. The explicit expressions of T1 and T ∗(1h) are contained in Section 2,
Proposition 8 below.

We will provide the proof of the main Theorem in Section 2. There, a key claim
is used, whose proof is given along Section 3. Finally, in Section 4 we apply this
result to prove a Littlewood–Paley estimate.
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28 PABLO SEBASTIÁN VIOLA

2. Proof of the main Theorem

Our assumptions on X, d, µ in Section 1 will be now precisely stated. First, X is
a nonempty set provided with a quasi-distance d. There is a constant A ≥ 1 such
that

d(x, y) ≤ A(d(x, z) + d(z, y)), (6)

for any x, y, z ∈ X. The balls in X are denoted by Br(x).
The measure µ satisfies a doubling condition, that is, there is a positive constant

C such that

µ(B2r(x)) ≤ Cµ(Br(x)). (7)

We say that the measure µ is non-atomic if for every single point x, µ({x}) = 0.
We also assume that µ(X) = ∞. This is equivalent to the fact that X is non-
bounded with respect to d.

The quasi-distance d has the θ-regularity property for some 0 < θ ≤ 1. That
is, there is a constant C ′ > 0 such that

|d(x, y)− d(x′, y)| ≤ C ′r1−θd(x, x′)θ, (8)

for all x, x′, y ∈ X, r > 0, whenever d(x, y) < r, d(x′, y) < r.
In addition, we will suppose that µ satisfies the following condition with respect

to every d-ball Br(x): there is a constant c > 0 such that

1

c
r ≤ µ(Br(x)) ≤ cr. (9)

This condition, together with the regularity, can be assumed without loss of
generality, since, as shown in [MS], an equivalent distance d̃ can be found such that
the required properties are fulfilled.

Along the paper we often use, without mentioning it, the following result of
linearity of integrals for vector-valued functions.

Theorem 7. (Hille) Given a µ-integrable function φ and a continuous linear
functional ` on H, we have

`

(∫
φ(x) dµ(x)

)
=

∫
`(φ(x)) dµ(x). (10)

See, for example, [DU].

As is usual in the theory of singular integrals, we define the action of T on the
constant function 1. In fact, we will do that for any bounded Lipschitz function.

Proposition 8. If T : Λβ0 (X) → (Λβ0 (X,H))′ is a singular integral operator
associated to a standard kernel K, then T can be extended to a linear operator

T : Λβb (X) → (Λβ00(X,H))′. In addition, the adjoint operator T ∗ can be extended

to a linear operator T ∗ : Λβb (X,H)→ (Λβ00(X))′.

Here, Λβb (X,H) is the set of bounded functions f ∈ Λβ(X,H) and Λβ00(X,H)

consists of the functions f ∈ Λβ0 (X,H) with null µ-integral.
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Proof. Let us consider a function f ∈ Λβb (X) and a function g ∈ Λβ00(X,H) sup-

ported in a ball B(x0, R). Let us take ξ ∈ Λβ0 (X) such that ξ ≡ 1 on B(x0, 2AR),
ξ ≡ 0 on X \B(x0, 4AR

2), and 0 ≤ ξ(y) ≤ 1 else. We say that ξ is a cut function
over the ball B(x0, R). We define

〈Tf, g〉 = 〈T (fξ), g〉+ 〈T (f(1− ξ)), g〉 , (11)

where the second term means

〈T (f(1− ξ)), g〉 =

∫∫
〈(K(x, y)−K(x0, y))(1− ξ(y))f(y), g(x)〉H dµ(y) dµ(x).

This term is finite, which can be seen after applying (3) and the regularity of µ to
obtain

|〈T (f(1− ξ)), g〉|

≤ C‖f‖L∞µ (X) ‖g‖L∞µ (X,H)

∫
X\B(x0,2AR)

d(x0, y)−1−δ dµ(y)

∫
B(x0,R)

d(x, x0)δ dµ(x)

≤ C‖f‖L∞µ (X) ‖g‖L∞µ (X,H)µ(B(x0, R)).

Therefore, 〈T (f(1− ξ)), g〉 is well defined.
Finally, it is necessary to check that 〈Tf, g〉 does not depend on ξ. Indeed, for

two cut functions ξ1, ξ2 over the balls BR1(x1) and BR2(x2), respectively, we have

(〈T (fξ1), g〉+ 〈T (f(1− ξ1)), g〉)− (〈T (fξ2), g〉+ 〈T (f(1− ξ2)), g〉)

=

∫ (
− [K(x1, y)(1− ξ1(y))−K(x2, y)(1− ξ2(y))] f(y),

∫
g(x)dµ(x)

)
H dµ(y)

= 0,

where we have used Theorem 7 and the fact that
∫
g dµ = 0H.

For the adjoint operator T ∗ the proof is similar by taking again scalar valued
cut functions. �

In what follows we use the approximation of the identity operators Sj , S̃j , whose

definition is given in (22), and the difference operators ∆j = Sj+1 − Sj , ∆̃j =

S̃j+1 − S̃j . Now we prove the main Theorem. To this end, we assert the following
claim, whose nontrivial proof will be accomplished along Section 3.

Claim 9. For each j, let Ej be the operator defined by

Ej = S̃jT∆j + ∆̃jTSj − ∆̃jT∆j . (12)

Then, for every pair of integers j, k, the composite operators E∗jEk, EjE
∗
k have

operator norms

‖E∗jEk‖L(L2
µ(X),L2

µ(X)) ≤ C2−|j−k|δ,

‖EjE∗k‖L(L2
µ(X,H),L2

µ(X,H)) ≤ C2−|j−k|δ,

where C is a positive constant not depending on j, k.
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Proof of Theorem 6. For each positive integer N we denote

RN =

N∑
j=−N

(S̃jT∆j + ∆̃jTSj − ∆̃jT∆j).

After writing RN = S̃NTSN − S̃−(N+1)TS−(N+1) we obtain that

RNf → Tf, weakly, as N →∞. (13)

We will prove this shortly. Given f ∈ Λβ0 (X) and g ∈ Λβ0 (X,H), by Corollary 12

(Section 3) and the continuity of T we have that
〈
S̃−NTS−Nf, g

〉
→ 〈Tf, g〉, as

N → ∞. Also, by using (15) and (24) we get that SNf → 0 as N → ∞ in the

topology of Λβ0 (X). We have an analogous statement for S̃Ng, too. Then, the

continuity of T implies
〈
S̃NTSNf, g

〉
→ 0 as N →∞.

On the other hand, we can apply Claim 9 and Lemma 14 to conclude that there
exists an operator T 0 : L2

µ(X) → L2
µ(X,H) such that RNf → T 0f , strongly, as

N goes to infinity. Therefore, from (13) we clearly have that T = T 0, and the
Theorem is proved. �

3. Proof of Claim 9

3.1. Preliminary definitions and results. First, we give a list of preliminary
results.

Theorem 10. There is a function ρ : X × X × (0,∞) → [0,∞) and a positive
constant c such that, for some 0 < β ≤ θ and for any t > 0 and x, y, x′, y′ ∈ X,
the following properties hold:

supp ρ(·, ·, t) ⊂ {(x, y) ∈ X ×X : d(x, y) < ct}, (14)

sup{ρ(x, y, t) : x, y ∈ X} ≤ ct−1, (15)

ρ(x, y, t) = ρ(y, x, t) (16)

|ρ(x, y, t)− ρ(x′, y, t)| ≤ ct−β−1d(x, x′)β , (17)

|ρ(x, y, t)− ρ(x, y′, t)| ≤ ct−β−1d(y, y′)β , (18)∫
ρ(x, y, t)dµ(y) = 1, (19)∫
ρ(x, y, t)dµ(x) = 1, (20)

|(ρ(x, y, t)−ρ(x′, y, t))−(ρ(x, y′, t)−ρ(x′, y′, t))| ≤ ct−2β−1d(x, x′)βd(y, y′)β . (21)

The existence of a function ρ satisfying (14)-(19) is proved in [MST]. The
approximation of the identity defined in [DJS] provides a function ρ satisfying all
the properties (14)-(21). However the proof of (21) appears in [HS].

Given a Lipschitz function g, of any order, for each t > 0 we define

gt(x) =

∫
ρ(x, y, t)g(y)dµ(y).
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Now we introduce the family of approximation of the identity operators.

Given f ∈ Λβ0 (X) and g ∈ Λβ0 (X,H) we define

Sjf(x) = f2j (x), S̃jg(x) = g2j (x). (22)

Since these two operators are selfadjoint, their action can be extended to distri-

butions. In particular, for φ1, φ2 ∈ Λβ0 (X) and ψ1, ψ2 ∈ Λβ0 (X,H), we have

〈SjTφ1, φ2〉 = 〈Tφ1, Sjφ2〉, 〈S̃jT ∗ψ1, ψ2〉 = 〈T ∗ψ1, S̃jψ2〉.

Also, we define the difference operators ∆j = Sj − Sj−1 and ∆̃j = S̃j − S̃j−1.
We have the following

Theorem 11. If g ∈ Λβ0 (X,H), 0 < β ≤ θ, supported in a ball Br(x0), then for
any integer j the following properties hold.

supp(S̃jg) ⊂ Br̃(j)(x0), (23)

whenever 2j < r, where r̃(j) = r + C ′′r1−θ2jθ;

|S̃jg(x)− S̃jg(x′)|H ≤ C ′′2−j(1+θ)µ(Br(x0))1+βd(x, x′)θ (24)

and

|(S̃jg(x)− g(x))− (S̃jg(x′)− g(x′))|H ≤ C(j)d(x, x′)β , (25)

where limj→−∞ C(j) = 0.

Proof. The Theorem can be obtained by a straight generalization of Lemma 1.20
in [MST]. �

Corollary 12. Under the hypothesis of Theorem 11,

lim
j→−∞

‖S̃jg − g‖β,H = 0.

It is immediate that Theorem 11 and Corollary 12 hold for the operators Sj ,
since it is enough to consider H as a scalar field.

We need some results related to several L2
µ spaces. Since they are Hilbert spaces,

we formulate the Lemma below in an abstract form. If G and H are two Hilbert
spaces, we denote by L(G,H) the set {T : G → H | T linear and bounded} which
has the operator norm:

‖T‖L(G,H) = sup
‖x‖G=1

‖Tx‖H.

Lemma 13. Let G,H be Hilbert spaces. If S : G → H is a bounded linear operator
then

‖S‖2L(G,H) ≤ ‖(S
∗S)‖L(H), ‖S∗‖2L(H,G) ≤ ‖(SS

∗)‖L(G). (26)

The operators SS∗ : H → H and S∗S : G → G are selfadoint. (27)

‖S‖L(G,H) ≤ ‖(SS∗)k‖
1/2k
L(H), ‖S‖L(G,H) ≤ ‖(S∗S)k‖1/2kL(G). (28)
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Proof. To prove (26), we apply the Cauchy-Schwarz inequality to obtain

‖S‖2L(G,H) = ‖S∗‖2L(H,G) = sup
‖x‖H=1

∣∣(SS∗x, x)G
∣∣ ≤ ‖SS∗‖L(H).

To prove (28), we first observe that ‖(SS∗)k‖L(H) = ‖SS∗‖kL(H) because SS∗ is

a self adjoint operator. Therefore, from (26) we have that

‖S‖L(G,H) ≤ ‖SS∗‖
1/2
L(H) ≤ ‖(SS

∗)k‖1/2kL(H), for all k ≥ 1. �

Now we can prove a modified version of the Cotlar Lemma for two Hilbert spaces
G,H.

Lemma 14. Consider two Hilbert spaces G,H. If {Tj}j∈Z is a family of bounded
linear operators Tj : G → H and if {a(j)}j∈Z is a list of nonnegative numbers such
that

‖TiT ∗j ‖L(H) + ‖T ∗i Tj‖L(G) ≤ a(i− j),
then, for all pairs of integers m,n with n ≤ m, we have

‖Sn,m‖ :=
∥∥∥ m∑
j=n

Tj

∥∥∥
L(G,H)

≤
∞∑

i=−∞
a(i)1/2 =: Γ.

Moreover, the sum Sn,m converges strongly to a bounded operator T 0 satisfying
‖T 0‖G,H ≤ Γ.

Proof. First, if we define the operator S =
∑m
j=n Tj then, given an integer k > 0,

we can write

(SS∗)k =

m∑
j1,··· ,j2k=n

Tj1T
∗
j2 · · ·Tj2k−1

T ∗j2k .

We now estimate

‖Tj1T ∗j2 · · ·Tj2k−1
T ∗j2k‖L(H)

≤ ‖Tj1T ∗j2‖L(H) · · · ‖Tj2k−1
T ∗j2k‖L(H)

≤ a(j1 − j2) · · · a(j2k−1 − j2k).

‖Tj1T ∗j2 · · ·Tj2k−1
T ∗j2k‖L(H)

≤ ‖Tj1‖L(G,H)‖T ∗j2Tj3‖(G) · · · ‖T ∗j2k−2
T ∗j2k−1

‖L(G)‖T ∗j2k‖L(H,G)

≤ a(0)1/2a(j2 − j3) · · · a(j2k−2 − j2k−1)a(0)1/2.

After that and by taking in account the inequality (28), the calculations can proceed
in a standard way. �

3.2. The action of Ej over Λβ0 (X)×Λβ0 (X,H). In what follows we left fixed an
integer j and consider the operator

Tj = S̃jT∆j = S̃jTSj − S̃jTSj−1.

Observe that Tj is just one of the terms of Ej . We show the proofs only for Tj ,
since the other terms in Ej have similar behavior.

Rev. Un. Mat. Argentina, Vol. 55, No. 1 (2014)



VECTOR VALUED T(1) THEOREM ON SPACES OF HOMOGENEOUS TYPE 33

Lemma 15. Given f ∈ Λβ0 (X), g ∈ Λβ0 (X,H), we have〈
S̃jTSjf, g

〉
=

∫∫ 〈
Tρ(·, y, 2j)f(y), ρ(·, x, 2j)g(x)

〉
dµ(y)dµ(x). (29)

In addition, the integral is absolutely summable. Also,〈
S̃jTSj−1f, g

〉
=

∫∫ 〈
Tρ(·, y, 2j−1)f(y), ρ(·, x, 2j)g(x)

〉
dµ(y)dµ(x).

Proof. Let us fix a point x0 ∈ X. Suppose that F ∈ Λγ0(X), G ∈ Λγ0(X,H) and
both functions are supported in a given ball BR1

(x0).
Let us denote Φ(x, y) = ρ(x, y, 2−j). By (14), supp(Φ) ⊂ {(x, y) : d(x, y) <

2j+1}. Let us denote R = A(R1 + c2j+1), B = BR(x0), then for each y ∈ X,
Φ(x, y)F (y) = 0 if d(x, x0) ≥ R.

The set C[B] of continuous functions supported in B is a Banach space with the
supremum norm, which will be denoted by ‖ · ‖∞.

We consider the function H : X → C[B] given by

H[y](·) = Φ(·, y)F (y).

For each y ∈ X, we have H[y] ∈ C[B]. Also, if yk → y as k → ∞, we obtain that
‖H[yk]−H[y]‖∞ → 0. Hence, H[y] is a continuous function on the variable y.

Since H is continuous, it is Bochner µ-measurable. Now we write∫
‖H[y]‖∞ dµ(y) =

∫
‖H[y](·)‖L∞µ (X) dµ(y)

=

∫
‖Φ(·, y)‖L∞µ (X)|F (y)| dµ(y)

≤ ‖Φ(·, ·)‖L∞µ (X×X,R)‖F‖L1
µ(X) <∞.

Therefore H is C[B]-summable in the sense of Bochner.
Then, given a linear functional ` : C[B]→ C, Hille’s Theorem implies that∫

`(H[y]) dµ(y) = `

(∫
H[y] dµ(y)

)
.

Since Λβ0 (B) ⊂ C[B], the functional `(h) = (Th,G) is linear continuous for

h ∈ Λβ0 (B,C). Since Λβ0 (B) is a dense subset of C[B], the functional ` can be
continuously extended to the whole space C[B]. Now, we can write(

T

(∫
Φ(·, y)F (y)dµ(y)

)
, G

)
=

(
T

∫
H[y]dµ(y), G

)
=

∫
(TΦ(·, y), G) F (y) dµ(y).

By replacing Φ by its definition, the last equality says that

(T (SjF ), G) =

(
T

(∫
ρ(·, y, 2j)F (y)dµ(y)

)
, G

)
=

∫ (
Tρ(·, y, 2j), G

)
F (y) dµ(y).

(30)
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Now, we work with vector-valued functions. With similar arguments as before,
we can prove that(

TΦ(·, y),

∫
Φ(·, x)g(x) dµ(x)

)
=

∫
(TΦ(·, y),Φ(·, x)g(x)) dµ(x).

In order to attain this equality, we take the Banach space C[B,H] consisting of
continuous H-valued functions supported in B with norm ‖g‖∞,H = sup{|g(x)|H :
x ∈ B}, and then by defining

H̃[x] := Φ(·, x)g(x), ˜̀(h) := (TΦ(·, y), hg) ,

and taking G = S̃jg in (30), we obtain(
S̃jTSjf, g

)
=
(
TSjf, S̃jg

)
=

∫∫ (
Tρ(·, y, 2j)f(y), ρ(·, x, 2j)g(x)

)
dµ(x)dµ(y),

(31)
as desired. Now, the function

(x, y)→
(
Tρ(·, y, 2j)f(y), ρ(·, x, 2j)g(x)

)
has compact support in X ×X. Furthermore, for a given j the family of functions

{ρ(·, y, 2j)f(y)}y∈X × {ρ(·, x, 2j)g(y)}x∈X

is entirely contained in a bounded subset of Λβ0 (X,C) × Λβ0 (X,H). By applying
the Weak Boundedness Property, the double integral in (29) becomes absolutely
summable. �

This Lemma suggests the following definition.

Definition of kernels κj associated to the operators Tj. Let x, y be points
in X. We define a vector-valued kernel κj(x, y) in the following way:

(κj(x, y), v)H =
〈
T (ρ(·, y, 2j)− ρ(·, y, 2j−1)), ρ(·, x, 2j)v

〉
.

To verify that this is a good definition, observe that the right-hand side is a
linear function `(v) on H. Also, the Weak Boundedness Property implies that `(v)
is bounded, since

|`(v)| ≤ |
〈
Tρ(·, y, 2j), ρ(·, x, 2j)v

〉
|+ |

〈
Tρ(·, y, 2j−1), ρ(·, x, 2j)v

〉
| ≤ Cx,y,j |v|H.

By the Riesz Representation Theorem, there is an element ξ ∈ H such that `(v) =
(ξ, v)H, for all v ∈ H, and we write κj(x, y) = ξ.

Now, for functions f ∈ Λγ0(X), g ∈ Λγ0(X,H), Lemma 15 enables us to write

〈Tjf, g〉 =

∫∫ 〈
Tψ(·, y, 2j) f(y), ρ(·, x, 2j)g(x)

〉
dµ(y)dµ(x), (32)

where ψ(x, y, 2j) = ρ(x, y, 2j)− ρ(x, y, 2j−1).
We will say that κj(x, y) is the kernel of the operator Tj .
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3.3. Properties of the kernels κj. From now on, we use the notation

p(r) = (1 + r)−(1+δ), pj(r) = 2−jp(2−jr).

Lemma 16. For each integer j, the function pj(x, y) is µ-integrable for each vari-
able x, y.

Proof. We consider integration on the variable y, for example.

2j
∫
pj(d(x, y))dµ(y) =

∫
dµ(y)(

1 + 2−jd(x, y)
)1+δ

≤
∫
d(x,y)<2j

dµ(y) +

∞∑
n=0

∫
2j+n≤d(x,y)<2j+n+1

2−(1+δ)n

≤ µ(B2j(x)) +

∞∑
n=0

µ(B2j+n+1)2−(1+δ)n

≤ C2j .

In the last inequality we have used (9) �

An important consequence of Lemma 16 is that κj(x, y) is integrable for each
variable x, y, as we now show.

Proposition 17. Given an integer j, if x, y ∈ X then

|κj(x, y)|H ≤ Cpj(d(x, y)).

Proof. First, we suppose d(x, y) ≤ 10cA2j , where c is the constant appearing in
Theorem 10. Now, we apply the Weak Boundedness Property, with β′ = δ, (17)
and (18) to estimate∣∣(κj(x, y), v)H

∣∣ =
∣∣〈Tψ(·, y, 2j), ρ(x, ·, 2j)v

〉∣∣
≤ 2j(1+2δ)c22j(−1−δ)|v|H
≤ Cpj(d(x, y))|v|H.

The last inequality can be reached with the aid of the following estimation:

2−j ≤ (1 + 10cA)1+δpj(d(x, y)).

Now, we suppose that d(x, y) > 10cA 2j . In this case ρ(x, ·, 2j) and ψ(·, y, 2j)
have disjoint supports, as is easy to see. For any v ∈ H we can write

(κj(x, y), v)H =
〈
Tψ(·, y, 2j), ρ(x, ·, 2j)v

〉
=

∫∫ (
K(ξ, ζ)ψ(ζ, y, 2j), ρ(x, ξ, 2j) v

)
H dµ(ζ)dµ(ξ)

−
∫∫ (

K(ξ, y), ρ(x, ξ, 2j) v
)
H ψ(ζ, y, 2j) dµ(ζ)dµ(ξ).

The last term is equal to 0 because (20) implies that
∫
ψ(x, y, 2j) dµ(x) = 0.

In view of the support of ρ(x, ·, 2j) we have d(x, ξ) ≤ c2j < d(x, y)/10A. Besides,
d(ξ, y) ≤ A(d(x, ξ) + d(x, y)) ≤ 3cA d(x, y).
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Also, d(ξ, y) > 7cd(ξ, x), since otherwise we would have d(x, y) ≤ A(d(x, ξ) +
d(ξ, y)) ≤ 10cAd(ξ, x), against our hypothesis.

Then we have d(x, y) ≤ A(d(x, ξ) + d(ξ, y)) ≤ A(1 + 1/7c)d(ξ, y). Thus, we get
d(x, y) ≈ d(ξ, y). This fact, together with (3), (15) and (9), implies∣∣(κj(x, y), v)H

∣∣
≤ C

∫∫
|K(ξ, ζ)−K(ξ, y)|H ρ(x, ξ, 2j) |v|H|ψ(ζ, y, 2j)| dµ(ξ)dµ(ζ)

≤ C
∫∫

B(x,c2j)×B(y,c2j)

d(ζ, y)δ

d(ξ, y)1+δ
2−j(2−j + 2−j+1) |v|H dµ(ξ)dµ(ζ)

≤ C2−2j

∫∫
B(x,c2j)×B(y,c2j)

2jδ

A(1/7c+ 1)d(x, y)1+δ
|v|H dµ(ξ)dµ(ζ)

≤ C 2jδ

d(x, y)1+δ
|v|H ≤ Cpj(d(x, y)).

�

Corollary 18. For any integer j, the kernel κj(x, y) is integrable for each variable
x, y.

Now we study the smoothness properties of the kernels κj(x, y).

Proposition 19. Let j be a fixed integer and x,w, y be points in X. Then

|κj(x, y)− κj(w, y)|H ≤ C min(1, 2−jδd(x,w)δ)(pj(d(x, y)) + pj(d(w, y))).

Proof. If d(w, x) ≥ c2j , we can apply Proposition 17.
Thus, we can suppose that d(w, x) ≤ c2j .
For convenience, we define ∆j,x,w(ξ) = ρ(x, ξ, 2j)− ρ(w, ξ, 2j).
We split the analysis in two cases. First, we consider d(w, y) ≤ A2c2j+2. By

applying the Weak Boundedness Property and the properties (17) and (21), we
have for an arbitrary vector v ∈ H,∣∣〈Tψ(·, y, 2j),∆j,x,w v

〉∣∣ ≤ C(2j)1+2δ−2−3δd(x,w)δ|v|H
≤ Cpj(d(w, y))2−jδd(x,w)δ|v|H.

We have used that 2−j ≤ Cpj(d(w, y)).
Now, let us suppose d(w, y) ≥ A2c2j+2. In this case, ψ(·, y, 2j) and ∆j,x,w(·)

have disjoint supports. Indeed, if z were a point in the support of both functions,
we would have z ∈ (Bc2j (x) ∪ Bc2j (w)) ∩ Bc2j (y). But, if d(z, w) < c2j , d(w, y) ≤
A(d(w, z) + d(z, y)) ≤ Ac2j+1; and if d(z, x) < c2j then

d(w, y) ≤ A(A(d(z, x) + d(x,w)) + d(z, y)) ≤ A2c2j+2,

in contradiction with the hypothesis.
Let us observe more carefully the earlier supports. By taking ξ ∈ supp(∆j,x,w)

and ζ ∈ supp(ψ(·, y, 2j)), we have ξ ∈ Bc2j (x) ∪ Bc2j (w) and then d(w, ξ) ≤
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max{A(d(w, x) + d(x, ξ)), c2j} ≤ Ac2j+1. Also, d(z, y) ≤ c2j . Besides, both quan-
tities d(w, ξ) and d(ζ, y) are less than d(ξ, y)/2A, hence d(ξ, y) ≤ A(d(w, ξ) +
d(w, y)) < (1/2 +A)d(w, y).

Moreover, we have d(ξ, y) ≤ d(w, ξ), since otherwise d(w, y) ≤ A(d(ξ, w) +
d(ξ, y)) < A2c2j+2, against our hypothesis. So, we can write d(w, y) ≤ 2Ad(ξ, y).
We conclude that

1
1
2 +A

d(ξ, y) ≤ d(w, y) ≤ 2Ad(ξ, y). (33)

After this geometrical analysis, we continue with the main lines of the proof.
Since the term (K(ξ, y),∆j,x,w(ξ) v)H is constant with respect to the variable ζ,

the following double integral is null:∫∫
(K(ξ, y),∆j,x,w(ξ) v)H ψ(ζ, y, 2j) dµ(ζ)dµ(ξ).

Thus, we can add this term and use (3), (15), (17) and (9) to obtain∣∣〈Tψ(·, y, 2j),∆j,x,w v
〉∣∣

=

∣∣∣∣∫∫ ((K(ξ, ζ)−K(ξ, y))ψ(ζ, y, 2j),∆j,x,y(ξ) v
)
H dµ(ζ)dµ(ξ)

∣∣∣∣
≤ C|v|H

∫∫
supp(∆j,x,w ψ(·,y,2j))

d(ζ, y)δ

d(ξ, y)1+δ
c2−j(1+δ)d(x,w)δ2c2−j+1 dµ(ξ)dµ(ζ)

≤ C2−2jd(x,w)δ 2−jδµ(supp(∆j,x,w))µ(supp(ψ(·, y, 2j)))
2jδ( 1

2 +A)

d(w, y)1+δ
|v|H

≤ C2−jδpj(d(w, y))d(x,w)δ.

By applying this inequality, we finally obtain∣∣(κj(x, y)− κ(w, y), v)H
∣∣ =

∣∣〈Tψ(·, y, 2j),∆j,x,w v
〉∣∣

≤ C2−jδpj(d(w, y)) d(x,w)δ |v|H. �

In the following lemmas we give two estimates related to the functions pj .

Lemma 20. For every integer j and every point y ∈ X,∫
X

pj(d(z, y)) dµ(z) ≤ C min{1, 2jδ} ≤ C <∞,

where C is a constant not depending on j and y.
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Proof. Given y ∈ X, for every integer N we denote EN (y) = B2N+1(y) \B2N (y).∫
pj(d(z, y)) dµ(z) =

∫
X

2−j(
1 + d(z, y)/2j

)1+δ
dµ(z)

= 2jδ
∑
N∈Z

∫
EN (y)

(
2j + d(z, y)

)−1−δ
dµ(z)

≤ 2jδ
∑
N∈Z

µ(EN (y))

(2j + 2N )−1−δ

≤ C 2jδ
∑
N∈Z

2N (2j + 2N )−1−δ.

We can easily bound this summation by C2−jδ if we split it as
∑
N<j +

∑
N≥j .

This gives the desired result. �

Lemma 21. For all integers j, k, with j ≤ k, and all x ∈ X, the following inequality
holds: ∫

X

pj(d(x, y)) min(1, 2−kδd(x, y)δ) dµ(y) ≤ C2−|j−k|δ,

where C is a constant not depending on j, k or x.

Proof. For any R > 0, let us denote AR(x) = B2R(x) \BR(x). We estimate∫
pj(d(x, y)) min(1, 2−kδd(x, y)δ)dµ(y)

≤
∑
N∈Z

∫
A2N (x)

2−j

(1 + d(x, y)/2j)1+δ
min(1, 2−kδd(x, y)δ)dµ(y)

≤
∑
N∈Z

µ(A2N (x))
2jδ

(2j + 2N )1+δ
min(1, 2(N+1−k)δ)

≤ C
∑
N∈Z

2N
2jδ

(2j + 2N )1+δ
min(1, 2(N+1−k)δ).

If N ≥ k, min(1, 2(N+1−k)δ) = 1. Besides,∑
N≥k

2N2jδ

(2j + 2N )1+δ
≤ C2−|j−k|δ.

On the contrary, if N < k, then min(1, 2(N+1−k)δ) = 2(N+1−k)δ, and then∑
N≥k

2N2jδ

(2j + 2N )1+δ

2Nδ

2kδ
≤ C2−|j−k|(2δ+1) ≤ C2−|j−k|δ. �

In the following Proposition we show that the kernels κj have null integral.
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Proposition 22. For every integer j and for each x ∈ X∫
κj(x, y)dµ(y) = 0H, (34)

and for each y ∈ X ∫
κj(x, y)dµ(x) = 0H. (35)

Proof. Consider a vector v ∈ H with |v|H = 1. Let x be a given point in X. Since
κj(x, ·) is an integrable function, we can write(∫

κj(x, y) dµ(y), v

)
H

=

∫
〈κj(x, y), v〉H dµ(y)

=

∫ 〈
Tψ(·, y, 2j), ρ(x, ·, 2j) v

〉
dµ(y)

=

〈
T

(∫
ψ(·, y, 2j) dµ(y)

)
, ρ(x, ·, 2j) v

〉
=
〈
T0, ρ(x, ·, 2j) v

〉
= 0.

In the last equality we used that the linear functional `(f) =
〈
Tf, ρ(x, ·, 2j) v

〉
is continuous and then we can apply Hille’s Theorem. Also, it is easy to check that

u→
∫
ψ(u, y, 2j) dµ(y) belongs to Λβ0 (X,R).

Since v is arbitrary, by the Riesz Representation Theorem we have (34).

Now we proceed with the second part of the Theorem. Let us take a fixed point
o ∈ X and a vector v with |v|H = 1.

Given y ∈ X and R > 0 big enough, we can write(∫
BR(o)

κj(x, y) dµ(x), v

)
H

=

∫
BR(o)

(κj(x, y), v)H dµ(x)

=

∫
BR(o)

〈
Tψ(·, y, 2j), ρ(x, ·, 2j) v

〉
dµ(x)

=

〈
Tψ(·, y, 2j),

∫
BR(o)

ρ(x, ·, 2j) v dµ(x)

〉
=:
〈
Tψ(·, y, 2j), hR v

〉
,

where we have defined

hR(z) =

∫
BR(o)

ρ(x, z, 2j) dµ(z).

Since κj(·, y) is an integrable function, given ε > 0 there is a radius R0 =
R0(ε) > 0 such that∣∣∣ ∫

d(o,x)>R

κj(x, y) dµ(x)
∣∣∣
H
≤
∫
d(o,x)>R

|κj(x, y)|H dµ(x) < ε, (36)

for all R ≥ R0.
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Let us suppose that d(o, z) < (R−cA2j)/A. If x ∈ supp(ρ(·, z, 2j)) then d(z, x) <
c2j . Therefore

d(o, x) ≤ A(d(o, z) + d(z, x)) < R.

Thus, supp(ρ(·, z, 2j)) ⊂ BR(o), and then, by using (19), we have

hR(z)− 1 =

∫
ρ(x, z, 2j) dµ(x)− 1 = 0.

In this way, the function hR − 1 is supported in X \B(o,A(R− cA2j)).
Also,

〈
ψ(·, y, 2j), T ∗(1v)

〉
= 0 because we have supposed that T ∗(1v) = 0 and∫

ψ(·, y, 2j)dµ = 0. This implies〈
Tψ(·, y, 2j), hR v

〉
=
〈
Tψ(·, y, 2j), hR v

〉
−
〈
ψ(·, y, 2j), T ∗(1 v)

〉
=
〈
Tψ(·, y, 2j), (hR − 1) v

〉
.

If R is big enough, hR−1 and ψ(·, y, 2j) have disjoint supports, thus the equalities
(11) and (4) can be applied to obtain∣∣〈Tψ(·, y, 2j), (hR − 1) v

〉∣∣
=

∣∣∣∣∫∫ ((K(u, z)−K(u, y))ψ(z, y, 2j), (hR(u)− 1) v
)
H dµ(u)dµ(z)

∣∣∣∣
≤ C2−j

∫
d(z,y)≤c2j

∫
X\B(o,(R−cA2j)/A)

d(z, y)δ

d(u, y)1+δ
dµ(z)dµ(u)

≤ C2−j2jδµ(Bc2j (y))

∫
X\B(o,R/2A)

d(u, y)−1−δ dµ(u).

We analyse the domain of the last integral. First, if d(u, y) ≥ d(o, u), obviously we
have d(o, u)−1 ≥ d(u, y)−1.

Secondly, let us suppose d(u, y) < d(o, u) and denote αy = d(o, y). In this case
we necessarily get d(u, y) ≥ R/2A2 − αy since, otherwise, we would have

d(o, u) ≤ A(d(o, y) + d(y, u)) < A(αy +R/2A2 − αy) = R/2A,

against the condition d(o, u) ≥ R/2A on the domain of integration.
Then u ∈ X \ B(y,R/2A2 − αy) ⊂ X \ BCR(y) for some constant C, while

R > 4A2αy. Therefore we can estimate∫
B\B(o,R/2A)

d(u, y)−1−δ dµ(u)

≤
∫
X\B(o,R/2A)

d(o, u)−1−δ dµ(u) +

∫
X\B(y,CR)

d(u, y)−1−δ dµ(u)

≤ CR−δ.

Finally, ∣∣〈Tψ(·, y, 2j), (hR − 1) v
〉∣∣ ≤ C2jδR−δ.
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This expression tends to 0 as R goes to +∞, then, given ε > 0, there is R1 = R1(ε)
such that ∣∣∣∣∣

∫
d(x,o)<R

(κj(x, y), v)H dµ(x)

∣∣∣∣∣ < ε, (37)

for all R ≥ R1.
In consequence, by (36) and (37), for any v ∈ H we now have∫

(κj(x, y), v)H dµ(x) = 0.

Since κj(·, y) is integrable, by Hille’s Theorem we get (35). �

3.4. Proof of Claim 9. In the following Proposition we prove that Tj can be
extended to a bounded operator in L2 sense.

Proposition 23. Given an integer j, the operator Tj = S̃jT∆j can be extended to
a bounded operator from L2

µ(X) into L2
µ(X,H). In addition, Tj has the following

integral formula:

Tjf =

∫
κj(·, y)f(y) dµ(y), f ∈ Λβ0 (X). (38)

Proof. Let f be a Λβ0 (X) function and g be a Λβ0 (X,H) function. We apply the
Cauchy-Schwarz inequality, Proposition 17 and Lemma 20 to obtain∣∣ 〈Tjf, g〉 ∣∣ =

∣∣∣ ∫∫ (κj(x, y)f(y), g(x))H dµ(y)dµ(x)
∣∣∣

≤
∫ (
|f(y)|2dµ(y)

)1/2(∫ [ ∫
| (κj(x, y), g(x))H | dµ(x)

]2
dµ(y)

)1/2

≤ C‖f‖L2(X)

(∫ [ ∫
pj(x, y)‖g(x)‖H dµ(x)

]2
dµ(y)

)1/2

≤ C‖f‖L2(X)

(∫ [ ∫
pj(d(x, y))‖g(x)‖2H dµ(x)

]
×

×
[ ∫

pj(d(x, y)) dµ(x)
]
dµ(y)

)1/2

≤ C‖f‖L2(X)

(∫
‖g(x)‖2H

[ ∫
pj(d(x, y)) dµ(y)

]
dµ(x)

)1/2

≤ C‖f‖L2(X) ‖g‖L2(X,H).

Since Λβ0 (X,H) is a dense subspace of L2
µ(X,H), we can extend the bounded linear

functional Tjf to any function g ∈ L2
µ(X,H). Now, by the Riesz Representation

Theorem, Tjf is identified with an L2
µ(X,H) function and then Tj can be extended

to a bounded operator Tj : L2
µ(X)→ L2

µ(X,H).
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To verify (38), we take f ∈ Λβ0 (X), g ∈ L2
µ(X,H), and we use that κj(x, y) is

integrable, for example in the variable y, and apply equality (32) to obtain

(Tjf, g)L2
µ(X,H) = 〈Tjf, g〉 =

∫∫
(κj(x, y)f(y), g(x))H dµ(y)dµ(x)

=

∫ (∫
κj(x, y)f(y) dµ(y), g(x)

)
H
dµ(x)

=

(∫
κj(·, y)f(y) dµ(y), g

)
L2
µ(X,H)

.

This implies (38). �

We write an analogous result for the adjoint operators T ∗k .

Proposition 24. Given an integer j, the adjoint operator T ∗j can be extended to

an (L2
µ(X,H), L2

µ(X))-operator. In addition, T ∗j has the following integral formula:

T ∗j g =

∫
(κj(x, ·), g(x)) dµ(x), g ∈ Λβ0 (X,H). (39)

We omit the proof which is similar to the Tj case.

All the results already obtained are concerned with the family of operators Tj .
An analogous task can be repeated for the families {∆̃jTSj}j∈Z and {S̃j−1T∆j}j∈Z.

Besides, we can write each operator ∆̃jT∆j as S̃jT∆j − S̃j−1T∆j , which leads us
to extend our earlier results to these operators.

In this way, it can be seen that each operator Ej = S̃jT∆j + ∆jTSj − ∆̃jT∆j

is bounded from L2
µ(X) into L2

µ(X,H), with integral representations

Ejf =

∫
Kj(·, y)f(y) dµ(y), f ∈ Λβ0 (X),

Ejg =

∫
(Kj(x, ·), g(x)) dµ(x), g ∈ Λβ0 (X,H),

where Kj(x, y) are H-valued kernels satisfying analogous properties as κj(x, y)
does, like the Propositions 17, 19 and 22.

As an easy consequence of these facts, we can write the following

Proposition 25. Given two integers j and k, the composite operators EjE
∗
k , E∗kEj

are bounded on L2
µ(X,H) and L2

µ(X), respectively, and they can be written as

(EjE
∗
kg)(x) =

∫∫
Kj(x, y) (Kk(u, y), g(u))H dµ(u)dµ(y), g ∈ Λβ0 (X,H), (40)

(E∗kEjf)(y) =

∫∫
(Kj(x, y),Kk(u, y) f(u))H dµ(u)dµ(x), f ∈ Λβ0 (X). (41)

Now, we are in position to prove Claim 9.
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Proof of Claim 9. First, we prove that EjE
∗
k is bounded on L1

µ(X,H). For g ∈
L1
µ(X,H) we have∫
|EjE∗kg(x)|H dµ(x) ≤

∫∫∫
pj(d(x, y))|g(u)|H min{1, 2−kδd(x, y)δ}×

× (pk(d(x, u)) + pk(d(y, u))) dµ(u)dµ(y)dµ(x)

≤ C2−|j−k|δ‖g‖L2
µ(X,H).

Now, let g ∈ L∞µ (X,H). We call Ek,jg(x) to the right-hand side of (40). By
applying Proposition 22 and Lemmas 20 and 21, it seems that Ej,kg is well defined
and we can obtain the following estimations:

|Ej,kg(x)|H =

∣∣∣∣∫∫ Kj(x, y) (Kk(u, y), g(u))H dµ(u)dµ(y)

∣∣∣∣
=

∣∣∣∣∫∫ Kj(x, y) (Kk(u, y)−Kk(u, x), g(u))H dµ(u)dµ(y)

∣∣∣∣
≤
∫∫
|Kj(x, y)|H|Kk(u, y)−Kk(u, x)|H|g(u)|H dµ(u)dµ(y)

≤ C
∫∫

pj(d(x, y)) min{1, d(x, y)δ2−kδ}×

× (pk(d(x, u)) + pk(d(y, u))) |g(u)|H dµ(u)dµ(y)

≤ C2−|j−k|δ‖g‖L∞µ (X,H),

where C is a constant not depending on j nor on k.

Since EjE
∗
kg = Ej,kg for g ∈ Λβ0 (X,H), we can invoke the interpolation theorem

of Marcinkiewicz to obtain (12). �

4. Application to the Littlewood–Paley theory

In this Section we will apply Theorem 6 to obtain L2-boundedness of the square
function given by

Sf(x) =
( ∞∑
j=−∞

|∆jf(x)|2
)1/2

.

In order to do this, we consider the family {ρ(x, y, 2`)}`∈Z given in Theorem 10
and denote K = {K`}`∈Z, where

K`(x, y) = ρ(x, y, 2`)− ρ(x, y, 2`−1).

We will prove that K is a standard kernel that takes values in the Hilbert space
H = `2(R).

Thus, given 0 < β ≤ θ, f ∈ Λβ0 (X) and g = {g`}`∈Z ∈ Λβ0 (X,H), we can define
an operator T by means of

〈Tf, g〉 = lim
L→∞

L∑
`=−L

∫ (∫
K`(x, y), f(y) dµ(y)

)
g`(x) dµ(x). (42)
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We will prove that T is a singular integral operator associated to the kernel K
satisfying the conditions of Theorem 6, hence T will become a Calderón-Zygmund
operator.

Proposition 26. The function K is a standard kernel.

Proof. First we check that K fulfills condition (2). Let x, y ∈ X such that x 6= y.
We have:

|K(x, y)|H =
(∑
`∈Z
|ρ(x, y, 2`)− ρ(x, y, 2`−1)|2

)1/2

≤ C
(∑
`∈Z
|ρ(x, y, 2`)|2

)1/2

≤ C
(∑
`∈Z

(
c2−`χ[0,c2`]d(x, y)

)2)1/2

≤ C
( ∑
`∈Z,d(x,y)≤c2`

2−2`
)1/2

≤ Cd(x, y)−1.

Second, we check condition (3). Let x, x′, y ∈ X such that d(x, x′) < d(x, y)/2A.
It is not hard to see that d(x′, y) ≥ d(x, y)/4A. Therefore,

|K(x, y)−K(x′, y)|H ≤ C
(∑
`∈Z
|ρ(x, y, 2`)− ρ(x′, y, 2`)|2

)1/2

≤ Cd(x, x′)β
(

2−2(β+1)
(
χ[0,c2`](d(x, y)) + χ[0,c2`](d(x′, y))

))1/2

≤ Cd(x, x′)β
(
d(x, y)−2`(1+β) + d(x′, y)−2`(1+β)

)1/2
≤ Cd(x, x′)βd(x, y)−1−β .

Thus, K is a standard kernel with smoothness exponent β. �

Proposition 27. The operator T given in (42) is well defined and is a singular
integral operator associated to the standard kernel K(x, y).

Proof. Let f ∈ Λβ0 (X) and g ∈ Λβ0 (X,H) be Lipschitz functions supported in
B = BR(x0).

We split the series in (42) in two parts,

Σ1 + Σ2 =
∑

−L≤`<log2 R

+
∑

log2 R<`≤L

.
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First, we estimate Σ1. Since
∫
K`(x, y)dµ(x) = 0, by invoking (9), we get

Σ̃1 :=

∫
B

∑
`<log2 R

∣∣∣ ∫ K`(x, y)(f(y)− f(x)) dµ(y)
∣∣∣|g`(x)| dµ(x)

≤ C‖f‖β‖g‖∞,H
∫
B

∑
`<log2 R

∫
2−`χ[0,c2`](d(x, y))d(x, y)β dµ(y) dµ(x)

≤ C‖f‖β‖g‖∞,H
∑

`<log2 R

∫
B

∫
2−`χ[0,c2`](d(x, y))2`β dµ(y)dµ(x)

≤ C‖f‖β‖g‖∞,H
∑

`<log2 R

∫
B

2−`µ(Bc2`(x))2`β dµ(x)

≤ C‖f‖β‖g‖∞,HRβµ(B)

≤ C‖f‖β‖g‖β,Hµ(B)1+2β .

Now we estimate Σ2.

Σ̃2 :=

∫ ∑
`≥log2 R

∣∣∣ ∫ K`(x, y)f(y) dµ(y)
∣∣∣|g`(x)| dµ(x)

≤ C‖f‖∞‖g‖∞,H
∫
B

∑
`≥log2 R

2−`
∫
B

dµ(y) dµ(x)

≤ C‖f‖∞‖g‖∞,HR−1

∫
B

Rdµ(x)

≤ C‖f‖β‖g‖β,Hµ(B)1+2β .

Hence, by the theorem of the dominated convergence, the limit in (42) exists. Thus
the operator T is well defined. Moreover,

| 〈Tf, g〉 | ≤ C‖f‖β‖g‖β,Hµ(B)1+2β , (43)

where the constant C is independent of f, g.
The equality (43) clearly implies that T is linear continuous in the sense of

Definition 3.

Finally, we will check the property (4). Consider functions f ∈ Λβ0 (X) and

g ∈ Λβ0 (X,H) with disjoint supports.
We denote F = supp(f) and Fη will be the η-neighborhood of F . Observe that

for each ` ∈ Z, supp(K`(x, ·)) ⊂ Bc2`+1(x). Then

supp
(∫
|K`(x, ·)| |f | dµ

)
⊂ Fc2`+1 .
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There exists `0 ∈ Z such that for any ` ≤ `0, Fc2`+1 ∩ supp(g) = ∅. Thus, we
have

lim
L→∞

∫ L∑
−L

(∫
|K`(x, ·)| |f | dµ

)
|g`(x)|dµ(x)

=

∫ ∞∑
`=`0

∫
|K`(x, ·)||f |dµ |g`(x)| dµ(x) (44)

≤
∫ ( ∞∑

`0

(∫
|K`(x, ·)| |f | dµ

)2)1/2

|g(x)|Hdµ(x)

≤ C
∫ ( ∞∑

`0

2−2`‖f‖L1(X)

)1/2

|g(x)|Hdµ(x)

≤ C‖f‖L1
µ(X)‖g‖L1

µ(X,H). (45)

This shows that
∫ ∑

|K`(x, ·)||f |dµ g`(x) is µ-integrable, which implies we can write
the equality (4) for T . �

Proposition 28. The operator T satisfies the conditions T1 = 0H and T ∗(1h) = 0,
for any h ∈ H.

Proof. Consider a function g ∈ Λβ00(X,H) and numbers η > 0, L ∈ Z. Let hη
be some real valued Lipschitz function such that 0 ≤ hη ≤ 1, hη ≡ 1 in the η-
neighborhood of supp(g) and hη ≡ 0 outside the 2η-neighborhood of supp(g). Let
x0 be a point in supp(g) and let R > 0 be such that supp(g) ⊂ BR := BR(x0). We
write

γ` =

∫∫
K`(x, y)hη(y)g`(x) dµ(x)dµ(y),

α` =

∫∫
(K`(x, y)−K`(x0, y)(1− hη)(y)g`(x) dµ(x)dµ(y),

Ω =

∫∫
〈(K(x, y)−K(x0, y))(1− hη(y)), g(x)〉 dµ(x)dµ(y),

〈T1, g〉 = lim
L→∞

L∑
−L

γ` + Ω.

We write

Ω =

∫∫ ∞∑
`=−∞

(K`(x, y)−K`(x0, y))(1− hη(y))g`(x) dµ(y)dµ(x)

=

∫∫ −L∑
−∞

+

L∑
−L

+

∞∑
L

=

L∑
`=−L

α` + Iη(L) + Jη(L),
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where

Iη(L) =

∫∫ ∞∑
L

(K`(x, y)−K`(x0, y)(1− hη)(y)g`(x) dµ(x)dµ(y) (46)

Jη(L) =

∫∫ L∑
−∞

(K`(x, y)−K`(x0, y)(1− hη)(y)g`(x) dµ(x)dµ(y). (47)

Therefore:

〈T1, g〉 = lim
L→∞

(
L∑
−L

(γ` + α`) + Iη(L) + Jη(L)

)
= lim
L→∞

Γ(L) + Λη(L) + Iη(L) + Jη(L),

where

Γ(L) =

L∑
−L

∫∫
K`(x, y) dµ(y)g`(x)dµ(x) = 0,

because
∫
K`(x, y)dµ(y) = 0, and

Λη(L) = −
∫∫ L∑

−L
K`(x0, y)(1− hη)(y)g`(x) dµ(x)dµ(y) = 0,

because
∫
g`(x)dµ(x) = 0.

For η ≥ 2A2R, by using that |K`(x, y)−K`(x0, y)| ≤ c2−`(β+1)d(x, x0)β , if L is
big enough, we have

Iη(L)

≤
∫ ∣∣∣ ∞∑

L

∫
(K`(x, y)−K`(x0, y)) g`(x) dµ(x)

∣∣∣(1− hη(y)) dµ(y)

≤
∫
x∈supp(g)

∞∑
L

∫
d(x,y)>2AR

|K`(x, y)−K`(x0, y)| |g`(x)| (1− hη(y)) dµ(y) dµ(x)

≤ CRβ
∫
x∈supp(g)

∞∑
L

2−`(β+1)

∫
d(x,y)>AR,d(x,y)≤c22`+cR

dµ(y) |g`(x)| dµ(x),

where we have used that supp(K`(x, ·) − K`(x0, ·)) ⊂ BA(c2`+R)(x). Now, since
R is fixed for the given function g, and L is big enough, there is a constant C
depending on R such that d(x, y) ≤ CR2`. Then, by applying the Cauchy-Schwarz
inequality, we get

Iη(L) ≤ C Rβ
∫
x∈supp(g)

∞∑
L

2−`β |g`(x)| dµ(x)

≤ CRβ2−Lβ ‖g‖L1
µ(X,H).

Rev. Un. Mat. Argentina, Vol. 55, No. 1 (2014)



48 PABLO SEBASTIÁN VIOLA

This implies that

lim
L→∞

Iη(L) = 0. (48)

Now, with η ≥ 2A2R, since supp(g`) ∩ supp(1 − hη) = ∅, and supp(K`(x0, ·) −
K`(x, ·)) ⊂ BA(c2−L+R)(x), thus Iη(L) = 0. Therefore, for η ≥ 2A2R we get
〈T1, g〉 = 0.

By repeating similar procedures for the adjoint operator T ∗, if f ∈ Λβ00(X) and
w = {w`}`∈Z we get that 〈T ∗(1w), f〉 = 0. �

Theorem 29. The operator T defined in (42) is a Calderón-Zygmund operator.

Proof. By Proposition 27, T is a singular integral operator. By Proposition 28,
T1 = 0H and for any v ∈ H, T ∗(1v) = 0. Besides, by inequality (43), T satisfies a
Weak Boundedness Property. Thus, Theorem 6 holds for T . �

Now we would want to prove the opposite inequality, that is:

‖f‖L2
µ(X) ≤ C‖

∑
j

|∆jf |2‖L2
µ(X). (49)

We need the Calderón reproducing formula contained in [HS, Theorem 3.9].
More precisely,

Theorem 30. Suppose that {D̃k}k∈Z is a family satisfying Theorem 3.6 in [HS].
Then for all f ∈ Lpµ(X), 1 < p <∞,

lim
L→∞

L∑
k=−L

〈
D̃k∆kf, g

〉
= 〈f, g〉 , (50)

where the series converges in the Lpµ norm.

Here, the family of operators {D̃k}k∈Z is one obtained in [HS] whose respective

kernels D̃k(x, y) satisfy the following properties, for 0 < ε′ < β ≤ θ:

|D̃k(x, y)| ≤ C 2−kε
′

(2−k + d(x, y))1+ε′
; (51)

|D̃k(x, y)−Dk(x′, y)| ≤ C
(

d(x, x′)

2−k + d(x, y)

)ε′
2−kε

′

(2−k + d(x, y))1+ε′
; (52)

for d(x, x′) < (d(x, y) + 2−k)/2A;∫
D̃k(x, y)dµ(y) =

∫
D̃k(x, y)dµ(x) = 0. (53)

We define the operator U in the following way:

〈Uf, g〉 := lim
L→∞

L∑
k=−L

∫∫
D̃k(x, y)f(y)gk(x) dµ(y)dµ(x). (54)
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The kernel of this operator is

K(x, y) := {D̃k(x, y)}k∈Z.

Theorem 31. The operator U is a Calderón-Zygmund operator.

Proof. We begin by studying the properties of size and smoothness of the kernel K.
For the size, we have:

|K(x, y)|2`2 =
∑

k≤log2 d(x,y)−1

+
∑

k≥log2 d(x,y)−1

|D̃k(x, y)|2

≤ C
∑

k≤log2 d(x,y)−1

22k + C
∑

k≥log2 d(x,y)−1

2−2kε′d(x, y)−2−2ε′

≤ Cd(x, y)−2.

For the smoothness, let x, x′, y ∈ X such that d(x, x′) ≤ d(x, y)/2A; then, by using
(52) and proceeding as above we have

|K(x, y)−K(x′, y)|2`2 =
∑
k∈Z
|D̃(x, y)− D̃(x′, y)| ≤

∑
k≤log2 d(x,y)−1

+
∑

k≥log2 d(x,y)−1

≤ C

[
d(x, x′)ε

′

d(x, y)1+ε′

]2

.

Now we check that the operator U is continuous and well defined. We can proceed
in a very similar way as in the case of the operator T in Subsection 4.1. To this end,
we are going to prove that the limit corresponding to (54) exists and the following
estimate holds:

| 〈Uf, g〉 | ≤ C‖f‖β‖g‖β,Hµ(B)1+2β′ , (55)

for a suitable choice of the exponent β′, where f ∈ Λβ
′

0 (X), g ∈ Λβ
′

0 (X,H), and
B = BR(x0) is the support of f and g.

We will take

0 < β′ < ε′ < β ≤ θ. (56)

Let us take f ∈ Λβ
′

0 (X), g ∈ Λβ
′

0 (X,H), both supported in B = B(x0, R) and

Ik :=

∫∫
D̃k(x, y)f(y)gk(x) dµ(y)dµ(x) (57)

=

∫
x∈supp(g)

∫
D̃k(x, y) (f(y)− f(x))gk(x) dµ(y)dµ(x), (58)

where we have used (53).
First, we give estimates for the case 2−k ≤ 2AR. In order to estimate Ik we

split (58) in this way:

Ik = Ik1 + Ik2 :=

∫
B

∫
d(x,y)<2−k

(· · · ) +

∫ ∫
d(x,y)≥2−k

(· · · ).
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Then

Ik1 ≤ C‖f‖β′‖g‖∞,Hµ(B)

∫
d(x,y)<2−k

2−kε
′
2−kβ

′

(2−k)1+ε′
dµ(y)

≤ C‖f‖β′‖g‖β′,H2−kβ
′
µ(B)1+β′ .

Ik2 ≤ C‖f‖β′‖g‖∞,Hµ(B)

∫
d(x,y)≥2−k

2−kε
′ 1

d(x, y)1+ε′−β′ dµ(y)

≤ C‖f‖β′‖g‖β′,H2−kβ
′
µ(B)1+β′ .

Secondly, we study the case 2AR < 2−k. Let us observe that we only need to
consider the case d(x, y) ≤ 2−k in (57). Thus we write:

Ik ≤ C‖f‖∞‖g‖∞,H
∫
B(x0,R)

∫
d(x,y)≤2AR

2−kε
′

(2−k + d(x, y))1+ε′
dµ(y)dµ(x).

≤ C‖f‖β′‖g‖β′,Hµ(B)1+2β′ 2AR 2k.

Now we have:

| 〈Uf, g〉 | ≤ C‖f‖β′‖g‖β′,Hµ(B)1+β′
( ∑

2−k≤2AR

2−kβ
′
+ µ(B)β

′
2AR

∑
2−k>2AR

2k
)

≤ C‖f‖β′‖g‖β′,Hµ(B)1+2β′ .

This proved the continuity and the Weak Boundedness Property of U , with
exponent β′.

Now, let us suppose that f and g have disjoint supports. By considering the
η-neighborhoods Fη of F = supp(f), we choose an integer `0 such that F2`0 ∩
supp(g) = ∅. By applying the Cauchy-Schwarz inequality, we can write

I :=

∫ ∞∑
k=−∞

∫
|D̃k(x, y)| |f(y)| |gk(x)| dµ(y) dµ(x)

≤
∫ ( ∞∑

k=−∞

(∫
|D̃k(x, y)||f(y)| dµ(y)

)2)1/2

|g(x)|H dµ(x).

We estimate

|D̃k(x, y)| ≤

{
2k if k ≤ `0,

2−kε
′
d(x, y)−1−ε′ if k > `0.

We observe that the integral is null for k > `0 and d(x, y) ≤ 2`0 . Hence,

I ≤ C‖f‖L∞(X)‖g‖L∞(X,H)µ(supp(g))
( ∑
k≤`0

(µ(supp(f))2k)2 +
∑
k>`0

2−2(`0+k)ε′
)1/2

is finite, so the operator U has associated the kernel K in the sense of (4).

Finally, let us check the condition U1 = 0H. The method is analogous to the
case T1 = 0H, and we only shall do the estimates corresponding to (46) and (47).
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We take g ∈ Λβ
′

00(X,H) supported in B = BR(x0). For η > 2AR, by picking L big
enough we can write

Iη(L) :=
∑
k≥L

∫∫ ∣∣∣(D̃k(x, y)− D̃k(x0, y)) (1− hη(y)) gk(x)
∣∣∣ dµ(y)dµ(x)

≤
∫
x∈supp(g)

∫
d(x,y)>2AR

d(x, x0)ε
′
2−kε

′

d(x, y)1+2ε′
|gk(x)| dµ(y)dµ(x)

≤ CR1−ε′‖g‖L∞µ (X,H)

∑
k≥L

2−kε
′
≤ CR,g2−Lε

′
,

Jη(L) =
∑
k≤−L

∫∫ ∣∣∣(D̃k(x, y)− D̃k(x0, y)) (1− hη(y)) gk(x)
∣∣∣ dµ(y)dµ(x)

≤
∑
k≤−L

∫
x∈supp(g)

∫
d(x,y)>2AR

d(x, x0)ε
′
2−kε

′

2−3kε′/2 d(x, y)1+ε′/2
|gk(x)| dµ(y)dµ(x)

≤ CR1+ε′/2‖g‖L∞(X,H)

∑
k≤−L

2kε
′/2 ≤ CR,g2−Lε

′/2. �

By applying Theorems 29 and 31 and denoting

G̃f(x) := (

∞∑
k=−∞

|D̃kf(x)|2)1/2,

we get

‖Sf‖L2
µ(X) = ‖Tf‖L2

µ(X,H) ≤ C‖f‖L2
µ(X),

‖G̃f‖L2
µ(X) = ‖Uf‖L2

µ(X,H) ≤ C‖f‖L2
µ(X).

Now, we are going to prove the inequality (49). From (50), since D̃j is a selfad-
joint operator, and by applying the Cauchy-Schwarz inequality, we have

‖f‖L2
µ(X) = ‖

∑
j

D̃j∆jf‖L2
µ(X) = sup

‖g‖L2
µ(X)=1

∫ ∑
j

D̃j∆jf(x) g(x) dµ(x)

= sup
‖g‖L2

µ(X)=1

∫ ∑
j

∆jf(x)D̃j g(x) dµ(x)

≤ sup
‖g‖L2

µ(X)=1

(∫
[
∑
j

|∆jf(x)|]2dµ(x)
)1/2(∫

[
∑
j

|D̃jg(x)|]2dµ(x)
)1/2

≤ C‖S(f)‖L2
µ(X) sup

‖g‖L2
µ(g)=1

‖G̃(g)‖L2
µ(X)

≤ C‖S(f)‖L2
µ(X).

From this, we can derive the Littlewood–Paley estimate

‖f‖L2
µ(X) ≈

∥∥∥(∑
`∈Z
|∆`f |2

)∥∥∥
L2
µ(X)

.
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This result is obtained in [HS] and [T] without using any vector-valued T1 Theorem.
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