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AN APPLICATION OF PAPPUS’ INVOLUTION THEOREM TO
CAYLEY–KLEIN PROJECTIVE MODELS

RUBÉN VIGARA

Abstract. Pappus’ Involution Theorem is useful for proving incidence rela-
tions in the hyperbolic and elliptic planes. This fact is exemplified with the
proof of a theorem about a family of 4-gons in the hyperbolic and elliptic
planes. This non-Euclidean theorem is also re-interpreted in multiple ways,
providing some other theorems for different figures in the hyperbolic plane.

1. Introduction

Involutions are a quite useful tool in theorem proving. Many geometric problems
admit easier or shorter proofs using involutions (non-geometric problems too, of
course—see [16] for an astonishing example!). In the projective context, the most
ancient result involving involutions is the following theorem, due to Pappus:

Theorem 1.1 (Pappus’ Involution Theorem). The three pairs of opposite sides of
a complete quadrangle meet any line not through a vertex in three reciprocal pairs
of points of a projective involution.

See [5, p. 49] for a proof. This is a partial version of Desargues’ Involution
Theorem (see [5, p. 81]; see also [7, pp. 292–293]). A complete quadrangle is the
figure in the projective plane that is produced by a set of four points (the vertices of
the complete quadrangle), no three of which are collinear, when all the lines joining
any two of them (the sides of the complete quadrangle, see Fig. 2) are drawn. Two
sides of the complete quadrangle are opposite if they don’t share a vertex, and in
this case they intersect in a diagonal point of the complete quadrangle. Throughout
the paper the word “quadrangle” is always used with this projective meaning, and
we identify a complete quadrangle with its set of vertices. With the notation of
Fig. 2, the six sides of the complete quadrangle Q = {A,B,C,D} intersect the
line r in the six points E,F,G,H, I, J . Pappus’ Involution Theorem implies that
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de la Investigación Cient́ıfica y Técnica de Excelencia (Subprograma Estatal de Generación de
Conocimiento, research projects MTM2013-45710-C2 and MTM2016-76868-C2-2-P).

143



144 RUBÉN VIGARA
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Figure 1. Elliptic construction (spherical view).

there is a unique projective involution τQ : r → r such that τQ(E) = F , τQ(G) = H
and τQ(I) = J . The involution τQ is the quadrangular involution induced by Q
in r.

During the author’s research [15], Pappus’ Involution Theorem was found as
an extremely powerful tool for proving incidence relations in the hyperbolic and
elliptic planes in the framework of Cayley–Klein models, and the first purpose of
this article is to exhibit an example of this fact. This is done in Section 3, where
a quadrangular involution is used to prove Theorem 1.2 below in a quite simple
manner. A 4-sided polygon in the Euclidean, elliptic or hyperbolic plane is called a
4-gon. A 4-gon is diametral1 if it has two right angles located at opposite vertices.

Theorem 1.2. Let ABCD be a diametral 4-gon in the hyperbolic or elliptic planes
with right angles at B and D. Let A∗, C∗ be the orthogonal projections of the points
A,C into the diagonal BD, respectively. A midpoint2 of the segment BD is also a
midpoint of the segment A∗C∗ (see Fig. 1).

1In the Euclidean case it is a cyclic 4-gon with a diagonal which is a diameter of the circumcycle.
2Note that we have written “a midpoint” instead of “the midpoint”. Euclidean or hyperbolic

segments have undoubtedly a unique midpoint (the midpoint). Since elliptic lines are closed, in
the elliptic case this concept is subtler. For convenience, we consider that an elliptic segment with
endpoints A and B has two midpoints: the two points collinear with A and B and equidistant
from A and B.
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This theorem also holds in the Euclidean plane and therefore it is a theorem of
Bolyai’s absolute geometry3. In the Euclidean context, it would be a reformulation
of [10, problem II.214].

Since projective geometry is a general theory that includes many others, such
as Euclidean, affine, hyperbolic and elliptic geometries, for example, it is well-
known that any projective theorem is a general version of many other theorems
in all those other settings. In the planar case, in the same way that a projective
theorem involving conics can be seen in the Euclidean plane as a set of different
theorems for the different conic sections, it can be seen also as a set of theorems
for different figures in the hyperbolic and elliptic planes. This idea was used by
Thurston [11, Ch. 2] for deducing, at one stroke, the trigonometry of many different
figures in the hyperbolic plane: the generalized triangles (see also [4]), which are
obtained by modifying the relative position of a projective triangle with respect
to the absolute conic of the model. Using Thurston’s trick, a unique projective
proof of a non-Euclidean theorem about triangles provides a bunch of different non-
Euclidean theorems, slightly different from the original one, which we call projective
variations of the original one. Another purpose of the paper is to illustrate this
remarkable property of Cayley–Klein models, that seems to be not very well known,
by exploring the projective variations of Theorem 1.2. This is done in Sec. 4, where
five such projective variations (Theorems 4.2 to 4.6) are presented.

Before that, in Sec. 2 the basic tools from projective geometry and Cayley–Klein
projective models to be used in the subsequent sections are introduced. We finish in
Sec. 5 with some questions that naturally arise from the previous theorems. In par-
ticular, we present an Euclidean higher-dimensional generalization of Theorem 1.2.
In all figures right angles are denoted with the symbol .

2. Cayley–Klein models

It is assumed that the reader is familiar with the basic concepts of real and com-
plex planar projective geometry: the projective plane and its fundamental subsets
(points, lines, pencils of lines, conics), and their projectivities. Nevertheless, we
give a brief review of some concepts and results needed for a better understand-
ing of Sections 3 and 4. For the rigurous definitions and proofs we refer to [5],
[14] or [8], for example. It is also assumed that the reader has some elementary
background in non-Euclidean planar geometry (see [6], [11], or the elementary and
delightful memoir [9] for example).

Although we work mostly with real elements, the real projective plane RP2 is
considered standardly embedded in the complex projective plane CP2.

If A,B are two different points in the projective plane, AB denotes the line
joining them. If a, b are two different lines, or a line and a conic, in the projective
plane, a · b is their intersection set.

3In fact, since Theorem 1.2 only involves the notions of “perpendicularity” and of “midpoint”,
it makes sense in a much more general framework like Bachmann’s theory of metric planes [2], or
even in a weaker axiom system than that for metric planes, as that of Hjelmslev groups [3], for
example. This was pointed out to the author by a referee.
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Figure 2. Quadrangles. Pappus’ Involution Theorem.

Figure 3. Midpoint and orthogonal bisector of a hyperbolic segment.

Let us review the construction of the projective models of the hyperbolic and
elliptic planes. We will not give a full construction of these models: we will just
show the projective interpretation of the basic geometric concepts that will be
needed later. Detailed constructions of the models can be found in [6, 8, 9], for
example.

For constructing the non-Euclidean planar models, a non-degenerate conic Φ∞
is fixed (the absolute conic) such that the polar of each real point with respect to
Φ∞ is a real line. An equivalent formulation of this property is to require, working
with homogeneous coordinates in CP2, that Φ∞ can be expressed by an equation
with real coefficients. Such a conic can be of two kinds: a real conic, if it has real
points; or an imaginary conic, if it has no real points (see [14, vol. II, p. 186]).
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When Φ∞ is a real conic, the interior points of Φ∞ constitute the hyperbolic
plane, and when Φ∞ is an imaginary conic the whole RP2 constitutes the elliptic
plane. We use the common term the non-Euclidean plane either for the hyper-
bolic plane or for the elliptic plane. Geodesics in these models are given by the
intersection with the non-Euclidean plane of real projective lines. If A,B are two
different points in the non-Euclidean plane, AB denotes a segment having A and
B as endpoints. Although in the hyperbolic case points on RP2 not interior to Φ∞
are not points of the hyperbolic plane, they are of geometric interest for the model
(see [11]). For instance, via the absolute polarity (the polarity with respect to Φ∞),
each point exterior to Φ∞ parametrizes a line of the hyperbolic plane (its polar
line). Therefore, we will talk about points or lines in a purely projective sense,
even if the referred elements are imaginary or, in the hyperbolic case, not interior
to Φ∞.

Let us denote by ρ the absolute polarity. Given a point P and a line p, ρ(P )
and ρ(p) are the polar of P and the pole of p with respect to Φ∞, respectively.

The polarity ρ induces a natural involution on any line p not tangent to Φ∞
(resp. on any pencil of lines passing through a point P not in Φ∞): the conjugacy
involution. This involution sends each point P ∈ p (resp. each line p through P ) to
its conjugate, which is defined as p · ρ(P ) (resp. the line Pρ(p)). The double points
of the conjugacy involution on p are the two points on p · Φ∞. Equivalently, the
double lines of the conjugacy involution on the pencil of lines through P are the
two lines tangent to Φ∞ through P . Two lines whose intersection point lies in the
non-Euclidean plane are perpendicular if they are conjugate with respect to Φ∞,
that is, if each one contains the pole of the other with respect to Φ∞. If A is a point
of the non-Euclidean plane, a is a line through A and A′ is the conjugate point of
A in a with respect to Φ∞, then ρ(A′) is the line perpendicular to a through A
and conversely.

Let A,B be two points on the non-Euclidean plane and take P = ρ(AB). Let
a and b be the lines joining P with A and B, respectively. Each of the lines a, b
has two (perhaps imaginary) different intersection points with Φ∞. Let {A1, A2}
and {B1, B2} be the intersection sets of a and b with Φ∞ respectively. Since the
complete quadrangle Q = {A1, A2, B1, B2} is inscribed in Φ∞ the points

E1 = A1B1 ·A2B2 and E2 = A1B2 ·A2B1

lie on AB. We say that E1 and E2 are the midpoints of the segment AB. Note
that this definition of the midpoints of a segment is projective. Moreover, we
could talk about midpoints of a projective segment with respect to a conic in a
strictly projective context, as it will be done in the statement of Theorem 4.14.
This definition can be interpreted in multiple ways (see [6]) in the non-Euclidean
context. For example:

4While the concept of “segment” in the Euclidean or non-Euclidean context is rather intuitive,
to define “segment” in a complex projective setting is not a trivial task. For our purposes, it suffices
to identify the projective segment AB with the set {A, B}.
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Figure 4. Hyperbolic construction (projective view).

• If Φ∞ is imaginary, the points A1, A2, B1, B2 are also imaginary and E1
and E2 are the two points of AB which are equidistant from A and B in
the elliptic plane.

• If Φ∞ is a real conic and A and B are interior to Φ∞, exactly one of the
two points E1, E2, say E1, is interior to Φ∞: it is the midpoint of the
hyperbolic segment AB (Fig. 3). The other point E2 is the pole of PE1,
which is the orthogonal bisector of AB.

• If Φ∞ is a real conic and AB is exterior to Φ∞, its pole P is interior to
Φ∞, and the lines PE1, PE2 are the two bisectors of the hyperbolic angle
âb.

By construction, since E1 and E2 are diagonal points of the complete quadran-
gle Q, the points A,B,E1, E2 form a harmonic set, which in terms of cross-ratios
is equivalent to (ABE1E2) = −1. Since Q is inscribed in Φ∞, the projective tri-
angle PE1E2 is self-polar with respect to Φ∞, and this implies that E1 and E2
are conjugate to each other in AB. Therefore, if U and V are the two intersec-
tion points of AB with Φ∞, then (UV E1E2) = −1. A useful characterization of
midpoints is the following (see [15]):

Lemma 2.1. If C,D are two points of AB such that

(ABCD) = (UV CD) = −1,

then {C,D} = {E1, E2}.

Proof. Let C,D be two points of AB such that (ABCD) = (UV CD) = −1. Take
the harmonic involutions τE1E2 and τCD, of AB with fixed points E1, E2 and C,D
respectively. The composition τE1E2 ◦τCD fixes the points U, V,A,B and so it must
be the identity on AB. This implies that {E1, E2} = {C,D}. �
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3. Proof of Theorem 1.2

Let ABCD be a 4-gon in the non-Euclidean plane such that the lines AB and
AD are conjugate to BC and DC respectively with respect to Φ∞ (Fig. 4). This
means that B1 = ρ(AB) and D1 = ρ(AD) belong to BC and DC, respectively.

Let a be the line BD, and take A1 = ρ(a). Thus, A∗ = a ·AA1 and C∗ = a ·CA1.
Let B0 and D0 be the intersection points with a of the lines A1B1 and A1D1,

respectively. The triangle A1B1D1 is the polar triangle of ABD. Hence, B0 and
D0 are the conjugate points of B and D in a with respect to Φ∞, respectively. The
point N = a ·B1D1 is the pole of AA1, and so it is the conjugate point of A∗ in a
with respect to Φ∞.

Let M1,M2 be the midpoints of BD, and consider the complete quadrangle
Q = {C,A1, B1, D1}.

Consider the following three involutions in a:
• the conjugacy involution ρa induced by ρ in a;
• the quadrangular involution τ induced by Q in a; and
• the harmonic involution σ in a with respect to M1 and M2.

The quadrangular involution τ sends B,D and C∗ into D0, B0 and N , respec-
tively. This implies that the composition ρaτ sends B,D,B0 and D0 into D,B,D0
and B0, respectively. Since

(B0D0M1M2) = (ρa(B)ρa(D)ρa(M2)ρa(M1)) = (BDM2M1) = −1, (3.1)
then σ(B0) = D0. The projectivities σ and ρaτ of a agree over at least three
different points of a, and so they coincide. Hence, σ(C∗) = ρaτ(C∗) = ρa(N) = A∗.
If the points A∗ and C∗ coincide, they coincide with a double point M1 or M2 of
σ and the result trivially holds. If A∗ 6= C∗, they are harmonic conjugates with
respect to M1 and M2, and therefore

(A∗C∗M1M2) = −1 .
If U and V are the intersection points of a with Φ∞,

(UVM1M2) = −1
since M1 and M2 are the midpoints of BD. By Lemma 2.1 the points M1 and M2
are the midpoints of A∗C∗. �

4. Projective variations of Theorem 1.2

Disguised in the proof of Theorem 1.2 there is, in fact, a proof of the following
projective theorem:

Theorem 4.1. Let Q be a complete quadrangle in the projective plane with vertices
A,B,C,D in general position with respect to Φ∞ (vertices and diagonal points not
in Φ∞, sides and diagonal lines5 not tangent to Φ∞) such that the lines AB and AD
are conjugate to BC and DC respectively with respect to Φ∞. Let A1 be the pole
of BD, and let A∗ and C∗ be the intersection points of AA1 and CA1, respectively,

5The diagonal lines of a complete quadrangle are the lines joining diagonal points.
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ρ(C)

Figure 5. 4-right pentagon I.

ρ(C)

ρ(A)

Figure 6. Right-angled hexagon I.
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Figure 7. 4-right pentagon II.

Figure 8. Right-angled hexagon II.
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with BD. The midpoints of A∗C∗ with respect to Φ∞ (as defined projectively in
Section 2) are also the midpoints of BD with respect to Φ∞. �

Assume that ABCD is a diametral 4-gon in the hyperbolic plane, as the one
depicted in Fig. 4. After changing the relative position of A,B,C,D with respect
to Φ∞ and applying Theorem 4.1 to the resulting figure, some projective variations
of Theorem 1.2 are obtained.

4.1. 4-right pentagon. If in the 4-gon ABCD it is assumed that the vertex C
lies outside the absolute conic while the rest of vertices remain inside Φ∞, the polar
of C appears in the figure as the common perpendicular to the lines CB and CD.
The hyperbolic polygon that appears is a 4-right pentagon: a hyperbolic pentagon
with, at least, four right angles at the vertices different from A (Fig. 5). In this
case, Theorem 4.1 implies:
Theorem 4.2. In the hyperbolic 4-right pentagon ABC1C2D, with non-right angle
at most at A, let A∗ be the orthogonal projection of A into BD, and let C∗ be the
intersection of BD with the common perpendicular to BD and C1C2. The midpoint
of BD is also the midpoint of A∗C∗. �

4.2. Right-angled hexagon. If in the previous figure the vertex A is pushed out
of Φ∞, while B and D remain interior to Φ∞, the polar of A becomes part of
the figure as the common perpendicular to the lines AB and AD. The figure that
appears is a right-angled hexagon: an hexagon in the hyperbolic plane with six
right angles as the one depicted in Fig. 6. With the notation of this figure, the
traslation of Theorem 4.1 for this configuration is:
Theorem 4.3. Let A1A2BC1C2D be a hyperbolic right-angled hexagon. Let A∗
be the intersection point with BD of the common perpendicular to BD and A1A2,
and let C∗ be the intersection point with BD of the common perpendicular to BD
and C1C2. The midpoint of BD is also the midpoint of A∗C∗. �

4.3. 4-right pentagon II. If, after pushing C out of Φ∞ for obtaining the 4-right
pentagon of Fig. 5, the points B and D are also pushed out of Φ∞ while the line
BD remains secant to Φ∞ and A remains interior to Φ∞, the polars of B and
D appear in the figure, drawing with the lines AB,AD and BD another 4-right
pentagon AB1B2D2D1 as the one of Fig. 7. Because the pole of AB is collinear
with B and C, the polars of B and C intersect at the point B1 lying in AB, which
is also the conjugate point of C1 = BC · ρ(C) in ρ(C) with respect to Φ∞. In the
same way, the polars of C and D intersect at the point D1 lying in AD which is
the conjugate point of C2 = CD · ρ(C) in ρ(C) with respect to Φ∞. On the other
hand, the polars of B and D intersect BD at B2 and D2, respectively, which are the
conjugate points of B,D respectively in BD with respect to Φ∞. The pentagon
AB1B2D2D1 is a 4-right pentagon with right angles at all its vertices with the
unique possible exception of A. By Lemma 2.1 and (3.1), the midpoints of BD are
also the midpoints of B2D2. With the notation of Fig. 7:
Theorem 4.4. Let AB1B2D2D1 be a hyperbolic 4-right pentagon with right angles
at the vertices B1, B2, D1, D2. Let A∗ be the orthogonal projection of A into B2D2,
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Figure 9. Hyperbolic quadrangle revisited.

and let C∗ be the intersection with B2D2 of the common perpendicular to B1D1
and B2D2. The midpoint of B2D2 is also the midpoint of A∗C∗. �

4.4. Right-angled hexagon II. If in the previous figure the point A is also
pushed out of the absolute conic, a theorem similar to Theorem 4.4 for right-angled
hexagons is obtained. With the notation of Fig. 8:

Theorem 4.5. Let A1A2B1B2D2D1 be a hyperbolic right-angled hexagon. Let a∗
and c∗ be the common perpendiculars to B2D2 and A1A2 and to B2D2 and B1D1,
respectively, and let A∗ and C∗ be the intersection points of a∗ and c∗, respectively,
with B2D2. The midpoint of A∗C∗ is the midpoint of B2D2. �

4.5. Quadrangle II. If in the configuration “4 right-pentagon II” (Fig. 7) the
points B,D are moved until the line BD is exterior to Φ∞, the point A1 becomes
interior to Φ∞ and AB1A1D1 is a hyperbolic diametral 4-gon with right angles at
the opposite vertices B1, D1. After a reinterpretation of the points A∗, C∗,M1,M2
for this figure, the following theorem is obtained (see Fig. 9):

Theorem 4.6. Let AB1A1D1 be a hyperbolic diametral 4-gon with right angles
at the opposite vertices B1, D1. Consider the line a∗ = AA1 and the line c∗
perpendicular to B1D1 through A1. The angle-bisectors of ̂B1A1D1 are also the
angle-bisectors of â∗c∗. �
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Figure 10. Three-dimensional version of Theorem 5.1.

The previous construction is valid also for the elliptic case, and it can be checked
that this theorem also holds in the Euclidean plane.

5. Higher-dimensional generalizations

It should be interesting to generalize the above techniques to higher dimensions:
to find higher-dimensional generalizations of Theorems 1.2, 4.2, 4.3, 4.4, 4.5 or 4.6,
perhaps in terms of generalized tetrahedra [12, 13].

A higher-dimensional generalization of the Euclidean version of Theorem 1.2 is:

Theorem 5.1. Let ∆ be an n-simplex in Euclidean n-dimensional space with ver-
tices A0, A1, . . . , An. Consider the opposite face ∆0 to A0 in ∆, and take the
hyperplane α0 containing ∆0. Let π1, π2, . . . , πn be the hyperplanes orthogonal to
A0A1, A0A2, . . . , A0An through A1, A2, . . . , An respectively, and let C be the inter-
section point of π1, π2, . . . , πn. If A∗ and C∗ are the orthogonal projections of A0
and C respectively into α0, then the midpoint of A∗C∗ is the circumcenter of ∆0.

Proof. We proceed by induction on n.
For n = 2, the result is given by the Euclidean version of Theorem 1.2. We omit

the proof.
Assume that the result is true for simplices in Euclidean (n − 1)-dimensional

space.
Let ∆ be the simplex in Euclidean n-dimensional space of the statement. Let

M be the midpoint of A∗C∗. For i = 1, 2, . . . , n let ∆′i be the opposite face of Ai in
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∆0, and let us denote π′i = πi ∩ α0. Since πi is orthogonal to A0Ai, the line A∗Ai

is orthogonal to π′i for i = 1, 2, . . . , n.
Let α1 be the hyperplane containing A0, A2, . . . , An, and consider α′1 = α0 ∩

α1. Since π1, π2, . . . , πn intersect in a point in Euclidean n-dimensional space, the
intersection of the (n− 2)-dimensional subspaces π′2 ∩ . . . ∩ π′n is a point C1 of the
(n − 1)-dimensional space α0. The line CC1 coincides with π2 ∩ . . . ∩ πn. Hence,
it is orthogonal to α1. This implies that C∗C1, the orthogonal projection of CC1
into α0, is orthogonal to α′1.

Let A1
∗ and C1

∗ be the orthogonal projections of A∗ and C∗, respectively, into α′1.
Note that C1

∗ is also the orthogonal projection of C1 into α′1. Applying the induction
hypothesis to the simplex in α0 with vertices A∗, A2, . . . , An, the midpoint of A1

∗C
1
∗

is the circumcenter of ∆′1. Therefore, the orthogonal projection of M into α′1 is
the circumcenter of ∆′1, and this implies that M is equidistant from A2, . . . , An.
Proceeding in the same way, we conclude thatM is equidistant from A1, A2, . . . , An,
and M is the circumcenter of ∆0. �

The three-dimensional version of this theorem is illustrated in Fig. 10. We have
checked that Theorem 5.1 is not valid in the 3-dimensional hyperbolic and elliptic
cases. However, there are geometric constructions that are equivalent in Euclidean
geometry but non-equivalent in the non-Euclidean case, and this implies that there
are Euclidean concepts that have multiple non-Euclidean interpretations. For in-
stance, it is well-known that the Euler line of a triangle, as it is usually defined in
the Euclidean plane, does not exist in general for non-Euclidean triangles. Never-
theless, alternative definitions of the circumcenter and the barycenter of a triangle,
different to the standard ones but equivalent to them in Euclidean geometry, can be
given in such a way that the Euler line does exist for any triangle in the hyperbolic
and elliptic planes [1, 15].

Question 5.2. Is there a different formulation of Theorem 5.1 which is valid also
in the non-Euclidean cases?

It must be noted that in Euclidean n-space the set of points A0, A1, . . . , An, C
of the statement of Theorem 5.1 is diametrically cyclic, in the sense that all these
points lie in an (n− 1)-dimensional sphere in Rn in which A0 and C are antipodal
points, while this is not the case in the non-Euclidean context.

On the other hand, we have also tried to find an n-dimensional generalization
of Theorem 4.6 without success.

Question 5.3. Is there an n-dimensional (Euclidean or non-Euclidean) version of
Theorem 4.6?

Acknowledgements

The author wants to express his gratitude to Professors M. Avendano and A.M.
Oller-Marcén for their valuable comments and suggestions during the writing of
this paper.

Rev. Un. Mat. Argentina, Vol. 59, No. 1 (2018)



156 RUBÉN VIGARA
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