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ELEMENTARY PROOF OF THE CONTINUITY OF THE
TOPOLOGICAL ENTROPY AT 6= 1001 IN THE
MILNOR-THURSTON WORLD

ANDRES JABLONSKI AND RAFAEL LABARCA

ABSTRACT. In 1965, Adler, Konheim and McAndrew introduced the topolog-
ical entropy of a given dynamical system, which consists of a real number that
explains part of the complexity of the dynamics of the system. In this context,
a good question could be if the topological entropy Hiop(f) changes continu-
ously with f. For continuous maps this problem was studied by Misisurewicz,
Slenk and Urbanski. Recently, and related with the lexicographic and the
Milnor—Thurston worlds, this problem was studied by Labarca and others. In
this paper we will prove, by elementary methods, the continuity of the topo-
logical entropy in a maximal periodic orbit (0 = 1001) in the Milnor—Thurston
world. Moreover, by using dynamical methods, we obtain interesting relations
and results concerning the largest eigenvalue of a sequence of square matrices
whose lengths grow up to infinity.

INTRODUCTION

It is well know that one of the purposes of the topological theory of dynamical
systems is to find universal models describing the topological dynamics of a large
class of systems [16]. One of these models is the shift on n-symbols (2,,, 7, ), where
Y, is the set of sequences {6 : Ny — {0,1,2,...,n — 1}} endowed with a certain
topology, 7, and ¢ : ¥,, — %, is the shift map defined by (¢(6))(7) = 0(i + 1) (see
[2, [13] [7, [12]). These models have been extensively used to obtain a great amount
of information about maps defined in an interval, vector fields on three dimensional
manifolds, and other kinds of dynamical systems (see, for instance, [3, [6, [@, [10]).

By using a result in [§] —which is a slight modification of a result proved by
Block, Guckenheimer, Misiurewicz and Young ([5])— and elementary methods we
compute the topological entropy of some periodic orbits, and using matrix (linear)
algebra we are able to prove the continuity of the topological entropy at the periodic
orbit § = 1001 in the Milnor-Thurston world (the continuity was proved in [11] but
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164 A. JABLONSKI AND R. LABARCA

here we prove it by elementary methods). To do so, we consider a surjective two
to one linear map defined in two subintervals of [0, 1] which preserve orientation at
the first interval and reverse orientation at the second one (T : [yUI; — I = [0,1]).
The maximal invariant set of this map can be modeled whit a succession of “zeros”
and “ones”, i.e., full-shift of two symbols. The dynamics of the restriction of the
linear map to this maximal invariant set endowed with the order and the topology
induced by the interval is called the Milnor-Thurston world (MTW) and it is a
representation of the shift of two symbols with the order defined by Milnor and
Thurston in [I4].

While in [I1] the continuity of the topological entropy is proved by using the
Hausdorff dimension, the novelty of the present paper is related with the tech-
niques implemented: we build a graph associated with the maximal invariant set
corresponding to the orbit & = 1001, that describes the dynamics of the system.
Then we associate to this graph an incidence matrix; we compute its characteristic
polynomial and we compute the largest real eigenvalue. Finally, the entropy hg
associated with the sub-shift generated by the periodic orbit corresponds to the
log of the largest real eigenvalue of the matrix ([8, [5]). To prove the continuity we
compute the entropy at a family of periodic orbits h,, := (1001)"1, and we prove
that h,, — hg as n — oco.

1. PRELIMINARIES

1.1. The Milnor—Thurston world. Let T : Io UI; — I = [0,1] be a linear
map defined as follows: T|j, preserves orientation and T, reverses orientation,
and both restrictions are surjective. For this map we can consider the set Ap =
Mieo T7%(Iy U L), and for any = € A we have:

re€Ap = zeT *IHyul), YkeN

or, equivalently, T*(z) € (IyU 1), V k € N. Figure represents this map.
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0 1 L 1 O 1
(a) Representation of T (b) Representation of T2

FiGURE 1. Graph of the map T.

Clearly, we can associate to each z € Ar a succession of 0’s and 1’s using the
itinerary function Iy : Ap — Xo, Ir(z) = (I7(x)(7)), where Ip(z)(i) = j <
T (.’E) c Ij.
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PROOF OF CONTINUITY OF TOPOLOGICAL ENTROPY AT 6 = 1001 165

In A7 we consider the Euclidean topology and we use the bijection I to induce
a topology in ¥o: A set A C 35 is open < I{l(A) is open in Ap. In the same way,
we can define an order induced by the map Ir: 6 <7 a in Xy <= I;1(0) < I;'(«)
in R. For being bijective and by inducing the topology and the order (in 33) the
map I is an homeomorphism which preserves the order. Using this property and
the fact that the shift function o : ¥y — Xy satisfies 0(0p6102...) = 016,.. ., it
is easy to check that the diagram in Figure [2[is commutative.

A—— A

1O )

Zz (e} 22
FIGURE 2.

Now we can formally define the Milnor—Thurston world. A sequence a € ¥g =
{0 € 3; 09 = 0} is called minimal if o'(a) > « for all i € Ng. A sequence
B € X =1{0 € y; Oy = 1} is called maximal if o'(3) <r S for all i € Ny.
Let Min (resp. Maz) denote the set of minimal (resp. maximal) sequences. For
a € g and B € Xy let X[, 8] = {0 € Xo;a <7 %(0) <r Bforanyi € Ny} =
M=o ([ev, B]), where [, B] = {0 € Y5 <7 § <7 B}. Finally, the Milnor-
Thurston world (MTW) is the set of pairs (a, §) € Min x Max such that {«, 8} C
(e, 8] (see [12} 11]).

Remark 1.1. 3o, B] is a sub-shift of .
1.2. Definitions of topological entropy.

Definition 1.2. Let M # () and 7 a topology such that (M, 7) is a compact space.
Let A C 7 be a covering by open sets of M. We define the entropy of the covering
A as H(A) = log(N(A)), where N(A) = min{Card(A") : A" C A is a finite
subcovering of M}.

Definition 1.3. Let A, B be two coverings of the space M. We define AV B =
{AnB:ACA,BCB}.

Now, let ¢ : M — M be a continuous map, and ¢~ 1(A) = {¢~1(U); U € A},

the inverse image covering.

Definition 1.4. The topological entropy of ¢ with respect to the covering A is
n—1
1 —k
h(g,A) = lim 5H(}>[0¢ (A)).
Definition 1.5. The topological entropy of ¢ is hiop(¢) = sup{h(¢, A)}, where the
A
sup is taken over all the open coverings A of M.

Finally, in our case, we define the entropy map H:
Definition 1.6. H : MTW — [0,1n(2)], H(c, 8) = htop(0|as(ja,8)))-
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166 A. JABLONSKI AND R. LABARCA

1.3. Some notation and results. Let I C R be an interval, f : I — R a

continuous map, and A = {I1, I, ..., Is} a partition of I such that U I, =1, with
i=1
i # j and each pairwise intersection is at most one point.

Definition 1.7. We say that I — f covers n times J if there are subintervals
K1,Ks,...,K, on I (with disjoint interior) such that f(K;)=J,i=1,2,...,n.

Definition 1.8 (A-graph). Associated to the partition A of the interval I we define
a A-graph oriented with vertices Iy, I, ..., s such that if I;f covers n times I;
then there are n arrows from I; to I;.

Definition 1.9 (Incidence matrix). Associated to the A-graph, we define the inci-
dence matrix M = (m;;)sxs where m;; is the number of arrows from I; to I;.

Now we define the entropy associated to the A-graph.

Definition 1.10 (Perron’s eigenvalue). The entropy of the A-graph is defined as
log(r(M)), where r(M) = max{|A| : A eigenvalue of M}.

Definition 1.11. Let M = (m;;) be an n X n matrix. Associated to a finite se-
quence p = (Pj)?:o of elements from {1,2,...,n} we define its width as w(p) =
H§:1 My, _1p,- We will say that p is a path in M if w(p) # 0. In this case,
the number k& = [(p) is called the length of the path p. A loop is a path
p = (po,p1,--.,pk) for which p; #p;11,i=0,1,...,k—1 and pxr = pp. A rome in
M is a subset R C {1,...,n} for which there is no loop outside of R, i.e., there is
no loop p = (po, - - -, pr) with {pg,p1,...,pr} N R =0. Given a rome R and a path
p = (po,-..,pr), we will say the path p is simple regarding R if {po,prx} C R and
{p1,...,pk—1} (R = 0. Finally, given a rome R = {rq,...,rx} with r; # r; for
i # j the matrix Ag is defined by Ag = Ar(z) = (ai;); j=; = (ai;(2))F;=;, where
aij(z) =32, w(p)z~!P) and the sum is over all the simple paths that originate in
r; and end at r;.

2. THE MAIN RESULT

The following proposition has an important role in proving the main result of
this article, because we use it to compute the characteristic polynomial for a given
matrix M.

Proposition 2.1. Given a matriz M = (m;j)nxn and a rome R = {1, , I, ,...,
I} (where r; #r; if i # j) over M, then

par(x) = det(M — zl,) = (—1)"*z" det(Ag(z) — I1).
For the proof see []].

Using this result and Perron’s definition [1.10} we prove in the present paper the
following theorem.

Rev. Un. Mat. Argentina, Vol. 58, No. 1 (2017)



PROOF OF CONTINUITY OF TOPOLOGICAL ENTROPY AT 6 = 1001 167

Theorem 2.2. Let hiop be the topological entropy and o the shift map. Then
hiop(8) = H(0(0),0) = hiop(o|a,) is continuous at 6 = 1001, where

In this paper we follow the line of research started in [4].

3. PROOF OF THE MAIN RESULT

To prove the main result we will prove that the map A is continuous from the
right and from the left at the value 8 = 1001.

Lemma 3.1. hop, is continuous from the right at 6 = 1001.

Proof. In the MTW we have 1001 < 1000, so first we will prove hiop(1001) =
htop(1000). To do that we will compute the topological entropy for both periodic
orbits.

In order to do that we can use the following methodology: Given a max-
imal periodical orbit § € ¥, of period n, we have its maximal invariant set
Ao ="y "([0(6),0]) (which is a finite sub shift; see Figure. Initially we pro-
duce a partition of the interval [o(6), 6] by using the induced order of the iterations
a'(0), i €{0,1,2,...,n}.

F1cURE 3. Graph of Ay.

In the interior of this partition we can find the sequences 00 and 16 (= c"~1(9)).
We include both values as part of the partition (one of these two values is part
of the orbit of #) and we compute the associated A-graph. With this we have
associated the incidence matrix M = (M;;)nxn. Finally, we choose a rome to
compute the polynomial matrix Ar(z) and we calculate the maximal real root of
the characteristic polynomial.
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168 A. JABLONSKI AND R. LABARCA

The topological entropy at 6 = 1001:

First, we apply the shift map to the periodic orbit:

0: 6 =1001 (3.1)
1: 0(6) = 0011 (3.2)
2: 02(6) = 0110 (3.3)
3:0%(0) = 1100 (3.4)

From and we have 0 > o3(0); and imply o2(6) > o(0);
finally, 03(6) > o2(0), then we have 6 > o3(0) > 02(0) > o (0).

Defining 00 = 01001 and 16 = 11001 we have 16 = 11001 = 1100110011001 ... =
1100 = o3(0); also, 00 > o2(). Expanding the inequality: 6 > 16 = o3(0) >
00 > 02(0) > o(6). Figure || shows the relationship between the iterations of the
periodical orbit and the associated A-graph. Its incidence matrix is

1 11
0 0 1
1 00

7/ ’
ON )

I, :
/ o) :
| a(0) :
3 6@ o(8) 08 16 8
(a) A-graph associated (b) Graph of the shift map associ-
to 1001 ated to 1001

FIGURE 4. Topological entropy at 6 = 1001.

We consider a rome with a unique element, I, so the closed paths areﬂ 1—1,
1—2—=3—1land1— 3 —1,sothe Ag(r) matrix is given by 271 + 272 + 273.
Applying Proposition we have:

(1" la’ det(Ar(x) ~D) = 2@ +22 + 270 1) =1+ z +2” — 2.

Finally, we have p(1001)(z) = 1+z + 22 — 2, whose largest real root is 1.8392867.
We conclude that hiop(1001) & log(1.8392867).

IFrom now on, the vector (z,y, z,u,v,w) corresponds to ¢ =y — z = u — v — w.
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PROOF OF CONTINUITY OF TOPOLOGICAL ENTROPY AT 6 = 1001 169

The topological entropy at ¢ = 1000:

For the iterations of the sequence 1000 we have:

0: 0 = 1000 (3.5)
1: o(0) = 0001 (3.6)
2: 0%(h) = 0010 (3.7)
3:03(#) = 0100 (3.8)

Defining 00 = 01000 and 16 = 11000 we have 060 = 01000 = 0100010001000. .. =
0100 = 03(f), also 00 > o?(#). Expanding the inequalities: § > 10 > 00 = o3(6) >
2(0) > o(0). The graph associated to the shift map associated to 1000 is the same
as the previous one. This implies that we obtain the same value for the topological
entropy.

Hence, we have hiop(1001) = hyop(1000), so for any subsequence 7, C ¥y such
that 1001 < 7, < 1000 we have hop(1001) < hiop(1n) < hiop(1000). Applying the
limit over n we conclude:

lm Aiop (1) = htop(L001) = hyop(1000). O

Remark 3.2. To complete the proof of Proposition [2.2] we have to prove the conti-
nuity of topological entropy at 1001 from the left. This is —essentially— the main
difficulty of this paper.

Lemma 3.3. hiop, is continuous from the left at 1001.

To prove this lemma we will use a subsequence #,, that converges from the left
to 1001, then we calculate hiop for 6, with n = 1,2,3,4,5, to find a pattern on
the subsequence of the roots of the characteristic polynomials. Finally, we will
show that for any sequence between a subsequence 0y,(,,) and 0,11 its topological
entropy converges to the topological entropy of 1001. However, this procedure is
not direct and we have to prove it by induction.

3.1. Induction procedure.

3.1.1. Step 1. Deduction of the general procedure. For #; = 10011 we can order
its iterations like 0 > 3 > 4 = 10y > 0607 > 2 > 1. This allows us to define the
following intervals:

.[1 = [191 = 0'4(91)70'3(91)], .[2 = [03(91),01},

I3 = [U(01)702(01)]a I4 = [0’3(01),001].
By ordering them we get Figure
L, I I | I, |
o(0) o’(®) 08 o(B)=18 o%®8) 9

FIGURE 5. Intervals associated to 6.
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170 A. JABLONSKI AND R. LABARCA

Also, we can check that 1 € I; and obtain the A-graph of §; by the associated
graph of oy, (Figure [6)).

_—
(==

NS

3

(a) A-graph associated to 61 (b) shift map associated to 61

FIGURE 6. Representation of the dynamics associated to 6.

The restriction oy, has the following dynamics: I o-cover I; and Is; I o-cover
I3 and I4; I3 o-cover Iy and I; and Iy o-cover Iy (Figure (7).

L L L
I1 < I, < 13 < I4 - Iz
L I, L

FIGURE 7. Representation of the o-covering associated to 6.

We summarize the loops and paths associated to the rome R = {1,4}:
all: Il — Il : (1, 1) and (1,2,3, 1),
arg:h = Iy :(1,2,4) and (1,2,3,4),
aqq . I4 — Il : (4,2,37 1),
:(

aqq 14 — I4 4, 2,4) and (4, 2,3,4)

Finally, the transition matrix Agr(z) is
2l 423 =243
x~3 x4z
Then
pi(z) = (=1)* 2zt det(Ag(z) — ) = —2p(1001)(x) + 1,
whose maximal real root is A = 1.7220838. So we have that h¢op, ~ log(1.7220838).
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PROOF OF CONTINUITY OF TOPOLOGICAL ENTROPY AT 6 = 1001 171

For 63 = (1001)21 = 100110011 we can order its iterations like 0 > 4 > 7 >
3>8=1605 > 00, > 6 > 2 > 5> 1. This order allows us to define the following
intervals:

I =[0%(02),07(62)], o =[07(6a),5%(02)], I3 = [0°(62),0%(62)],
Iy = [0°(62), 005], Is = [0%(62), 62], Is = [0(62),5°(62)],
I; = [0%(02),05(02)], Iy = [105 = 08(02), 0%(02)].

By ordering them we get Figure

L, L L
—t—— ‘
o(@) o%0) o%B) o%0) Oe G"’(G) 16 o°(6) o’(0) o*(0) 0

FIGURE 8. Intervals associated to 0.

Also, we can check that 1 € I; and obtain the A-graph of oy, (FigureE[).

(a) A-graph associated to 62 (b) shift map associated to 02

FIGURE 9. Representation of the dynamics associated to 65.

The restriction olg, has the following dynamics: I; o-cover I;, Iy and Ig; Is
o-cover I3, Iy and Iy; I3 o-cover I4 and Ig; I4 o-cover I and I5; I o-cover Ig; Ig
o-cover Ir; Iy o-cover Iy; and Ig o-cover I5 (Figure [10).

From this representation we can obtain the loops and paths of the rome R =
{1,4}:

aii: ( ) (17 2,7, 1); (17 8,9,6,7, 1); (L 2,3,8,5,6,7, 1)7

a14: (1,2,4) and (1,2,3,4),

Qaq1: (4 2 7 1) (43 53 6, 77 1)7 (43 27 37 87 53 65 77 1)7
(4,

a44: (4,2,4) and (4,2, 3,4).

Rev. Un. Mat. Argentina, Vol. 58, No. 1 (2017)



172 A. JABLONSKI AND R. LABARCA

Il 13 I4 Iz
L <Iz L <I4 L< L<
I, I, I, I

Is _’Ia_’L_’L ’ IB_’IS

FIGURE 10. Representation of the o-covering associated to 6s.

Finally, the transition matrix Ag(x) is:

el 3447 24273
x84+t 427 x 243"

Then,
p2(z) = (=1)8 228 det(Ag(z) — 1) = z'pi(z) — (2 + 2% + 2 — 1).

For the next steps (3, 4 and 5) we just show the main stage of each iteration.

Intervals associated to 6;, i = 3,4,5 (Figures [11H13):

S A PR N SO NN s e e S S
o(8) o°(8) 0’(6) o¥(8) 0(8) 0"(8) 08 18 (8) 0(6) ¢'(B) o%(6) 0'(®) B

FIGURE 11. Intervals associated to 03.

| 16 | IlO | 114 | 13 | I7 | Ill | IlS | I4 IIG | 18 | IIZ | Il | IZ | 113 | 19 | IS |
| T 1 Jj ) 1 Jj T w T 1 1 ) 1 ) ) 1
6(0) 6%(8) o°(8) 6%(6) 6%(8) o°(B) 6%(B) 6(8) 00 16 %(8) &7(8)c'(8) 6¥(8) 6'%(6) 0*(®) o'(8) o

FIGURE 12. Intervals associated to 0,.

4 8
L | | | | | |

| | | | | w | | | | 1 |
o(8) 00 0(6) 6%(8) 6(0) 07(8) 0*(0)3(0) 0(0)c*(8) 0B 16 o°(B) o7(B)0'() *(8) 6*(8) 0(0)(8) (D) '(6) B

FIGURE 13. Intervals associated to 05.
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Representation of the A-graphs and shift maps associated to 0;,i = 3,4,5

(Figures [14H16)):

(a) A-graph associated to 63

o

8

— e e =

—
iy
)

16 /
00
10 \

|1
— p—
Es

<

—
By

—
x

15 9 2 6 10 006 16_ 3 7 11 _ 8 4

16 IlU 13 I7 Ill 14 112 18 Il IZ I9 IS
(b) shift map associated to 63

FIGURE 14. Representation of the dynamics asssociated to 63.
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(a) A-graph associated to 64

0
4 15
0 / 3
" / Ly
15 I,
11 L,
; \ I,
; \ I,
10 116
00 / \ I
14 4
10 \ L
6 \ I11
2 \ L
13 113
9 14
5 IlO
1 Iﬁ
1 5 9 13 2 6 10 14 00 16 3 7 11 15 12 8 4 0

IG IIO 114- I3 I7 Ill IlS I4- I16 IB IlZ Il IZ I13 I9 IS

(b) shift map associated to 64

FIGURE 15. Representation of 6.
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\I 19

L
12% Illv 10

(a) A-graph associated to 65

4 IS
8 I"
12 113
16 L,
19 IZ
15 Il
11 IlE

, L,
3 18
10 L,

00
18 %4
14 9
10 }15
6 11
2 17
I
17 I
13 18
’ L
5 L,
1 Ié

",
1 5 9 13 17 2 6 10 14 18 086 18 3 7 11 15 19 16 12 8 4 @

Ib 110 114 IlB 13 I7 Ill 115 119 14 IZO IS IlZ 115 Il IZ 117 113 Ig IS
(b) shift map associated to 05

FIGURE 16. Representation of 05.
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o-coverings associated to 6;, i = 3,4,5 (Figures [L7TH19):

IlZ

IS _>16 _>I7 - IB_> I‘J _>110 _>111_>11 ‘ IIZ_>I

|

3 L L
Iz I" I3 < I4 <Is
I IlZ 19

7
Ill

5

FIGURE 17. o-covering associated to 3.

IS_.IG_'I7_'IB_.I9_.110_.I11_.112_.113_.114_'115_'11

Ile_'ls

|

3

I, L,

L& 13< L§
L, I, I,
I I

15 13

]
%3

FIGURE 18. o-covering associated to .

L
I
&1

~

3

IlZ
|

16

IZO

~

e
@

b P et
RS
.
o
— 51
N =
P—
£
P
-

R R S R ) (P e P e e e

el ) Pl ) P

115_‘ Is

FIGURE 19. o-covering associated to 6.
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Ag(x) matrices associated to 0;, i = 3,4,5:
For 05:

e e 344 T4 94 248
r 3+t TS p 1t 224 273)"

ps(x) = (=122 2 det(ARr(z) — 1) = a'pa(z) — (2 + 22+ 2 — 1).
For 64:

r e 34t T 9418y 15 -2 3
e i A oF e a?)

pa(z) = (1)1 2210 det (AR (z) — 1) = 2?ps(z) — (2 + 2% + 2 — 1).
For 05:

ZE71 +m73 +£L‘75 +£L‘77 +£L‘79 +x711 +x713 +x715 +x717 +m719 3?72 +(L’73
1573 +x74 +x77 +x78 _"_xfll +1,712 +m715 +z716 +m719 m72 +m73 ’

ps(z) = (1) 2220 det(Ag(z) — 1) = 2*ps () — (2 + 2% + 2 — 1).

3.1.2. Step 2. Generalization. Considering the previous constructions, we can as-
sume (inductively) the following order for § = ), = (1001)*1 and its iterations:
0>4>8>12>16>20> - >4(k—1)>4k—-1>4(k—-1)—1>4(k-2)—1>
e >23>19>15>11>7>3>4k=10;, > 00, >4k —-2>4(k—-1)—-2 >
4k-2)—2>-->22>18>14>10>6>2>4k—-3>4k—-1)—-3 >
4k—2)—3>--->21>17>13>9>5> 1.

This order of the iterations allows us to define the intervals

I = [0"5(0k), 0" (01)] I = [0 (0r), 0" "1 (01)]
I3 = [0""73(0k), 0% (01)] I = [0**72(0k), 00%]
Is = [0*(0k), 04] Is = [0(0k), 0°(01)]
I; = [0%(0k), 0" (6] Iy = [0°(0k), 07 (6r)]
Iy = [0°(0x), 0* (0] Lo = [0°(0k), 0" (0x)]
Iy = [0%(0k), 0 0(6})] Iio = [07(01), 0 1(6))
Lo = [0 7(0,), 0 3(8,)] L1 = [0**=5(0,), 0 ~2(8,)]

I4k = [19k = 0'4k_1(9k),0'3(9k)],

whose representation, over the Milnor—Thurston world, is given by Figure

I 110‘ I14| |L’k'3| I, | I, Inl IlSI II4k-1I L Lo T II4k—4I I, | 12|I4k-3‘ o L L

1 | | | | | |
U(GI) os(le) U’(é) 0‘3I(9) ---0‘*“‘3(9)02(:9) OS(IS) ol“l(e) G‘L(O) --I- 0“";(6) 00 160 03(I6) 07(I9)0“(IG) I c‘k‘(le)c"k'l‘(e) --‘- UE(IS) 0‘*(I9) é

FIGURE 20. Order of the intervals associated to 6.
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Also, we can check that 1 € I; and that the associated graph of olg, is as shown
in Figure 21} its diagram of o-covering is given by Figure

3]
* I
H r 5
[ N .
4k-12 /i ~N H
i S I
K-8 ] ~ 4k-7
4k-4 I4kr3
1
4k-1 1 Iz
7
k-5 L I1
4k-9 L \ I4k—4
11
7
3
10
00 =
4k-2
4k-6
10
6
2
4k-3
4k-7
5
| A 16
s o a A 10 -+ 4k-6 4k-2 00 16 11 -~ 4k-9 4k-5 ak-1 4k-4 4k-8 4k-12 -

16"' I4k-614k-213 I7 I11 I4k-5 I4k-114 I4k Is I1z"' I4k-814k-411 Iz I4k-3I4k-7'" Is

FIGURE 21. Shift map associated to 6.

I I, L
I, I, I, I,
L &L LES] | I, &L
L. ;
I4<k-1) Lk,s I‘“(r7
L. I, L.
| B ) o] ) e
L=1

FIGURE 22. Diagram of o-covering associated to 6.
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From that diagram we can deduce the loops and paths associated to the rome
R = {1,4}. With this we can obtain its associated Ag(z) matrix

ko fan(z) z7r4+a3
Ap(z) = <a21(x) 2430

where

an(@)=a '+ S+ + g @k=1)=3) 4 o —(A(k=1)=1) | o —(4k=3) 4 ,~(4k-1)

am(z) = 2%+ ot 4o gD | @h-)=D) = (h—d) 4 (k1)

Finally, for the characteristic polinomial associated to the matrix defined by the
A-graph, we have:
pr(z) = (=) 2% det (AR (z) — 1) = 2'pp_1 () — (B + 22 + 2 - 1).

3.1.3. Step 8. Proof for the case n = k+1. Now, let us take 01 = (1001)*+11. Tt
is not hard to see that 0 1 and its iterations satisfy: (07 (Ox11), 7 =0,1,2,...,4k+
4):0>4>8>12>16>--->4(k—-2)>4(k—1) >4k >4k +3 >4k -1 >
4k—-1)—1>-->19>15> 11> 7> 3 > 4k = 10311 > 00511 > 4k +2 >
k—-2>4k—-1)—2>--->22>18>14>10>6>2>4k+1>4k—-3 >
4(k—-1)—3>--->21>17>13>9> 5> 1. (A proof of this fact will be given
later in this section).
This order allows us to define the following intervals:

— [0 (Gh1), o3 (B )] o * 3 (0r41), 0% (Ors1)]

T O 41), 02 (Or41)]

[ = ),0
[o = [0 (Oh11), 001 41]
Is = [0*(Ok+1), Ox11] = [0(Ok+1),0°(Or41)]
= [0(Ok+1), 0% (Or11))] = [0 (Ok+1), 0" (Br11)]
[0°(O1+1), 0 (Or41)] 110 = [0°(Ok41), 0" (Bks1))]
Ligr1 = [0 (Oh11), 0" Oh1)] Lagg = [0 72 (Or11), 0 (O41)]

Ligrs = [0 72 (0r11), 02Ok 41)] Linga = [10k41 = 03 (0141), 0% (Or1a)],

whose representation, over the Milnor—Thurston world, is given by Figure

Is Iw Im 141«3 14k+1 Iz I7I 111 IISI |I4kr1 I4k+3| I4

Iu 14k4 I1 I I4k+1 o 19 IIs ‘

6(6) a°(8) 0°(8) 6'(8) -+ o"*(8)0"*'(8)0(8) 0*(B) 6"(8) 6¥'(6) ---6‘“’1(9)6‘4”(9)06 10 6*(‘9) 6’(!9) 6“&9) --IU (9)0A|‘(9)Uk(9) : 0‘1(9) U“I(e) é

FI1GURE 23. Order of the intervals associated to 0.

Also, we can check that 1 € I; and that the graph associated to olg,,, is as
shown in Figure its diagram of o-covering is given by Figure
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ak+2 \\ I4
4k-4 n I4k+3
. . \ I
: 7 \ -4k71
10 :
’ \ I
6 11
. | }
4k+1 3
k-3 I4k+2
A I4k72
s :
1 A I(
6
1 5 o 4k-4 4k+1 2 6 10 -+ 4k-2 4k+2 00 160 3 7 11 -+ 4k-5 4k-1 4k+3 4k 4k-4 4k-8

15 I4kr3l4k+1I3 I7 I11 I4k-ll4k+3l4 I4k+418 IIZ I4k-4 I4k I1 Iz I4k+1 I4k-3'"

F1cURE 24. Shift map associated to fp41.

s .
I4k
L, L, I,
Loy Y, L.,
LolL=L—- ol ol— =l o]

Lo [

F1GURE 25. Diagram of o-covering associated to 0j41.
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We can obtain the loops and paths associated to the rome R = {1,4} and their
associated Ap(z) matrix,

& (e (z) =24 g3
AR(x) = <a21($) 2430

where
an(z) = el a3 g (4R3) (k) (R | —(4k43)

asi(z) = o3 ot b p g WD @Rl k- (4k3)

Then, if we write

114 11 14
A= (o o) e (e e,
we can see that
aphy = apt + D 4 pm RS, 4t = @i,
afly = all U ot g g
Then,
praa(a) = (1)1 2D det(4f ) 1)
LAk s
ajft et -1
Lk a11 4+ g~ (4k+1) | —(4k+3) _ a’f4
alfl 4 g (kH3) 4 =tk ak, —1
gt [((afy = 1)+ SR g (R (0, — 1)

— (af, + g (D) 4 $74k)(a]1€4)]

e D [{(afy — 1)(afy — 1) — afyaly}

+ (054 _ 1)($_(4k+1) + .T_(4k+3)) _ a14k(x_(4k+3) + $_4k)].

Since a¥, = a¥, we have:
= 2t pi(z) + 2 gk o (@R _ g (kD) p— (k) gk gk
= ot pr(z) + ot g (4R+3) = (ktd) o —(4k+1)
x—(4k+3) _ gy (kH2) _ - (ak43))

() + 4k+4[ —(dk+4) _ o —(4k+3) _ . —(4k+2) _ z7(4k+1)]

pk(ac) +(1—z—2?—2%)
pr(2) = (2% + 2% o - 1).

|
S

’B

Therefore pgy1(x) = pe(z) — (2% + 22 + 2 —1).
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So, let us prove that iterations of the sequence 041 appear in the given order.
For that we consider:

1=0(0k11) = o(1(0011)*+1) = (0011)* 11

2 =0(1) = 0(0011...001100111) = ¢(0(0110)¥0111) = (0110)*01110
3=0(2) = 0(0(1100)%1110) = (1100)*11100
4=0(3) = o(1(1001)%1100) = (1001)*1(1001)

5=0(4) = 0(1(0011)%(1001)) = (0011)*(1001)

6 =0(5) = o(0(0110)%7101110011) = (0110)*~1011(1001)10

7= 0(6) = ¢(0(1100)*111(1001)100) = (1100)*~111(1001)100

8 = o(7) = o(1(1001)*~11(1001)100) = (1001)*~*1(1001)2

9 = ¢(8) = o(1(0011)*71(1001)?) = (0011)*~1(1001)21

10 = ¢(9) = o(0(0110)*72011(1001)1) = (0110)*~2011(1001)210
11 = 0(10) = ¢(0(1100)*7211(1001)?10) = (1100)*~211(1001)2100
12 = o(11) = ¢(1(1001)*721(1001)?100) = (1001)*~21(1001)?

13 = 0(12) = ¢(1(0011)*~2(1001)%) = (0011)*~2(1001)31

14 = 0(13) = ¢(0(0110)*73011(1001)31) = (0110)*3011(1001)>10
15 = 0(14) = ¢(0(1100)*7311(1001)310) = (1100)*~311(1001)>100
16 = 0(15) = ¢(1(1001)*31(1001)*100) = (1001)*~31(1001)*

So, 0 = (1001)*+11; 4 = (1001)¥1(1001); 8 = (1001)*~11(1001)?;
12 = (1001)*~21(1001)3; 16 = (1001)*=31(1001)*.

— 4j —4 = (1001)*=U=21(1001)", ;> 1.

On the other hand, 1 = (0011)*+11; 5 = (0011)*(1001)1; 9 = (0011)¥~*(1001)%1
13 = (0011)*=2(1001)%1

— 45 — 3 =(0011)F=0=2(1001)" 11, j>1.

Also, 2 = (0110)*01110; 6 = (0110)*~1011(1001)10; 10 = (0110)*~2011(1001)%10;
14 = (0110)*=3011(1001)310

— 45 — 2 = (0110)*~U~Y011(1001)’ 110, j > 1.

Finally, 3 = (1001)*11100; 7 = (1100)*~'11(1001)100; 11 = (1100)*~211(1001)2100;
15 = (1100)*~311(1001)3100

— 45 — 1 = (1100)*~U~Y11(1001)7 1100, j > 1.
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PROOF OF CONTINUITY OF TOPOLOGICAL ENTROPY AT 6 = 1001 183

Taking 7 = k we have

4k — 4 = (1001)?

4k — 3 = (0011)%(1001)F 11
4k — 2 = (0110)011(1001)*~110
4k —1 = (1100)11(1001)*~1100.

1001)%1(1001)*~1

Iterating the previous part by o, we get:
4(k +1) — 4 = (1001)1(1001)*
4(k +1) — 3 = (0011)(1001)*1
4(k +1) —2 = 011(1001)*10
4(k 4+ 1) — 1 = 11(1001)*100.

So, from the expressions of the iterations of ;1 = (1001)**11 we conclude that
0>4>8>12>16>--->4(k—1) >4k >4k+3>4k—1>4(k—1)—1>--- >

>19>15>11>7>3>4k=10, > 00, >4k +2>4k—2>4(k—1)—2 >

>22>18>14>10>6>2>4k+1>4k—-3>4(k—-1)—-3>--->21>
17 > 13 > 9 > 5 > 1. Which completes the inductive procedure and we have the
characteristic polynomials.

Let us now show the existence of the largest real root of the polynomials
p((1001)*1)(z), k = 1,2,3,...; later we will see that this sequence of roots is
increasing and tends to the largest root of the polynomial p(1001)(x).

Let T = 1.8393... be the largest real root of the polynomial p(1001)(x). We
have:

p((1001)1)(2) = —ap(1001)(x) +1 = p((1001)1)(F) =1 >0

and
p((1001)1)(1) = —p(1001)(1) + 1 = —(—14+1+1+1)+1 < 0.

So, 3 1 €]1, %] such that p((1001)1)(z1) = 0. We have 1 < 21 < 7.

From p((1001)1)(z) = —z(1+z+2? —2®) +1 = 2* — 23 — 2% — 2 + 1, we obtain
for > %, p((1001)1)(z) > p((1001)1)(Z) = 1, i.e., z1 is the largest real root of
p((1001)1) ().

For k = 2,

p((1001)%1)(z) = z*p((1001)1)(z) — (2® 4+ 2® + 2 — 1)
= 2*(—xp(1001)(x) + 1) — (2 + 2® + z — 1)
p((1001)21)(z) =74 (1) — (@ + 72 +7 - 1)
=-F(-F+T+T+1)+1.

0

Therefore,
p((1001)%1)(7) = 1 > 0.
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Also, p((1001)21)(x1) = — (23 + 2% + 21 — 1) < 0. Therefore 3 x5 € ]z1, 7| such
that p((1001)%1)(z2) = 0. We have 1 < 21 < x5 < T.
Now,

p((1001)21)(z) = a*(2? —2® —2? —2x +1) — (2 + 2% +2 - 1)
=2’ -2 - D4 -2 -z —-1)+1.
Therefore, if x > 7, p((1001)21)(z) > p((1001)%1)(T) = 1, i.e., x5 is the largest real

root of p((1001)21)(x).
For k = 3,

p((1001)%1)(z) = z*p((1001)%1)(z) — (z® + 22 + = — 1)
— p((1001)31)(@) =7' — (@ + 72 +7 — 1)
=-T(-T+T+T+1)+1=1.

0

Therefore, p((1001)31)(z) =1 > 0.

Also,

p((1001)°1)(z2) = —(23 + 23 4+ 22 — 1) < 0.

Then, 3 23 € |z2, 7] such that p((1001)%1)(z3) = 0. We have 1 < 21 < 79 < 73 < T.

Now,

p((1001)*1)(2) = 2*(z(2x* + ) (@® + 2 + 2 — 1) +1) — (@® + 2? + 2~ 1).

Therefore, if x > 7, p((1001)31)(x) > p((1001)31)(T) = 1, i.e., 3 is the largest real
root of p((1001)31)(x).

Let us now assume that 3z €Jzg_1,7[ such that p((1001)*1)(zx) = 0. Also,

that we have 1 < z1 < a9 <3< - <21 <7
For k + 1 we have

p((1001) 1) (z) = 2*p((1001)*1) () — (2® + 2® + 2 — 1)
p((100)* M ) @) =7t — (@ + 2 +7 - 1)
=z (-+T+T+1)+1 =1

0

Therefore p((1001)*+11)(z) =1 > 0.
Also,
p((1001)* 1) () = — (23 + 27 + 25 — 1) < 0.

Therefore 3 241 € ]z, Z[ such that p((1001)*+11)(241) = 0. We have 1 < x; <
Ty <3 < - <X < Thy1 <.

In the same way, if z > 7, p((1001)*+11)(z) > p((1001)*T11)(Z) = 1, i.e., Tp11
is the largest real root of p((1001)**11)(z).

With these arguments, we have shown that there is a sequence of maximal real
roots, monotone increasing and bounded above by .

Affirmation 1. lim zj, = 7.
k—oo
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Proof. We have:

p((1001)"11)(x)
=x4p(M)(a:) (P42 +az—1)
o2t ((1001) @) - @+t —-1)] - (@t —1)
—xp(M)(m) (23 + 2%+ 2 - 1)(1 + %)
= 2®[z*p((100)* 1) (z) — (2® + 2” + z — 1)] — (2® + 2° + = — 1)(1 + z*)
= 2"?p((1001)*21)(z) — (2® + 2° + & — 1)(1 + 2" + 2)

k—1
= z%p((1001)1)(z) — (* + 22 +x—1) )
1=0
k—1
=z (—zp(1001)(z) +1) — (23 + 22 + 2 — 1) Zx‘”
i=0

—J)4k+1 (1001 4k Z x4z+3 Z 434+2 Z x4z+1 + Z $4Z

k— k— k— k—1
Defining Zj(z) = 2** — Z hS Z a2 Z AT Z z*" we have
i=0 i= j= i=

Zi(z) =2 +2° + 2% + 2 — 1 = p((1001)1)(z)
Zy(x)=ab —a® —a" —a? —a® —x — 25+ 1424
=28 — 2" — 2% —2® + 2t + 2%+ 2 42— 1 =p((1001)%1)(z)
Zy(x)=a? —a® 2" —att —2? — b 2!~ —2® — 2% 142t 2B
_p12 10 0 08 T 6 05y 4 a3 2

= p((1001)1)(x).

Inductively, we may conclude that Zj(x) = p((1001)*1)(x). So,

p((1001)F11) ()
—2**+1p(1001)(x) + p((1001)*1)(x)
—a* 1 p(1001)(x) — 2** D p(1001) (2) + p((1001)" 1) (x)

—p(1001)(2) (z* 1 + w‘“k‘”“) +p((1001)" 1) ()

= —p(1001)(z) (z**+1 4 AR=DFL g AH) 4 p((1001)F771) ()
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= —ap(1001)(x) Y a* + p((1001)* 1) (x)
=0

k—1

— —ap(1001)(2) 3 2% + p((1001)1)(x)
=0
k—1

= —ap(1001)(x) Y & + —zp(1001)(z) + 1
=0

—ap(1001)( (Z 4 1) + 1.

As for x = xj41 we have p((1001)**11)(x441) = 0. Then

T+1p(1001) (zpa1) <Z x4l—|—l>

1
= 231p(1001) (2p41) =
(Z x4 1)
i=0
1
— 24p(1001)(T41) =
k+1 + 1
zk+171
xk_H -1

<= T+1p(1001)(zg41) = 2
aph Faly -

1 ackﬂ—l

— p(1001)(z4s1) = .
( (i) Thi1 Ty + Ty — 2

As xp41 > 1, letting k — oo we have (2% +2}, | —2) — oo, then p(1001)(zj41) —
0. However,

lim p(1001)(zg41) =0 <= lim zp41 = 7.

k— o0 k— o0

Then, we have shown that this sequence of maximal real roots converges to z. [

Finally we are in a position to show the continuity of the topological entropy at
0 = 1001.

4. CONTINUITY OF THE TOPOLOGICAL ENTROPY AT 6 = 1001

Let us see that
htop((1001)"1) = Inxy,.
Applying limits:
lim h4op((1001)"1) = lim Inz, = In(T) = hop(1001) = A( lim (1001)"1).
n—oo —_— n—o0 —_—

n—0o0

Proposition 4.1. The map hiop = hiop(0|s[0(6),6)) 5 continuous at 6 = 1001.
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Proof. We have hyop(1001) = hyp(1000), so for each 6 such that 1001 < 6 < 1000

we have
htop (71001) < htop(e) < htop(ilooo)'
Hence, hiop(0) = hiop(1001). Thus, for any sequence (()nen C X7 such that
Cnt1 < (¢ and 1i_>m Cn = 1001 we have hiop(¢n) = hop(1001) (as long as 1001 <
¢ < 1000).
On the other hand, if ({,)nen C X1 is a sequence such that ¢, < (41 and
lim (, = 1001, then for each n big enough, there exists k(n) such that

n— o0
(1001)FM1 < ¢, < (1001)kM+11
with lim k(n) = co. Then

n—oo
Tk(n) = htOP((lool)k(n)l) < htop(Gn) < ht0p((1001)k(n)+11) = Tk(n)+1-
As

lim ¢, = lim (1001)*™1 = 1001,
n—,oo —

n—oo

we conclude that lim hiop(¢n) = htop(1001).
n— 00

So, we have proved that hyp(6) is continuous at = 1001, as we announced in
our main result. O
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