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VECTOR VALUED T(1) THEOREM AND LITTLEWOOD-PALEY
THEORY ON SPACES OF HOMOGENEOUS TYPE

PABLO SEBASTIAN VIOLA

ABSTRACT. Singular integral operators associated to kernels valued on Hilbert
spaces are studied in the setting of spaces of homogeneous type. By following
the work of David and Journé (Ann. of Math. (2) 120 (1984), no. 2, 371-397),
a T'1-Theorem is obtained in this context. This result is applied to prove a
Littlewood—Paley estimate.

1. INTRODUCTION AND MAIN RESULT

In this paper, vector-valued singular integral operators T are studied, in the
setting of a space of homogeneous type (X, d, u) of order #, where the measure p
is non-atomic.

The classical theory of Calderén-Zygmund’s operators, contained in the cele-
brated work [CZ], was generalized in different directions and contexts in the last
century. In 1984, David and Journé in [DJ] give necessary and sufficient conditions
for the L?(R™) continuity of such operators. The central tool in that work is the
Cotlar Lemma (see [C]), that allows them to develop the L? theory without using
the Fourier transform. This fact later aids to David, Journé and Semmes ([D.JS]
and Aimar ([A]) to extend these results to the context of spaces of homogeneous
type.

On the other hand, the theory of vector valued Calderén-Zygmund operators was
started in the work of Benedeck, Calderén and Panzone in [BCP] and developed in
[RFRT] and [RFT]. It has been shown that this theory has important applications
in the study of the classical analysis and, in particular, in the theory of weights.

However, the generalization of the “T'1-Theorem” in this context is obtained in
2004 by Figiel in [F] for the case of the Lebesgue spaces LP(R", X), 1 < p < oo,
where X is a Banach space satisfying the UMD condition.

Also, Hytonen and Weis (see [HW]) extend the T'1-Theorem to the case of
different Banach spaces, both satisfying the UMD condition. In the two works
mentioned above there are no explicit examples of operators such that the vector
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26 PABLO SEBASTIAN VIOLA

valued T'1-Theorem can be applied. Recently in [VV] this approach is used to
obtain LP-boundedness of the oscillation of the Riesz transforms.

One purpose of this work is to analyze the behavior of the quadratic differences
of operators T, having pointwise lim._,o Tcf(x) = Tf(x), in spaces with general
measures, by using a vector valued 7'1-Theorem.

More precisely, given a family of operators T' = {7} }.>0 such that the existence
of the lim.,o7:f(x) for almost every z is known, we investigate the speed of
convergence of the family {7 }.~o. To this end we consider square functions G(T'f)
given by

GT @) = (3|7 o) - Tooc, @) e Lo )

The consideration of this problem goes back to the 1930’s and it was mainly an-
swered by Littlewood and Paley. During the last years, in order to measure the
speed of convergence, other expressions such as the p-variation and the oscillation
operators have been considered as well, see [JKRWI [CTRW 1] [CTRW2| [VV] and the
references therein.

In the rest of the paper, H will denote a Hilbert space. When omitted, it can
be assumed that H is some scalar, real or complex, field. The inner product in H
will be denoted by (-, ).

In what follows we provide the definitions that we need to properly state our
first Theorem.

Definition 1. A function K : X x X \ A — H is said a standard kernel if there
18 a number 0 < § < 0 such that

K (2,y)]s < Cd(z,y) 7", (2)
forallz,y € X,z # vy, and

d(z,a")°

K (z,y) — K(z',9)lu + | K(y, z) — K(y,2')|u < CW,

3)

for all z, 2’y € X, with d(x,2") < d(x,y)/2A.
Here C is a positive constant that does not depend on x,x’,y. We also say that
K has smoothness exponent §.

Definition 2 (Function spaces). We say that a function f : X — H belongs to
LA(X,H), 1 <p<ooif

1l = ( / 8 d) 7 < .

In a similar way the spaces L™ are defined.
Given a function g : X — H and a number 0 < 5 < 0, we define

|g|B]HI — sup ‘g(l‘) _g(y)‘H.
’ z,yeX, x#y d(l‘,y)B
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VECTOR VALUED T(1) THEOREM ON SPACES OF HOMOGENEOUS TYPE 27

We say that g € AP(X,H) if the seminorm |g|gm is finite. In addition, we write
g€ Ag(X, H) if g is supported in a ball. In addition, we define the norm

lgllsm == llgllLee (x 1) + |9l 55
The space of continuous linear functions on Ag(X, H) is denoted by (Ag(X, H)) .
Definition 3. Let us consider a standard kernel K with smoothness exponent 9.
We say that T : Ag(X) — (Ag(X, H))’ is a singular integral operator asso-

ciated to the kernel K if T is linear continuous and for any f € Ag(X) and
g€ AOB(X, H) with disjoint supports, the following equality holds:

(Tf.g) = / / (K (2,9), 9(5))s £ () dpa()da(y). (4)

If T can be extended to a bounded operator T : L2(X) — L2(X,H), we say that
T is a Calderén-Zygmund operator.

Definition 4. Given a singular integral operator T, its adjoint operator T* is
defined by

(T7g,f)=(Tf.9),
for all functions f € Ag(X) and g € Ag(X7 H).
Definition 5. We say that a singular integral operator T satisfies the Weak

Boundedness Property with exponent B if, given a ball B, the following in-
equality holds

(T f,9)] < C u(B) 22 fllas x) llgllae x (5)
for any f € Ag (X) and g € AO*B(X, H) both supported in B.
We investigate conditions on an operator T : AJ(X) — AJ(X,H)’ such that it

can be extended to a bounded operator T : L2 (X) — L2 (X, H).
The main results of the paper are the following.

Theorem 6. IfT is a continuous linear operator, in the sense of Definition[3, asso-
ciated to an H-valued standard kernel K, satisfying a Weak Boundedness Property
and such that

T1 =0y
and
T*(1h) =0,
for any vector h € H, then T is a Calderon-Zygmund operator.

Remark. The explicit expressions of T'1 and T*(1h) are contained in Section 2,
Proposition [§] below.

We will provide the proof of the main Theorem in Section 2. There, a key claim
is used, whose proof is given along Section 3. Finally, in Section 4 we apply this
result to prove a Littlewood—Paley estimate.
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28 PABLO SEBASTIAN VIOLA

2. PROOF OF THE MAIN THEOREM

Our assumptions on X, d, u in Section 1 will be now precisely stated. First, X is
a nonempty set provided with a quasi-distance d. There is a constant A > 1 such
that
d(z,y) < A(d(z, z) + d(2,y)), (6)
for any x,y,z € X. The balls in X are denoted by B,.(z).

The measure y satisfies a doubling condition, that is, there is a positive constant

C such that
N(B2r(x)) S C.U(Br(x)) (7)

We say that the measure y is non-atomic if for every single point z, u({z}) = 0.
We also assume that u(X) = oco. This is equivalent to the fact that X is non-
bounded with respect to d.

The quasi-distance d has the f-regularity property for some 0 < § < 1. That
is, there is a constant C’ > 0 such that

ld(z,y) — d(a’,y)| < C'r'Pd(z,2")’, (®)

for all x,2’,y € X, r > 0, whenever d(z,y) <r, d(a’,y) < r.
In addition, we will suppose that p satisfies the following condition with respect
to every d-ball B,.(z): there is a constant ¢ > 0 such that

%7‘ < u(B.(z)) <cr. 9)

This condition, together with the regularity, can be assumed without loss of
generality, since, as shown in [MS], an equivalent distance d can be found such that
the required properties are fulfilled.

Along the paper we often use, without mentioning it, the following result of
linearity of integrals for vector-valued functions.

Theorem 7. (Hille) Given a p-integrable function ¢ and a continuous linear
functional ¢ on H, we have

([ oterauta)) = [ ot duta). (10)
See, for example, [DU]J.

As is usual in the theory of singular integrals, we define the action of T" on the
constant function 1. In fact, we will do that for any bounded Lipschitz function.

Proposition 8. If T : AJ(X) — (AJ(X,H)) is a singular integral operator
associated to a standard kernel K, then T can be extended to a linear operator
T: Af(X) — (AgO(X, H))'. In addition, the adjoint operator T* can be extended
to a linear operator T* : Af(X, H) — (Aby (X))

Here, AE(X, H) is the set of bounded functions f € AP(X,H) and AgO(X, H)
consists of the functions f € Ag (X, H) with null p-integral.
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VECTOR VALUED T(1) THEOREM ON SPACES OF HOMOGENEOUS TYPE 29

Proof. Let us consider a function f € Ab’B (X) and a function g € AOBO(X ,H) sup-

ported in a ball B(zo, R). Let us take £ € AJ(X) such that € = 1 on B(xo,24R),
£=0on X\ B(xg,4AR?), and 0 < £(y) < 1 else. We say that £ is a cut function
over the ball B(zg, R). We define

(Tf,9) = (T(f&),9) +(T(f(1=£)),9), (11)

where the second term means

(T(f(1 - €).g) = / / (K (2, 9) — K (z0,9))(1 — E@) 1), 9(2))y duly) dyu(z).

This term is finite, which can be seen after applying and the regularity of u to
obtain

(T(f(1 =€), 9)|
<l

Lee (X H) / d(zo,y) ™" du(y) / d(z, 20)° du(z)
X\B(z0,2AR) B(zo,R)

< Cllfllzeex) N9l Lee (xmyu(B(wo, R)).

Therefore, (T(f(1 —£)),g) is well defined.
Finally, it is necessary to check that (T'f,g) does not depend on . Indeed, for
two cut functions &1, &2 over the balls Bg, (1) and Bg,(z2), respectively, we have

(T(f&):9) + (T(fF(1 = &), 9) = (T(f€2), 9) + (T(f(1 = &2)), 9))

_ / (= [K () (1 - 60) — K(2a,9) (1 — &) £(1), / o) du(x))  du(y)
=0,

Lee(X) llgl

where we have used Theorem (7| and the fact that [ gdu = Og.
For the adjoint operator T* the proof is similar by taking again scalar valued
cut functions. (]

In what follows we use the approximation of the identity operators .S, SJ—, whose
definition is given in (22), and the difference operators A; = S;i1 — S;, A; =
S; 11— S;. Now we prove the main Theorem. To this end, we assert the following
claim, whose nontrivial proof will be accomplished along Section 3.

Claim 9. For each j, let E; be the operator defined by
E; = S;TA; + A;TS; — A;jTA;. (12)

Then, for every pair of integers j,k, the composite operators E Ey, E;E; have
operator norms

155 Exll 2(rz ()2 (x)) < C2707HP,
1B Bl cr2 (x .22 (x ) < C27H7H9,

where C' is a positive constant not depending on j, k.
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30 PABLO SEBASTIAN VIOLA

Proof of Theorem [6l For each positive integer N we denote
N

Ry = > (S;TA; +A;TS; — A;TA)).
j=—N
After writing Ry = SnTSn — 5’_(N+1)TS_(N+1) we obtain that
Ryf—Tf, weakly, as N — oo. (13)

We will prove this shortly. Given f € AO’B(X) and g € Ag(X, H), by Corollary
(Section 3) and the continuity of T' we have that S’,NTS,Nf,g> — (Tf,qg), as
N — oo. Also, by using and we get that Syf — 0 as N — oo in the
topology of Ag(X). We have an analogous statement for Syg, too. Then, the
continuity of T" implies <5’NTSNf7g> —0as N — oo.

On the other hand, we can apply Claim [J]and Lemma[I4] to conclude that there
exists an operator T° : L?(X) — L2 (X,H) such that Ryf — T°f, strongly, as
N goes to infinity. Therefore, from we clearly have that T = T, and the
Theorem is proved. O

3. ProorF or CLAIM

3.1. Preliminary definitions and results. First, we give a list of preliminary
results.

Theorem 10. There is a function p : X x X x (0,00) — [0,00) and a positive
constant ¢ such that, for some 0 < § < 0 and for any t > 0 and z,y,2',y € X,
the following properties hold:

Suppp('a 'at) C {(f,y) EXxX: d(i[,y) < Ct}’ (14)
sup{p(x,y,t) :z,y € X} <ct™?, (15)
p(x,y,t) Zp(y,ZE,t) (16)

|p($,y,t) - p(:c',y,t)| < Ctiﬁild(aax/)ﬁ’ (17)

|p($,y,t) - p(l‘,y,,t” S Ctiﬁild(yvy,)ﬁa (18)

[ ol i) = 1. (19)

[ oty tydunta) =1 (20)

|(p(x,y7t)—p(x/,y7t))—(p($,y',t)—p(x’,y’,t))| < Ct_QB_ld(xﬂ‘rl)ﬁd(yay/)ﬁ' (21)

The existence of a function p satisfying (14)-(19) is proved in [MST]. The
approximation of the identity defined in [DJS] provides a function p satisfying all

the properties —. However the proof of appears in [HS].
Given a Lipschitz function g, of any order, for each ¢ > 0 we define

gi(w) = /p(wyy,t)g(y)du(y)-
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VECTOR VALUED T(1) THEOREM ON SPACES OF HOMOGENEOUS TYPE 31

Now we introduce the family of approximation of the identity operators.
Given f € Ag(X) and g € Ag(X7 H) we define
Sif(x) = for(@),  Sjg(x) = gas (). (22)
Since these two operators are selfadjoint, their action can be extended to distri-
butions. In particular, for ¢, @2 € Ag (X) and 1,19 € Ag (X,H), we have

(SjT¢1, ¢2) = (T'h1, Sj¢2), (S;T* 1, ba) = (T4, Sjiba).
Also, we define the difference operators A; = 5; — S;_; and Aj = S’j — S’j_l_
We have the following

Theorem 11. If g € AOB(X, H), 0 < 8 < 0, supported in a ball B,(xo), then for
any integer j the following properties hold.

supp(S;g) C By (o), (23)
whenever 29 < r, where 7(j) = r + C"r1 79279
|Sj9(2) = Sjg(a’)[m < C"27 7D By (o)) P d(w,2)"  (24)
and
|(Sj9(x) — g(x)) = (Sj9(2") — g(a")lu < C(j)d(x,2")", (25)
where lim;_,_ ., C(j) = 0.

Proof. The Theorem can be obtained by a straight generalization of Lemma 1.20
in [MST]. O

Corollary 12. Under the hypothesis of Theorem [I]]
li S;9 — =0.
i 1559 — gllam =0

It is immediate that Theorem [IT] and Corollary [T2] hold for the operators Sj,
since it is enough to consider H as a scalar field.

We need some results related to several Li spaces. Since they are Hilbert spaces,
we formulate the Lemma below in an abstract form. If G and H are two Hilbert
spaces, we denote by L£(G,H) the set {T' : G — H | T linear and bounded} which
has the operator norm:

TNy = sup [T
llzllg=1
Lemma 13. Let G, H be Hilbert spaces. If S : G — H is a bounded linear operator
then

ISIZ(g3) < NS*leays 18 1Zp06) < 1SS 2(o)- (26)

The operators SS™ : H — H and S*S : G — G are selfadoint. (27)
" k . k

ISllz@.a0 < 1SS G0, ISllea < IS S)FIE . (28)
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32 PABLO SEBASTIAN VIOLA

Proof. To prove , we apply the Cauchy-Schwarz inequality to obtain
112620 = 1512 00) = e |(SS*, x)g| < 1S5* | £

Z(|H=
To prove (28)), we first observe that ||(SS*)*||z) = 1SS*[|} () because SS* is
a self adjoint operator. Therefore, from we have that

x111/2 * 1/2k
ISz < 1SS G < ISSHIFG,,  forall k> 1. 0

Now we can prove a modified version of the Cotlar Lemma for two Hilbert spaces

g, H.

Lemma 14. Consider two Hilbert spaces G, H. If {T}};cz is a family of bounded
linear operators T : G — H and if {a(j)},cz is a list of nonnegative numbers such
that

T T} | ey + 175 Tl 2y < ali = 4),

then, for all pairs of integers m,n with n < m, we have

Spoml = H TH < N2 = T.
1Sn,mll ; j L(g’H)_i;ooa(Z)

Moreover, the sum Sy ., converges strongly to a bounded operator T° satisfying
IT°lg <T.

Proof. First, if we define the operator S = Z;”:n T} then, given an integer k > 0,
we can write

(SS*)’“— Z T, T ---T;, T

J1% g2 J2k—1" Jog "
©J2k=n

We now estimate
HleTj*z JZk 1 ]2kH£('H)
ST T ey - W Tgorey Ty 2
<a(jr — j2) - - aljor—1 — Jok)-
HTth*z o J2k 1 _]zkHl:(H)
S NTlle@ T3, Thsllgy - W15, o T e 1T 230
< a(0)%a(ja — js) -+ a(jan—2 — Jox—1)a(0)'/2.
After that and by taking in account the inequality , the calculations can proceed

in a standard way. O

3.2. The action of E; over AS(X) x A5 (X, H). In what follows we left fixed an
integer j and consider the operator

T; = S;TA; = S;TS; — S;TS;_;.

Observe that 7; is just one of the terms of E;. We show the proofs only for 7;,
since the other terms in E; have similar behavior.
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VECTOR VALUED T(1) THEOREM ON SPACES OF HOMOGENEOUS TYPE 33

Lemma 15. Given f € AJ(X), g € A’B(X H), we have

(5,75,1.9) // To(,9,27) 1 (9), o, 20)9(2)) du(y)du(z).  (29)

In addition, the integral is absolutely summable. Also,
<§jTSj71f,g> = / (Tp(-y, 27 ") f (), p(- 2,27 )g(x)) du(y)du().

Proof. Let us fix a point 29 € X. Suppose that F' € AJ(X), G € AJ(X,H) and
both functions are supported in a given ball Bg, (xq).

Let us denote ®(z,y) = p(z,y,277). By (14), supp(®) C {(z,y) : d(z,y) <
2711 Let us denote R = A(R; + (:23“) B = Bgr(x), then for each y € X,
O(z,y)F(y) =0 if d(z, o) > R.

The set C[B] of continuous functions supported in B is a Banach space with the
supremum norm, which will be denoted by || - || o-

We consider the function H : X — C[B] given by

Hyl() = () F(y).
For each y € X, we have H[y| € C[B]. Also, if y, — y as k — oo, we obtain that
1M [yr] — H]y]lloo — 0. Hence, H[y] is a continuous function on the variable y.
Since H is continuous, it is Bochner p-measurable. Now we write

J 1l o) = [ 1#016) 236 o)
= [ 12,0l o0 )] dnty)

SN, ) pse xsxry 1l 2 (x) < oo

Therefore H is C[B]-summable in the sense of Bochner.
Then, given a linear functional ¢ : C[B] — C, Hille’s Theorem implies that

]
[ ey ant) = ¢ [ tsanto)).
)

Since AJ(B) C C[B], the functional £(h) = (Th,G) is linear continuous for
h € Aﬁ(B C). Since Aﬁ( B) is a dense subset of C[B], the functional ¢ can be
continuously extended to the whole space C[B]. Now, we can write

(7 ([ ot.nrwintn).c) = (7 [ iaut.c)
- /(T@(-,y),G) F(y) dp(y).

By replacing ® by its definition, the last equality says that

1(50).6) = (7 ( [ ot 2)F )it ).

_ / (To(,y,27), G) Fly)du(y).
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34 PABLO SEBASTIAN VIOLA

Now, we work with vector-valued functions. With similar arguments as before,
we can prove that

(reco). [ @t ag@an) = [ @6, ot 0) dute)

In order to attain this equality, we take the Banach space C[B,H] consisting of
continuous H-valued functions supported in B with norm ||gl/eo,m = sup{|g(x)|u :
x € B}, and then by defining

Hlz] := ®(-,x)g(z),  L(h) := (TD(-,y), hg),
and taking G = S’jg in , we obtain

(31:1.9) = (1:1.559) = [ | @0l 211w, pte2.209(2)) duta)auty),
(31)
as desired. Now, the function

(a:,y) — (Tp(',y, 2j)f(y)7p('v €z, 2])9(3:))

has compact support in X x X. Furthermore, for a given j the family of functions

{pC, 0, 2) F()Yyex x {p(-2,27)g(y) }aex

is entirely contained in a bounded subset of Ag (X,C) x Ag (X,H). By applying
the Weak Boundedness Property, the double integral in becomes absolutely
summable. O

This Lemma suggests the following definition.

Definition of kernels x; associated to the operators 7;. Let x,y be points
in X. We define a vector-valued kernel ;(z,y) in the following way:

(Hj(xay)vv)ﬂ-ﬂ = <T(p(~,y72j) - p('ayv2j71))7p('7xa2j)v> .

To verify that this is a good definition, observe that the right-hand side is a
linear function ¢(v) on H. Also, the Weak Boundedness Property implies that £(v)
is bounded, since

|E(U)| S | <Tp('7y72j>7p('a$?2j)v> | + | <Tp('ay72j_1)?p('7x52j)v> | S Cw,y,j|U|IHI~

By the Riesz Representation Theorem, there is an element £ € H such that £(v) =
(&,v)y, for all v € H, and we write x;(z,y) = &.
Now, for functions f € AJ(X), g € AJ(X, H), Lemma [15 enables us to write

(Tif.g) = /<Tw 0.20) (), plr 2, 2)g(x)) du(wdu(z),  (32)

where ¢(z,y,27) = p(z,y,27) — p(z,y,271).
We will say that x;(x,y) is the kernel of the operator 7;.
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VECTOR VALUED T(1) THEOREM ON SPACES OF HOMOGENEOUS TYPE 35

3.3. Properties of the kernels x;. From now on, we use the notation
p(r) =1 +7)"ED 0 pir) =27p(27r).
Lemma 16. For each integer j, the function p;(z,y) is p-integrable for each vari-
able z,y.
Proof. We consider integration on the variable y, for example.

i [0 idln _ dp(y)
2 [astdeintn = [ St

o

S/ du(y)—i—Z/ o—(1+8)n
d(z,y)<27 n=0 2itn<d(z,y)<2itntl

1(Ba(a)) + Z (1(Bajsnsr )2 1H0)n
n=0

< C2.
In the last inequality we have used @D O

An important consequence of Lemma (16| is that x;(z,y) is integrable for each
variable x,y, as we now show.

Proposition 17. Given an integer j, if x,y € X then
|53 (2, )| < Cp;(d(z,y)).

Proof. First, we suppose d(x,y) < 10cA27, where c is the constant appearing in
Theorem Now, we apply the Weak Boundedness Property, with 8’ = 4,
and to estimate

|(rj (@, y), 0)y| = [(TP(,,27), 27)v)|
S 2](1+26)022j( 1— §)|'U
< Cp;(d(z,y))|v]a.
The last inequality can be reached with the aid of the following estimation:
279 < (14 10cA) op,(d(x,y)).

Now, we suppose that d(z,y) > 10cA27. In this case p(z,-,27) and (-, y,2%)
have disjoint supports, as is easy to see. For any v € H we can write

(lﬁj(.ﬁ,Q),U)H = <T’¢('7y7 2j),p(x, . Qj)v>

=// (K(&,00(C,y,2), p(x,€,27) v) y du(C)du(§)

- / / (K& ), pla. £, 29) )., (¢, 27) dia(C)dpu(€).

The last term is equal to 0 because implies that [ ¢ (z,y,27)du(z) = 0.
In view of the support of p(z, -,27) we have d(z, &) < ¢27 < d(x,y)/10A. Besides,
d(&,y) < A(d(x,€) + d(z,y)) < 3cAd(z,y).

|
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36 PABLO SEBASTIAN VIOLA

Also, d(&,y) > Ted(€, ), since otherwise we would have d(x,y) < A(d(x,€&) +
d(&,y)) < 10cAd(&, ), against our hypothesis.

Then we have d(z,y) < A(d(z,&) + d(§,y)) < A(1 4+ 1/7¢)d(€,y). Thus, we get
d(z,y) ~ d(§,y). This fact, together with . 115) and @D implies

(5 (2, y), v)u|
<c / K (€.0) — K(& )l pla €.27) [0l (C. v, 29)| dpu(€)dpu()

(%)
c P .
: //B@ c27)x B(y,e27) e irs2 (27 27 ol du(€)du(C)

§ y)1+5
< o7 / / 2 ol dpa(€)dpu()
v
N B(z,c27)x B(y,c27) A(1/7C+ 1)d(£€, y)1+6 e :
270
< Cid(x,y)lﬂs lvle < Cpj(d(z,y)).

O

Corollary 18. For any integer j, the kernel r;(x,y) is integrable for each variable
z, Y.

Now we study the smoothness properties of the kernels ;(z, y).
Proposition 19. Let j be a fized integer and x,w,y be points in X. Then
(. y) = rj(w, )l < Cmin(1,277d(z, w)°) (p;(d(z,y)) + pj(d(w,y))).

Proof. If d(w,x) > ¢27, we can apply Proposition

Thus, we can suppose that d(w,z) < c27.

For convenience, we define A; , ., (£) = p(x,&,27) — p(w, &, 27).

We split the analysis in two cases. First, we consider d(w,y) < A%c2/+2. By
applying the Weak Boundedness Property and the properties and 7 we
have for an arbitrary vector v € H,

(TY(y,27), Ajw v)| < C27)H20727d(, w)°ofw
< Cp;(d(w, )27 d(x, w)° |vs.
We have used that 277 < Cp;(d(w,y)).

Now, let us suppose d(w,y) > A?c27T2. In this case, ¥(-,y,27) and A;, (")
have disjoint supports. Indeed, if z were a point in the support of both functions,
we would have 2 € (B () U Begi (w)) N Begi (y). But, if d(z,w) < €27, d(w,y) <
A(d(w, 2) +d(z,y)) < Ac29+L; and if d(2,z) < ¢27 then

d(w,y) < A(A(d(z,2) + d(z,w)) + d(z,y)) < A%27+2,
in contradiction with the hypothesis.

Let us observe more carefully the earlier supports. By taking £ € supp(A; z w)
and ¢ € supp(¥(-,y,27)), we have & € Byi(x) U Begi(w) and then d(w, 5) <
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max{A(d(w,z) + d(z,€)),c27} < Ac27tL. Also, d(z,y) < ¢27. Besides, both quan-

tities d(w, ) and d(¢,y) are less than d(&, y)/2A hence d(&,y)
dw,y)) < (1/2+ A)d(w, y).

< A(d(w,§) +

Moreover, we have d({,y) < d(w,§), since otherwise d(w,y) <

d(&,y)) < A%c2712, against our hypothesis. So, we can write d(w,y) < 2Ad(£,y)
We conclude that

A(d(&,w) +

%+Ad(€,y) < d(w,y) < 24d(&,y)

(33)
After this geometrical analysis, we continue with the main lines of the proof.
Since the term (K (&,y), Aj¢,w (&) v)y is constant with respect to the variable ¢,
the following double integral is null:

/ / (K6, ), B (€) 0)g (G 9. 20) du(Q)dp(€)

Thus, we can add this term and use , , and @ to obtain
[(T(9,2), Bjrw )]

\// K(€,0) — K(€,9)
§C|U|H //

UG 5 3049) w262 dp(€)duC)
supp(Qj,z,w ¥(-,y, QJ))

(C Y, 2 ) jxy(f) U)H du(()d#(f)

< C27¥d(x,w)* 279 p(supp(A;.2.w))p(supp(¥ (-, ¥, 27)))

29(3 4+ A)
< 0277%p;(d(w, y))d(x, w)°

o

By applying this inequality, we finally obtain

‘(Klj(l',y) - (w y ’ = |<T¢ 2%2]) A_j,wwv>

< C277%p;(d(w, y)) d(x

w)? |v|g.
In the following lemmas we give two estimates related to the functions p;
Lemma 20. For every integer j and every point y € X

| pitdte ) dutz) < Cminf1,2%) < € <,

X

where C' is a constant not depending on j and y
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Proof. Given y € X, for every integer N we denote En(y) = Bon+1(y) \ Ban (y).
2—J

[ = [ s
= 2J0 Z / (27 +d(z,y)) 1_6du(z)

NeZ N(y)

i
<2] Z 2]+2N (97 L ONY—1-4

< 02J5 Z 2N (29 4 2Ny=1=9,
NEZ

We can easily bound this summation by C277° if we split it as Yy _; + > ys;-
This gives the desired result. O

Lemma 21. For all integers j, k, with j < k, and allx € X, the following inequality
holds:

/ pi(d(z,y)) min(1,27*d(2,y)°) du(y) < C271~H°,
X
where C' is a constant not depending on j, k or x.

Proof. For any R > 0, let us denote Ar(x) = Bag(x) \ Br(z). We estimate

/ pi(d(z, y)) min(1, 25 d(z, ) )dp(y)

27 ; —ké 5
= Z/A (o) (1+ d(z,y)/20)1+0 min(1, 27 d(z, y)°)du(y)
NEZ 2N )
279 _ -
< D uldan(e Wmmm(’v“ )
NeZL
<C 2NL 1. 9(N+1-k)3
Z (27 + 2N)1+3 min(1, ).
NeZ

If N >k, min(1,2(V+1-%)9) = 1. Besides,

Nojs

Z % < o~ li—kls

PN EE

On the contrary, if N < k, then min(1, 2N +1=F)9) = 9(N+1-k)0 and then
2N2j5 2N§

Z j N\1+6 9ké
NZk(2J+2 ) 2

< 02 l—kI25+1) < co—li—kId, 0

In the following Proposition we show that the kernels x; have null integral.
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Proposition 22. For every integer j and for each x € X

/ w5(x,y)dp(y) = Om, (34)
and for each y € X

[ 5t )dta) = s (35)

Proof. Consider a vector v € H with |v|g = 1. Let = be a given point in X. Since
kj(x,-) is an integrable function, we can write

([ e ndutio) = [ w60 duty

- /<Tz/1(-,y,2j),p(x,-,2j)v> du(y)

(7 ([ w2y dutr)) oo 2) o)

= (T0, p(,-, 27) v) = 0.

In the last equality we used that the linear functional ¢(f) = (T f, p(x,-,27)v)
is continuous and then we can apply Hille’s Theorem. Also, it is easy to check that
u— [P(u,y,27) du(y) belongs to AJ(X,R).

Since v is arbitrary, by the Riesz Representation Theorem we have .

Now we proceed with the second part of the Theorem. Let us take a fixed point
o € X and a vector v with |v|g = 1.
Given y € X and R > 0 big enough, we can write

(/ ﬁj(%wdu(x),v) = / (kj(z, ), v)y du(x)
Br(o) Br(o)

H
~ / (T 9, 2), pla, - 2) v) dpu()
BR(O

<T"/) p(m,-,Zj)vdu(x)>
BR( )
<T’¢ th>

where we have defined
()= [ plo ) du(e).
Br(o)

Since k;(-,y) is an integrable function, given € > 0 there is a radius Ry =
Ry(e) > 0 such that

[ weod@| < [ skt <o @)
d(o,x)>R H d(o,z)>R

for all R > Ry.
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Let us suppose that d(o, z) < (R—cA27)/A. If z € supp(p(-, z,27)) then d(z,z) <
c27. Therefore

d(o,z) < A(d(o,2) +d(z,z)) < R.
Thus, supp(p(-, z,27)) C Bg(0), and then, by using (19)), we have

hr(z)—1= /p(x,z,Qj)du(x) —-1=0.

In this way, the function hr — 1 is supported in X \ B(o, A(R — cA27)).
Also, <1/J( y,27),T*(1v)) = 0 because we have supposed that 7*(1v) = 0 and
(v, 27)dp = 0. This implies

<T1/J('7ya2j)7hR'U> = <T'¢}(7 th> <¢ y7 T*(]' ’U)>
= <T'l/}(7ya )a(hR_ 1) ’U>.

If R is big enough, hp—1 and (-, y, 2) have disjoint supports, thus the equalities
and can be applied to obtain

(T y,27), (hr — 1) v)]
- ‘// ((K(u,2) = K(u,9))¥(z,9,27), (hr(u) = 1) v)y dp(u)du(z)

» d(z,y)°
< (2 ]/ / i W(2)dp(u)
(=) <23 JX\B(o,(R—ca2i)/a) d(u, y)1Ho

< 027927 (B oi () / d(u,y) ™ dp(uw).
X\B(o0,R/2A)

We analyse the domain of the last integral. First, if d(u,y) > d(o,u), obviously we
have d(o,u)~ > d(u,y)~!.

Secondly, let us suppose d(u,y) < d(o,u) and denote a, = d(o,y). In this case
we necessarily get d(u,y) > R/2A? — a,, since, otherwise, we would have

d(o,u) < A(d(o,y) + d(y,u)) < A(ay, + R/2A% — ) = R/2A,

against the condition d(o,u) > R/2A on the domain of integration.
Then u € X \ B(y, R/24% — ;) C X \ Ber(y) for some constant C, while
R > 4A%q,,. Therefore we can estimate

/ d(u, ) dpu(u)
B\B(o,R/2A)

< / d(o,u) ™ % dp(u) + / d(u,y) ™ dp(u)
X\B(o,R/2A) X\B(y,CR)

< CR™°.

Finally,
{(Ty(-y,27), (hg — 1) v)| < C27°R™°.
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This expression tends to 0 as R goes to 400, then, given € > 0, there is Ry = Ry (e)
such that

/ (552, 9), v)g dia(a)| < e, (37)
d(z,0)<R

for all R > R;.
In consequence, by and (37), for any v € H we now have

[ (5.0 dua) =0,
Since k;(-,y) is integrable, by Hille’s Theorem we get . O

3.4. Proof of Claim @. In the following Proposition we prove that 7; can be
extended to a bounded operator in L? sense.

Proposition 23. Given an integer j, the operator T; = S TA; can be extended to
a bounded operator from L7 (X) into L7,(X,H). In addztzon T has the following
integral formula:

Tif = / ) f@) duly),  f e AB(X). (38)

Proof. Let f be a Ag(X) function and g be a Ag(X, H) function. We apply the
Cauchy-Schwarz inequality, Proposition [I7] and Lemma [20] to obtain

T80 | = | [[ w3601 ) 9000 dulw) o)
g/(lf(y)Izdu(y § / /I (15 (2, 9), 9(2))y | dp(z )}QClu(y))l/2
< Clifllecn ([ [ [t lotelis o) auten) "
<Cliflnco ([ [ [ pitate )o@ duto)] <

<[ [ mytate ) o) aut)
< Clilezco ([ la@IL [ it n) dutw)] duta)

< COfllzzexy gl 2 x m)-

1/2

Since A (X, H) is a dense subspace of L2 (X,H), we can extend the bounded linear
functional 7; f to any function g € LZ(X ,H). Now, by the Riesz Representation
Theorem, T; f is identified with an L? (X, H) function and then 7; can be extended
to a bounded operator T; : L (X) — L2 (X, H).
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To verify ([38), we take f € Aﬁ( X), g € L? +(X,H), and we use that x;(x,y) is
integrable, for example in the variable y, and apply equality . ) to obtain

(T5,9) 1305 = (T:9) = [ [ (5@ )5 0).9(a)) dutw)dnta)

- [ ([ sttt o)) auto
= </ k(5 y) f(y) du(y%g) -

This implies (38)). O
We write an analogous result for the adjoint operators T};.

Proposition 24. Given an integer j, the adjoint operator T can be extended to
an (L7, (X, H), L7 (X))-operator. In addition, T;* has the following integral formula:

Trg = / (552, ),9(x)) du(z), g€ AZ(X, H). (39)

We omit the proof which is similar to the 7; case.

All the results already obtained are concerned with the family of operators 7;.
An analogous task can be repeated for the families {A;T'S; j}jez and {5; 1TA}jez.
Besides, we can write each operator A TA; as S TA; —S;_1TAj, which leads us
to extend our earlier results to these operators

In this way, it can be seen that each operator E; = SjTAj +ATS; — AjTAj
is bounded from L2 (X) into L? (X, H), with integral representations

Bif = [ Kt duty), £ € A5,
Eyg = /(Km,-) o(x)) du(x), g€ AG(X,H),
where K;(x,y) are H-valued kernels satisfying analogous properties as k;(z,y)

does, like the Propositions and
As an easy consequence of these facts, we can write the following

Proposition 25. Given two integers j and k, the composite operators E;E};, B} E;
are bounded on L? i+ (X, H) and L? (X)), respectively, and they can be written as

(B Eig)@) = [ [ Ki(w.0) (i), g(a))s dutu)duty), g € ACCH), (40
(ELED) = [ [ (500, Keuy) f@)y dulw)du(o), £ 25X (a1

Now, we are in position to prove Claim [9}
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Proof of Claim [0l First, we prove that E;E; is bounded on L, (X,H). For g €
L, (X,H) we have
[ 1Bl duto) < [ [ [ pitatesplotwlsming 2%
x (pr(d(z, u)) + pr(d(y, w))) dp(u)dp(y)dp(z)
< C2_|j_k‘6”g”Lﬁ(X,H)-

Now, let g € Ly°(X,H). We call & jg(x) to the right-hand side of ([@0). By
applying Proposition 22)and Lemmas [20] and 21} it seems that &; ;g is well defined
and we can obtain the following estimations:

& \ [ 5t (Katw, <u>>Hdu<u>du<y>\
- \ J[ it () ~ i) g0 du(u)dmy)]
< [ Vs )l s) — K )l )y

<C [[ byt min{ e,z )
X (pr(d(z,u)) + pr(d(y, u))) lg(w)|a du(u)du(y)
< CQ?U?kléHQHLfﬁ(X,H),

where C' is a constant not depending on j nor on k.
Since E;E;g = ;g for g € Ag (X,H), we can invoke the interpolation theorem
of Marcinkiewicz to obtain . O

4. APPLICATION TO THE LITTLEWOOD-PALEY THEORY

In this Section we will apply Theorem |§| to obtain L?-boundedness of the square

function given by
i 2\ 1/2
= (> 1a5@)P)

j=—o00
In order to do this, we consider the family {p(x,y,2%)}scz given in Theorem
and denote K = {K/}scz, where
Ko(z,y) = p(x,y,2") — p(,y,27").

We will prove that K is a standard kernel that takes values in the Hilbert space
H = /2(R).

Thus, given 0 < 8 <6, f € AJ(X) and g = {gs}eez € AJ(X,H), we can define
an operator 7' by means of

(Tf,g) = lim Z / [ Ko, 1) du)) (o) dta). 42

L—)oo
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We will prove that T is a singular integral operator associated to the kernel K
satisfying the conditions of Theorem [6] hence T will become a Calderén-Zygmund
operator.

Proposition 26. The function K is a standard kernel.

Proof. First we check that K fulfills condition . Let z,y € X such that © # y.
We have:

Kyl = (3 lo.5.2) - ol y.212)
LEZ
<o( oty 2P) " <0 X (2 xppeand(en))?)

LEZ LeZ

C( > 272{)1/2 < Cd(z,y)~".

LEL,d(w,y) <c2

IN

Second, we check condition . Let z,2',y € X such that d(x,2’) < d(x,y)/2A.
It is not hard to see that d(2’,y) > d(x,y)/4A. Therefore,

1/2
K (,y) — K2 y)ls < O( 3 oy, 2) — pla',9,2)2)
LeL

1/2
< Cd(z,2")? (2_2(B+1) (X[o,czf](d($7 y)) + X[o,czl](d(mla y))))

< Cd(x, ') (d(x,y) 20D 4 d(a!,y)"20+) 1
< Cd(w, o) d(w,y) 7.

Thus, K is a standard kernel with smoothness exponent . O

Proposition 27. The operator T given in is well defined and is a singular
integral operator associated to the standard kernel K (x,y).

Proof. Let f € Ag(X) and g € Ag(X, H) be Lipschitz functions supported in

B = BR (wo)
We split the series in in two parts,

i1+, = Z + Z

—L<t<logy R log, R<(<L
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First, we estimate ;. Since [ K;(z,y)du(z) = 0, by invoking (9], we get

S % z. | [ K 5w) = £@) dn(w)loe(@)] dutz)
< O£ l5llglloom / 3 / 29X 0 ez (A&, 1)), y)° dpu(y) dia()
{<log, R
< Clflsllglloo 29X oozt (d(z, )2 dp(y)du(z)
sllg Hkgg:R// Yo, y 11(y)du
<Cllflsllglloz 3 / 2~ (Boge ()2 dp(x)
f{<log, R

< Clfllgllglloc R’ u(B)
< Cl£lslgllpmu(B)+27.

Now we estimate Xs.

S [ Y | [Hitws du<y>\|ge<x>|du<x>

£>log, R

<Clfllols [ 3 2 [ dut)dnta

£>log, R

< Ol llsollgll o R~ /B Rip(x)

< Clflislgllpmun(B)+27.

Hence, by the theorem of the dominated convergence, the limit in (42)) exists. Thus
the operator T is well defined. Moreover,

(Tf.9) B)'*27, (43)

where the constant C' is independent of f, g.
The equality clearly implies that T is linear continuous in the sense of
Definition [3

Finally, we will check the property . Consider functions f € Ag (X) and
g€ AOB(X, H) with disjoint supports.

We denote F' = supp(f) and F,, will be the n-neighborhood of F. Observe that
for each ¢ € Z, supp(Ky(x,-)) C Beger1(x). Then

SUpp /|Kg Hf|d,u) C Foyeir.
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There exists £y € Z such that for any ¢ < £y, Foet1 Nsupp(g) = 0. Thus, we
have

}LIT;O/;(/IKz(:vw)I \fldu) |ge(2)|dp(z)
/i/u{f(gjv'ﬂﬂd#9€($)|du(x) (44)
=t

oo

< [(Z ([ mewoliatan) ) oot

Lo
— /
<c / (;22f||fL1(X))1 ? () ()

< Clfllesxollglle o m- (45)

This shows that [ > |Ky(z,-)||f|du ge(x) is p-integrable, which implies we can write
the equality for T. O

Proposition 28. The operator T satisfies the conditions T1 = Oy and T*(1h) =0,
for any h € H.

Proof. Consider a function g € Ajy(X,H) and numbers 5 > 0, L € Z. Let h,
be some real valued Lipschitz function such that 0 < h,, < 1, h,, = 1 in the 7-
neighborhood of supp(g) and h, = 0 outside the 2n-neighborhood of supp(g). Let
xo be a point in supp(g) and let R > 0 be such that supp(g) C Br := Br(zp). We
write

o= [[ il yhgw)onte) dutz)duty).
ar = [ [ (Kale.w) = Ko, )1 = ha) )gn(z) dil)uy),
0= [[ (K () = K. 5) (1 = ) 0)) dis)uty).
(T1,g) = LILH;OXLL:WZ +Q.
We write

1= // > (Ke(w,y) — Ke(o,y)) (1 = hy(y))ge(x) dpa(y)dpu()

l=—o0
—L L 0o L
-0  —L L {=—L
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where
I(L) = / / SO (Ko(@,y) — Kelwo, 9)(1 — hy) (0)ge() dp(@)dp(y)  (46)
L
L
Jy(L) = / / S (K, 9) — Ke(wo, 9) (1 — ho) (@)ge(@) du(@)duly).  (47)
Therefore:
L
(T1.g) = lim (Zm +ag) + I,(L) + Jn<L>>
= Jim D(L) + Ay(L) + I (L) + Jy (L),
where

re) =3 / Koz, y) du(y)ge()dpu(z) = 0,

because [ Ky(z,y)du(y) =0, and

L
Ay(L) = — / / S Koo, 5)(1 — h) (1)ge(x) diu(x)dpa(y) = 0,
L

because [ g¢(z)du(x) = 0.
For n > 2A2R, by using that |K(z,y) — Ke(zo,y)| < 2P d(x, 20)?, if L is
big enough, we have

1,(L)

< [ [ Katar) = Katao,) gu(w) du(a)| (1 = hyf0) di(w)
L

< / . Z /d o ) = Koo, )l ()] (1= o) ds)d)

o0

<cr [y | Auy) 90(a) di(a),
zesupp(g) T, d(z,y)>AR,d(z,y)<c22¢+cR

where we have used that supp(Ky(z, ) — K¢(zo,")) C Ba(eot1r) (7). Now, since
R is fixed for the given function g, and L is big enough, there is a constant C
depending on R such that d(z,y) < Cg2°. Then, by applying the Cauchy-Schwarz
inequality, we get

I,(L) < CR® / S 27 gy(a)| dpa()

z€supp(g) ",
< CRP27%F 91l 2, (x )
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This implies that
Lh_}rr;o I,(L)=0. (48)
Now, with n > 2A2R, since supp(g¢) N supp(l — h,) = 0, and supp(K,(zo,-) —
Ko(x,-)) C Ba(ea-r4r)(), thus I,(L) = 0. Therefore, for n > 2A%R we get
(T1,g9) =0.
By repeating similar procedures for the adjoint operator T, if f € Ago (X) and
w = {wy}eez we get that (T*(1w), f) = 0. O

Theorem 29. The operator T defined in is a Calderon-Zygmund operator.

Proof. By Proposition T is a singular integral operator. By Proposition
T1 = Oy and for any v € H, T*(1v) = 0. Besides, by inequality , T satisfies a
Weak Boundedness Property. Thus, Theorem [6] holds for 7. O

Now we would want to prove the opposite inequality, that is:

12y < O 1A £z x)- (49)
j

We need the Calderén reproducing formula contained in [HS| Theorem 3.9].
More precisely,

Theorem 30. Suppose that {Dy}rez is a family satisfying Theorem 3.6 in [HS).
Then for all f € Lﬁ(X), 1<p<oo,

L

lim > (DiAif.g) = (f.9), (50)

L—oo
k=—L

where the series converges in the LY norm.

Here, the family of operators {Dj, }rez is one obtained in [HS] whose respective
kernels Dy (z,y) satisfy the following properties, for 0 < ¢ < 8 < 6:

N 27ke'
. , d(z, 2’ ¢ 2 ke
itz = Dute) < O (=00 ) g

for d(z,2") < (d(x,y) +27%)/24;

/Dk:cydu /Dkxyd,u =0. (53)
We define the operator U in the following way:
UF.g) = lim Z / Di(a, )£ (9)gi () dpy) (). (54
—>O<>
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The kernel of this operator is

K(l’, y) = {Dk(x7 y)}k€Z~
Theorem 31. The operator U is a Calderdn-Zygmund operator.

Proof. We begin by studying the properties of size and smoothness of the kernel K.
For the size, we have:

K@= Y+ Y |Duay)P

k<log, d(z,y)~* k>log, d(z,y)~*
<C Z 92k +C Z 272ke'd(x’y)7272e'
k<log, d(z,y)~! k>log, d(z,y)~!
< Cd(z,y) 2.

For the smoothness, let z,2’,y € X such that d(z,2’) < d(z,y)/2A4; then, by using
and proceeding as above we have

|K($’y)_K('T/’y)|%2:Z|D(xay)_b(xlvy)‘§ Z + Z

kez k<log, d(z.y)~1  k>log, d(z.y)~?
)
<c d(z,x’)e /
T |d(z )t
Now we check that the operator U is continuous and well defined. We can proceed
in a very similar way as in the case of the operator 7" in Subsection 4.1. To this end,

we are going to prove that the limit corresponding to exists and the following
estimate holds:

[(U£.9) < Clfllgllgllpmn(B) >, (55)

for a suitable choice of the exponent 8', where f € Ag/(X), g € Ag/(X, H), and
B = Bg(xg) is the support of f and g.
We will take

0<pB < <p<o. (56)
Let us take f € AB/ (X),g € ABI (X, H), both supported in B = B(xg, R) and
= [ [ Dula)fwn(z) duty)dta) (57)
-/ / D) (f(y) — F(@))gu (@) du(y)d(a), (58)
xzesupp(g)

where we have used (| .
First, we give estimates for the case 27% < 2AR. In order to estimate I we

split in this way:
I=lu+la= [ [ o+ f ()
B Jd(z,y)<2—F d(z,y)>2—F
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Then
271{26/ 27]6,3,

@ <l lgllan(B) | S o= L)

d(z,y
< Cllfllo lgllor 2™ w(B) .

Lo < C|fll5/1glloe(B) / ok L)
B ’ d(z,y)>2"F d(x7y)1+5/_'8/

< Cllfllo gl 2~ (B) .

Secondly, we study the case 2AR < 27%. Let us observe that we only need to
consider the case d(z,y) < 27" in (57). Thus we write:

2—ke'
It < Clflloollgl / / ) dp().
" JB(wo,R) Ja(,yy<2ar (278 +d(z,y)) 1t
< Clfllg gl mpu(B) 2 2AR 2",

Now we have:

UL < Clf gl anB)H (3 27 4 u(B) 24 Y 2¥)

2-k<2AR 2-k>2AR

< Clflls gl mu(B)+27.

This proved the continuity and the Weak Boundedness Property of U, with
exponent .

Now, let us suppose that f and g have disjoint supports. By considering the
n-neighborhoods F), of F' = supp(f), we choose an integer ¢y such that Fie, N
supp(g) = 0. By applying the Cauchy-Schwarz inequality, we can write

I= / 3 / Dy )| 1)) 91 ()| dia(y) dpa()

k=—o0

</ (kio ([1Delsolanw)’)"

We estimate

9(2)|m dps(z)-

- 2k if k <¢
|Dk(l‘7y) § — ke —1—¢ 1 =
27k d(x,y) e if k> 4o.

We observe that the integral is null for k > £ and d(z,y) < 2%. Hence,

N 1/2
1< Clf g x) gl (xampp(supp(9)) (D (ulsupp(£))28)2 + 3 27200 T0)
k<Lo k>{o

is finite, so the operator U has associated the kernel K in the sense of .

Finally, let us check the condition U1l = Oy. The method is analogous to the
case T1 = Oy, and we only shall do the estimates corresponding to and ([47).
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We take g € Ag(;(X, H) supported in B = Br(zg). For n > 2AR, by picking L big
enough we can write

=3 [ [(But) = Dutiro.) (1~ ha(w) 1(2)| du(v)an(o)

k>L
d(z, o)< 27+
< / / 0] 2 o l0x(@) dp(y)dp(a)
zesupp(g) Jd(xz,y)>2AR d(.]j,y)1+26

< CRY gl e xm) Z 27k < CRg 27,
k>L

Z // ‘ — Dy (z0,y)) (1 - ho(y)) g ()| dp(y)dpu(z)

k<—L
d(z, o)< 27
< / / - 5 |9k
k:SZ—L zesupp(g) Jd(z,y)>2AR 2 3ke’/2 d(.’E, y)1+6 /2

< OR1+EI/2||9||L°°(X,H) Z oke'/2 < CR,927L6’/2. 0
k<—L

(x)| du(y)du(x)

By applying Theorems [29] and [31] and denoting

Z |Dk:f 1/2

k=—o0

we get
IS fllezx) = 1T fll2 (xm < Cllfllzzx)
1GFlle2x) = U fllez x.m < CllFllea x)-

Now, we are going to prove the inequality . From , since bj is a selfad-
joint operator, and by applying the Cauchy-Schwarz inequality, we have

||f||Lg<X>:||Z_DjAjf||Lﬁ<X> / ZDAf (2) du(x)

HQHLQ(X) 1

L /ZAf D; g(w) du(a)
< s ([ ss@Pa@) ([ D)

||9|‘Lﬁ(x)=1

<OISNllezxy s 1G(9)e2x)

”g”Lﬁ(g):l
< CIIS(H)llrz x)-

From this, we can derive the Littlewood—Paley estimate

Ilzzo0 ~ | (Do 180)|
LET

L7.(X)
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This result is obtained in [HS] and [T] without using any vector-valued T'1 Theorem.

(A]

(€]
[BCP)
[CTRW1]

[CTRW?2]

[CZ]

(D]

[DJ]

[DJS]

(DU]

[F]

[HMMT]

[HS]

[HTV]

[HW]

]

[JKRW]
[JOR]
[MS]

[MST]
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