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ON THE STRUCTURE OF SPLIT INVOLUTIVE HOM-LIE
COLOR ALGEBRAS

VALIOLLAH KHALILI

Abstract. In this paper we study the structure of arbitrary split involutive
regular Hom-Lie color algebras. By developing techniques of connections of
roots for this kind of algebras, we show that such a split involutive regular
Hom-Lie color algebra L is of the form L = U ⊕

∑
[α]∈Π/∼ I[α], with U a

subspace of the involutive abelian subalgebra H and any I[α], a well-described
involutive ideal of L, satisfying [I[α], I[β]] = 0 if [α] 6= [β]. Under certain
conditions, in the case of L being of maximal length, the simplicity of the
algebra is characterized and it is shown that L is the direct sum of the family
of its minimal involutive ideals, each one being a simple split involutive regular
Hom-Lie color algebra. Finally, an example will be provided to characterise
the inner structure of split involutive Hom-Lie color algebras.

1. Introduction

The notion of Lie color algebras was introduced as generalized Lie algebras in
1960 by Ree in [11]. In 1979, Scheunert investigated the Lie color algebras from a
purely mathematical point of view (see [14]). So far, many results for this kind of
algebras have been considered in the frameworks of enveloping algebras cohomology,
representations, and related problems (see [5, 10, 12, 13, 15, 16, 19]).

In 2012, Yuan [20] introduced the notion of a Hom-Lie color algebra which can be
considered as an extension of Hom-Lie superalgebras to Λ-graded algebras, where Λ
is any additive abelian group. The pioneering works in these subjects are [1, 2, 17].

As is well-known, the class of the split algebras is especially related to addi-
tion quantum numbers, graded contractions and deformations. For instance, for a
physical system, which displays a symmetry of Lie algebra L, it is interesting to
know in detail the structure of the split decomposition, because its roots can be
seen as certain eigenvalues which are the additive quantum numbers characterizing
the state of such a system. Determining the structure of split algebras will be-
come more and more meaningful in the area of research in mathematical physics.
Recently, in [6, 9, 8, 3, 21], the structure of arbitrary split Lie algebras, arbitrary
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split involutive Lie algebras, arbitrary split Lie color algebras, arbitrary split regu-
lar Hom-Lie algebras, and arbitrary split involutive regular Hom-Lie algebras have
been determined by the techniques of connection of roots.

Our goal in this work is to study the structure of arbitrary split involutive regular
Hom-Lie color algebras by the techniques of connection of roots. The results of
this article are based on some works in [3, 7, 21].

Throughout this paper, split involutive regular Hom-Lie color algebras L are
considered of arbitrary dimension and over an arbitrary base field F, with charac-
teristic zero. We also consider an additive abelian group Λ with identity zero.

To close this introduction, we briefly outline the contents of the paper. In
Section 2, we begin by recalling the necessary background on split involutive regular
Hom-Lie color algebras. Section 3 develops techniques of connections of roots for
split involutive regular Hom-Lie color algebras. We also show that such an arbitrary
split involutive regular Hom-Lie color algebra L with a root system Π is of the form
L = U ⊕

∑
[α]∈Π/∼ I[α], with U a subspace of the involutive abelian subalgebra H

and any I[α], a well-described involutive ideal of L, satisfying [I[α], I[β]] = 0 if
[α] 6= [β]. In Section 4, we show that under certain conditions, in the case of
L being of maximal length, the simplicity of the algebra is characterized and it
is shown that L is the direct sum of the family of its minimal involutive ideals,
each one being a simple split involutive regular Hom-Lie color algebra. Finally,
Section 5 provides a concrete example which characterizes the inner structure of
split involutive Hom-Lie color algebras.

2. Preliminaries

Let us begin with some definitions concerning graded algebraic structures. For
a detailed discussion of this subject, we refer the reader to the literature [14]. Let
Λ be any additive abelian group. A vector space V is said to be Λ-graded if there is
a family {Vλ}λ∈Λ of vector subspaces such that V =

⊕
λ∈Λ Vλ. An element v ∈ V

is said to be homogeneous of degree λ if v ∈ Vλ, λ ∈ Λ, and in this case, λ is called
the color of v. As usual, we denote by |v| the color of an element v ∈ V . Thus,
each homogeneous element v in V determines a unique group element |v| ∈ Λ by
v ∈ V|v|. Fortunately, we can almost always drop the symbol “| |”, since confusion
rarely occurs.

Let V =
⊕

λ∈Λ Vλ and W =
⊕

λ∈ΛWλ be two Λ-graded vector spaces. A linear
mapping f : V −→W is said to be homogeneous of degree θ ∈ Λ if

f(Vλ) ⊂Wλ+θ, ∀λ ∈ Λ.

If in addition f is homogeneous of degree zero, namely, f(Vλ) ⊂Wλ holds for any
λ ∈ Λ, then we call f even.

An algebra A is said to be Λ-graded if its underlying vector space is Λ-graded,
i.e., A =

⊕
λ∈ΛAλ, and if AλAµ ⊂ Aλ+µ, for λ, µ ∈ Λ. A subalgebra of A is said

to be graded if it is graded as a subspace of A.
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Let B be another Λ-graded algebra. A homomorphism ϕ : A −→ B of Λ-graded
algebras is a homomorphism of the algebra A into the algebra B, which is an even
mapping.
Definition 2.1 ([14]). Let Λ be an abelian group. A map ε : Λ×Λ −→ K \ {0} is
called a skew-symmetric bi-character on Λ if for all λ, µ, η ∈ Λ,

(i) ε(λ, µ)ε(µ, λ) = 1,
(ii) ε(λ+ µ, η) = ε(λ, η)ε(µ, η),
(iii) ε(λ, µ+ η) = ε(λ, µ)ε(λ, η).
The definition above implies that in particular, the following relations hold:

ε(λ, 0) = 1 = ε(0, λ), ε(λ, λ) = 1 (or −1), ∀λ ∈ Λ.
Throughout this paper, if x and y are homogeneous elements of a Λ-graded vector
space and |x| and |y|, which are in Λ, denote respectively their degrees, then for
convenience we write ε(x, y) instead of ε(|x|, |y|). It is worth mentioning that, unless
otherwise stated, in the sequel all the graded spaces are over the same abelian group
Λ and the bi-character is the same for all structures.
Definition 2.2 ([20]). A Hom-Lie color algebra is a tuple (L, [., .], φ, ε) consisting
of a Λ-graded vector space L, an even bilinear map [., .] : L × L −→ L (i.e.,
[Lλ,Lµ] ⊂ Lλ+µ), an even homomorphism φ : L −→ L, and a bicharacter ε such
that for homogeneous elements x, y, z ∈ L these conditions are satisfied:

(i) [x, y] = −ε(x, y)[y, x] (ε-skew-symmetry),
(ii)

∑
	x,y,z

ε(z, x)[φ(x), [y, z]] = 0 (ε-Hom-Jacobi identity),
where 	x,y,z denotes summation over the cyclic permutation on x, y, z.

In particular, if φ is a morphism of Lie algebras (i.e., φ ◦ [., .] = [., .] ◦ φ⊗2),
then we call (L, [., .], φ, ε) a multiplicative Hom-Lie color algebra. A Hom-Lie color
algebra is called regular if φ is an automorphism. We recover a color Lie algebra
when we have φ = id; color Lie algebra is a generalization of Lie algebra and Lie
superalgebra (if Λ = {0}, we have L = L0 is a Lie algebra and if Λ = Z2 and
ε(1̄, 1̄) = −1, then L is a Lie superalgebra). Clearly, Hom-Lie algebras and Lie
color algebras are examples of Hom-Lie color algebras.

Let L be a Hom-Lie color algebra over the base field F, and let − : F −→ F be
an involutive automorphism which we call a conjugation on F. An involution is a
conjugate-linear map ∗ : L −→ L; (x 7−→ x∗), such that ∗2 = ∗, [x, y]∗ = [y∗, x∗]
and (φ(x))∗ = φ(x∗), for all x, y ∈ L.
Definition 2.3. A regular Hom-Lie color algebra endowed with an involution is
said to be an involutive regular Hom-Lie color algebra. An involutive subset of an
involutive algebra is a subset globally invariant by the involution.

The usual regularity conditions will be understood in the involutive graded sense.
For instance, a subalgebra A of L is an involutive graded space A =

⊕
λ∈ΛA

λ of L
such that [A,A] ⊂ A and φ(A) = A. An involutive graded subspace I =

⊕
λ∈Λ I

λ

of L is called an ideal if [I,L] ⊂ I and φ(I) = I. We say that L is simple if
[L,L] 6= 0 and its only (involutive graded) ideals are (0) and L.
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From now on, (L, ∗) denotes an involutive regular Hom-Lie color algebra. We
introduce the concept of split involutive regular Hom-Lie color algebra in an analo-
gous way. We begin by considering a maximal involutive abelian graded subalgebra
H =

⊕
λ∈ΛHλ among the involutive abelian graded subalgebras of L. Note that

H is necessarily a maximal involutive abelian subalgebra of L (see [7, Lemma 2.4]).
Let us introduce the class of split algebras in the framework of involutive split reg-
ular Hom-Lie color algebras. We denote by H =

⊕
λ∈ΛHλ a maximal involutive

abelian subalgebra of (L, ∗). For a linear functional
α : (H0, ∗) −→ (F,−),

that is α(h∗) = α(h) for any h ∈ H0, we define the root space of L (with respect
to H) associated to α as the subspace

Lα := {xα ∈ L | [h0, xα] = α(h0)φ(xα) for all h0 ∈ H0}.
The elements α : (H0, ∗) −→ (F,−) satisfying Lα 6= {0} are called roots of L with
respect to H. We denote by Π := {α ∈ (H \ {0}, ∗) −→ (F,−) | Lα 6= {0}}.

Definition 2.4. We say that L is a split involutive regular Hom-Lie color algebra,
with respect to H, if

L = H⊕ (
⊕
α∈Π
Lα).

We also say that Π is the root system of L.

Observe that we have H∗ = H. For convenience, the mappings φ|H, φ|H−1 :
H −→ H will be denoted by φ and φ−1 respectively.

Lemma 2.5. Let L =
⊕

λ∈Λ Lλ be a split involutive regular Hom-Lie color algebra,
with root space decomposition L = H⊕ (

⊕
α∈Π Lα). Then

(1) L0 = H;
(2) for any α ∈ Π ∪ {0}, we have Lα =

⊕
λ∈Λ Lλα, where Lλα = Lλ ∩ Lα;

(3) Hλ = Lλ0 (in particular, H0 = L0
0);

(4) L0 is a split Hom-Lie algebra, with respect to H0 = L0
0, with root space

decomposition L0 = L0
0 ⊕ (

⊕
α∈Π L0

α).

Proof. It is a consequence of Lemma 2.6 in [7]. �

Note that if L is a split involutive regular Hom-Lie color algebra, with root space
decomposition L = H⊕(

⊕
α∈Π Lα), taking into account Lemma 2.5, we then write

L =
⊕
λ∈Λ

(Hλ ⊕ (
⊕
α∈Π
Lλα)) = L0

0 ⊕ (
⊕
λ∈Λ

⊕
α∈Π
Lλα).

We denote by Πλ the set {α ∈ Π | Lλα 6= 0}, for any λ ∈ Λ.

Lemma 2.6. For any α, β ∈ Π∪{0} and any λ ∈ Λ, the following assertions hold:
(1) φ(Lλα) ⊂ Lλαφ−1 and φ−1(Lλα) ⊂ Lλαφ;
(2) [Lλα,L

µ
β ] ⊂ Lλ+µ

(α+β)φ−1 ;
(3) (Lλα)∗ = L−λ−α.
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Proof. (1) By Lemma 2.5 and the fact that φ is an automorphism, we have

φ(Lλα) = φ(Lλ ∩ Lα)
= φ(Lα) ∩ (Lλ).

(2.1)

Now taking into account Lemma 2.7 in [7], from (2.1) we get

φ(Lλα) ⊂ Lαφ−1 ∩ Lλ = Lλαφ−1 .

In a similar way, one gets the second statement in (1).
(2) For any h0 ∈ H0, xλα ∈ Lλα, and yµβ ∈ L

µ
β , by denoting h′ = φ(h0), from the

ε-Hom-Jacobi identity we have

[h′, [xλα, y
µ
β ]] = [[h0, xλα], φ(yµβ )] + ε(h0, xλα)[φ(xλα), [h0, yµβ ]]

= [α(h0)φ(xλα), φ(yµβ )] + β(h0)[φ(xλα), φ(yµβ )]

= (α+ β)(h0)φ([xλα, y
µ
β ])

= (α+ β)(φ−1(h′)φ([xλα, y
µ
β ]).

Therefore, we get [xλα, y
µ
β ] ∈ Lλ+µ

(α+β)φ−1 and so [Lλα,L
µ
β ] ⊂ Lλ+µ

(α+β)φ−1 .
(3) From the fact that “∗” is an involutive automorphism and Lemma 2.3 in

[21], we conclude the result. �

Lemma 2.7. If α ∈ Π then αφ−m ∈ Π for any m ∈ Z.

Proof. It is a directly consequence of Lemma 2.8 in [7]. �

Definition 2.8. A root system Π of a split involutive regular Hom-Lie color algebra
L is called symmetric if Π = −Π.

3. Connections of roots and decompositions

In the following, L denotes a split involutive regular Hom-Lie color algebra with
a symmetric root system Π and L = H⊕ (

⊕
α∈Π Lα), the corresponding root space

decomposition. We begin by developing the techniques of connections of roots in
the same setting as [3].

Definition 3.1. Let α, β be two nonzero roots in Π. We say that α is connected
to β, denoted by α ∼ β, if there exists a family

{α1, α2, α3, . . . , αk} ⊂ Π,

satisfying the following conditions:

If k = 1:
(1) α1 ∈ {αφ−n : n ∈ N} ∩ {±βφ−m : m ∈ N}.

If k ≥ 2:
(1) α1 ∈ {αφ−n : n ∈ N}.
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(2) α1φ
−1 + α2φ

−1 ∈ Π,
α1φ

−2 + α2φ
−2 + α3φ

−1 ∈ Π,
α1φ

−3 + α2φ
−3 + α3φ

−2 + α4φ
−1 ∈ Π,

. . .
α−iφ + α2φ

−i + α3φ
−i+1 + · · ·+ αi+1φ

−1 ∈ Π,
. . .
α1φ

−k+2 + α2φ
−k+2 + α3φ

−k+3 + · · ·+ αiφ
−k+i + · · ·+ αk−1φ

−1 ∈ Π.
(3) α1φ

−k+1+α2φ
−k+1+α3φ

−k+2+· · ·+αiφ−k+i−1+· · ·+αkφ−1 ∈ {±βφ−m :
m ∈ N}.

The family {α1, α2, α3, . . . , αk} ⊂ Π is called a connection from α to β.

Note that the case k = 1 in Definition 3.1 is equivalent to the fact that β = εαφz

for some z ∈ Z and ε ∈ {±1}.

Lemma 3.2. The following assertions hold:
(1) For any α ∈ Π, we have that αφz1 is connected to αφz2 for every z1, z2 ∈ Z.

We also have that αφz1 is connected to −αφz2 in case −αφz2 ∈ Π.
(2) Let {α1, α2, α3, . . . , αk} be a connection from α to β. Suppose that α1 =

αφ−n, n ∈ N. Then for any r ∈ N such that r ≥ n, there exists a connection
{α̃1, α̃2, . . . , α̃k} from α to β such that α̃1 = αφ−r.

(3) Let {α1, α2, α3, . . . , αk} be a connection from α to β. Suppose that α1 =
εβφ−m,m ∈ N in case k = 1 or

α1φ
−k+1 + α2φ

−k+1 + α3φ
−k+2 + · · ·+ αkφ

−1 = εβφ−m,

in case k ≥ 2, with ε ∈ {±1}. Then for any r ∈ N such that r ≥ m, there
exists a connection {α̃1, α̃2, . . . , α̃k} from α to β such that α̃1 = εβφ−r in
case k = 1 or

α̃1φ
−k+1 + α̃2φ

−k+1 + α̃3φ
−k+2 + · · ·+ α̃kφ

−1 = εβφ−r,

in case k ≥ 2.

Proof. The assertions are proved in [3, Lemmas 2.2 and 2.3]. �

Proposition 3.3 ([3]). The relation ∼ in Π defined by

λ ∼ µ if and only if λ is connected to µ

is an equivalence relation.

Proof. The proof is virtually identical to the proof of [3, Proposition 2.4]. �

By the above proposition, we can consider the equivalence relation in Π by the
connection relation ∼ in Π. So we denote by

Π/∼ := {[α] : a ∈ Π},

where [α] denotes the set of nonzero roots of L which are connected to α. Clearly,
if β ∈ [α] then −β ∈ [α] and by Proposition 3.3, if β /∈ [α] then [α] ∩ [β] = ∅.

Rev. Un. Mat. Argentina, Vol. 60, No. 1 (2019)



STRUCTURE OF SPLIT INVOLUTIVE HOM-LIE COLOR ALGEBRAS 67

Our next goal in this section is to associate an adequate ideal I[α] of L to any
[α]. For a fixed α ∈ Π, we define

I0,[α] := spanF{[Lβ , (Lβ)∗] : β ∈ [α]} ⊂ H.
Then I0,[α] is the direct sum of∑
β∈[α], λ∈Λ

[Lλβ ,L−λ−β ] ⊂ L0
0 and

∑
β∈[α], λ,µ∈Λ, λ+µ6=0

[Lλβ ,L
µ
−β ] ⊂

⊕
λ∈Λ\{0}

Hλ. (3.1)

Next, we define
V[α] :=

⊕
β∈[α]

Lβ =
⊕
λ∈Λ

⊕
β∈[α]

Lλβ .

Finally, we denote by I[α] the direct sum of the two graded subspaces above, that
is,

I[α] := I0,[α] ⊕ V[α].

Proposition 3.4. For any α ∈ Π, the graded subspace I[α] is an ivolutive subalgebra
of L.

Proof. First, we are going to check that I[α] satisfies [I[α], I[α]] ⊂ I[α]. By the fact
that L0 = H and (3.1), it is clear that [I0,[α], I0,[α]] = 0, and we have

[I[α], I[α]] = [I0,[α] ⊕ V[α], I0,[α] ⊕ V[α]]
⊂ [I0,[α],V[α]] + [V[α], I0,[α]] + [V[α],V[α]].

(3.2)

Let us consider the first summand in (3.2). Note that by (3.1) and the fact that
L0 = H we have

[I0,[α],V[α]] = [I0,[α],
⊕
β∈[α]

Lβ ] ⊂
∑
β∈[α]

[L0,Lβ ].

Given β ∈ [α], by Lemma 2.6-(2), one gets [I0,[α],Lβ ] ⊂ Lβφ−1 , where βφ−1 ∈ [α].
Hence,

[I0,[α],V[α]] ⊂ V[α]. (3.3)
Similarly, we can also get

[V[α], I0,[α]] ⊂ V[α]. (3.4)
Consider now the third summand in (3.2). We have

[V[α],V[α]] ⊂
∑

β,γ∈[α]

[Lβ ,Lγ ].

Given β, γ ∈ [α] such that 0 6= [Lβ ,Lγ ]. If γ = −β, we have
[Lβ ,Lγ ] = [Lβ ,L−β ] = [Lβ , (Lβ)∗] ⊂ I0,[α].

Suppose that 0 6= β + γ. By Lemma 2.6-(2), one gets (β + γ)φ−1 ∈ Π. Therefore,
we get {β, γ} a connection from β to (β+ γ)φ−1. The equivalence relation ∼ gives
us (β + γ)φ−1 ∈ [α] and so [Lβ ,Lγ ] ⊂ L(β+γ)φ−1 ⊂ V[α]. Hence,

[V[α],V[α]] = [
⊕
β∈[α]

Lβ ,
⊕
β∈[α]

Lβ ] ⊂ I0,[α] ⊕ V[α]. (3.5)
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From (3.3), (3.4), and (3.5), we conclude that [I[α], I[α]] ⊂ I[α].
Second, we have to verify that φ(I[α]) = I[α]. But this is a direct consequence of

Lemma 2.6-(1) and Lemma 3.2-(1).
Third, we must show that I[α] = (I[α])∗. It is easy to see that I0,[α] = (I0,[α])∗

and V[α] = (V[α])∗, thanks to the given definition. Now taking into account I[α] =
I0,[α] ⊕ V[α], we get I[α] = (I[α])∗. �

Proposition 3.5. If [α] 6= [β], then [I[α], I[β]] = 0.

Proof. We have
[I[α], I[β]] = [I0,[α] ⊕ V[α], I0,[β] ⊕ V[β]]

⊂ [I0,[α],V[β]] + [V[α], I0,[β]] + [V[α],V[β]].
(3.6)

Let us consider the third summand in (3.6) and suppose there exist η ∈ [α] and
µ ∈ [β], such that 0 6= [Lη,Lµ]. By the condition [α] 6= [β], one gets η 6= −µ,
then (η + µ)φ−1 ∈ Π. Hence, {η, µ,−ηφ−1} is a connection from η to µ. By the
transitivity of ∼, we have α ∈ [β], which is a contradiction. Therefore, [Lη,Lµ] = 0
and so

[V[α],V[β]] = {0}. (3.7)
Consider now the first summand in (3.6) and suppose there exist η ∈ [α] and µ ∈ [β]
such that 0 6= [[Lη, (Lη)∗], φ(Lµ)]. Then

[[Lλη ,L−λ−η ], φ(Lµ)] 6= 0,

for some λ ∈ Λ. By the ε-Hom-Jacobi identity, we have either [Lλη , φ(Lµ)] 6= 0 or
[L−λ−η , φ(Lµ)] 6= 0, and so we get [V[α],V[β]] 6= 0 in any case, which is a contradiction
to (3.7). Hence,

[I0,[α],V[β]] = 0. (3.8)
In a similar way, we also have

[V[α], I0,[β]]] = 0. (3.9)
Finally, from (3.7), (3.8), and (3.9), we conclude that [I[α], I[β]] = 0. �

Theorem 3.6. The following assertions hold:
(1) For any α ∈ Π, the involutive Hom-Lie color subalgebra

I[α] = I0,[α] ⊕ V[α]

of L associated to [α] is an involutive ideal of L.
(2) If L is simple, then there exists a connection from α to β for any α, β ∈ Π

and H =
∑
α∈Π[Lα, (Lα)∗].

Proof. (1) Since [I[α],H] = [I[α],L0] ⊂ V[α], taking into account Proposition 3.4
and Proposition 3.5, we have

[I[α],L] = [I[α],H⊕ (
⊕
β∈[α]

Lβ)⊕ (
⊕
γ /∈[α]

Lγ)] ⊂ I[α].

As we also have by Proposition 3.4 that φ(I[α]) = I[α] and I[α] = (I[α])∗, we conclude
that I[α] is an involutive ideal of L.
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(2) The simplicity of L implies I[α] = L. From here, it is clear that [α] = Π and
H =

∑
α∈Π[Lα, (Lα)∗]. �

Theorem 3.7. For a vector space complement U of spanF{[Lα, (Lα)∗] : α ∈ Π} in
H, we have

L = U ⊕
∑

[α]∈Π/∼

I[α],

where any I[α] is one of the involutive ideals of L described in Theorem 3.6-(1),
satisfying [I[α], I[β]] = 0, whenever [α] 6= [β].

Proof. Each I[α] is well defined and by Theorem 3.6-(1), an involutive ideal of L.
It is clear that

L = H⊕ (
⊕
α∈Π
Lα) = U ⊕

∑
[α]∈Π/∼

I[α].

Finally, Proposition 3.5 gives us [I[α], I[β]] = {0}, if [α] 6= [β]. �

Let us denote by Z(L) the center of L, that is, Z(L) = {x ∈ L : [x,L] = 0}.

Definition 3.8. A Hom-Lie color algebra L is called perfect if Z(L) = 0 and
[L,L] = L.

Corollary 3.9. If L is a perfect split involutive regular Hom-Lie color algebra,
then L is the direct sum of the involutive ideals given in Theorem 3.6-(1),

L =
⊕

[α]∈Π/∼

I[α].

Proof. From [L,L] = L, it is clear that L =
∑

[α]∈Π/∼ I[α]. Now, by Z(L) = 0 and
Proposition 3.5, the direct character of the sum is clear. �

4. The simple components

In this section, we focus on the simplicity of split involutive regular Hom-Lie
color algebras L by centering our attention in those of maximal length.

Lemma 4.1. Let L = H⊕ (
⊕

α∈Π Lα) be a split involutive regular Hom-Lie color
algebra. If I is an ideal of L, then I = (I ∩H)⊕ (

⊕
α∈Π(I ∩ Lα)).

Proof. It is analogous to the proof of Lemma 4.1 in [7]. �

Taking into account the above lemma, observe that the grading of I together
with Lemma 2.5-(2) allow us to assert that

I =
⊕
λ∈Λ

Iλ =
⊕
λ∈Λ

((Iλ ∩Hλ)⊕ (
⊕
α∈ΠI

(Iλ ∩ Lλα))), (4.1)

where ΠI := {α ∈ Π : Iλ ∩ Lλα 6= 0, ∀λ ∈ Λ}.

Lemma 4.2. Let L be a centerless split involutive regular Hom-Lie color algebra.
If I is an ideal of L such that I ⊂ H, then I = (0).

Proof. See [7, Lemma 4.2]. �
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Let us introduce the concepts of root-multiplicativity and maximal length in the
framework of split involutive regular Hom-Lie color algebras, in a similar way to
the ones for split regular Hom-Lie color algebras in [7].

Definition 4.3. We say that a split involutive regular Hom-Lie color algebra L is
root-multiplicative if given α ∈ Πλ and β ∈ Πµ, with λ, µ ∈ Λ, such that α+β ∈ Π,
then [Lλα,L

µ
β ] 6= 0.

Definition 4.4. We say that a split involutive regular Hom-Lie color algebra L is
of maximal length if for any α ∈ Πλ with λ ∈ Λ, we have dimLkλkα = 1 for k ∈ {±1}.

Observe that for a split involutive regular Hom-Lie color algebra L of maximal
length, (4.1) allows us to assert that given any nonzero graded ideal I of L we can
write

I =
⊕
λ∈Λ

((Iλ ∩Hλ)⊕ (
⊕
α∈Πλ

I

Lλα)), (4.2)

where Πλ
I := {α ∈ Π : Iλ ∩ Lλα 6= 0} for each λ ∈ Λ.

Theorem 4.5. Let L be a perfect split involutive regular Hom-Lie color algebra of
maximal length and root-multiplicative. If L has all of its nonzero roots connected,
then any ideal I of L satisfies I? = I.

Proof. Consider any nonzero ideal I of L. By (4.2) and Lemma 4.2, we have
I =

⊕
λ∈Λ((Iλ ∩ Hλ) ⊕ (

⊕
α∈Πλ

I
Lλα)), with Πλ

I ⊂ Πλ for any λ ∈ Λ and some
Πλ
I 6= φ. Let us fix some α0 ∈ Πλ

I , so that

0 6= Lλα0
⊂ I.

The fact that φ(I) = I together with Lemma 2.6-(2) allows us to assert that

If α ∈ ΠI then {αφz : z ∈ Z} ⊂ ΠI ,

that is,
{Lλa0φz : z ∈ Z} ⊂ I. (4.3)

Taking into account the facts that [L,L] = L and Corollary 3.9 imply H =∑
β∈Π[Lβ , (Lβ)∗], the grading of L gives us

H0 =
∑

λ∈Λ, β∈Π

[Lλβ ,L−λ−β ]. (4.4)

From here, since α0 6= 0, there exist β ∈ Π and µ ∈ Λ such that α0([Lλβ ,L
−λ
−β ]) 6= 0.

If β ∈ {±α0φ
z : z ∈ Z} as 0 6= [Lλa0φz

,L−λ−a0φz
] ⊂ I, then

L−a0 = −α0([Lλa0φz ,L
−λ
−a0φz

])−1[[Lλa0φz ,L
−λ
−a0φz

],Lλ−α0
] ⊂ I.

So in this case, we obtain L−a0 = (La0)∗ ⊂ I.
Now, let us take any β ∈ Π such that β /∈ {±α0φ

z : z ∈ Z}. Since α0 and β are
connected, we have a connection {α1, α2, . . . , αk}, k ≥ 2, from α0 to β satisfying
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the following conditions:

α1 = α0φ
−n for some n ∈ N, and

α1φ
−1 + α2φ

−1 ∈ Π,
α1φ

−2 + α2φ
−2 + α3φ

−1 ∈ Π,
α1φ

−3 + α2φ
−3 + α3φ

−2 + α4φ
−1 ∈ Π,

. . .

α−iφ + α2φ
−i + α3φ

−i+1 + · · ·+ αi+1φ
−1 ∈ Π,

. . .

α1φ
−k+2 + α2φ

−k+2 + α3φ
−k+3 + · · ·+ αiφ

−k+i + · · ·+ αk−1φ
−1 ∈ Π,

α1φ
−k+1 + α2φ

−k+1 + α3φ
−k+2 + · · ·+ αiφ

−k+i−1 + · · ·+ αkφ
−1 = εβφ−m,

for some m ∈ N and ε ∈ {±1}.

Consider α1, α2 ∈ Π and α1 + α2 ∈ Π. Since α2 ∈ Π, there exists λ2 ∈ Λ such
that Lλ2

α2
6= 0. From here, the root-multiplicativity and maximal length of L allow

us to get
0 6= [Lλα1

,Lλ2
α2

] = Lλ+λ2
(α1+α2)φ−1 .

Since 0 6= Lλα1
⊂ I as consequence of (4.3), we have

0 6= Lλ+λ2
(α1+α2)φ−1 ⊂ I.

We can argue in a similar way from α1φ
−1 +α2φ

−1, α3 and (α1φ
−1 +α2φ

−1)φ−1 +
α3φ

−1 = α1φ
−2 + α2φ

−2 + α3φ
−1 ∈ Π to get

0 6= Lλ+λ2+λ3
(α1+α2)φ−2+α3φ−1 ⊂ I, for some λ3 ∈ Λ.

If we follow this process with the connection {α1, α2, . . . , αk}, then we obtain that

0 6= Lµ
α1φ−k+1+α2φ−k+1+α3φ−k+2+···+αiφ−k+i−1+···+αkφ−1 ⊂ I, for some µ ∈ Λ,

and so either 0 6= Lµβφ−m ⊂ I or 0 6= L−µ−βφ−m ⊂ I, for some µ ∈ Λ. That is,

0 6= Lεµεβφ−m ⊂ I, for some µ ∈ Λ, ε ∈ {±1} and any β ∈ Π.

By Lemma 2.6-(1), we can get

0 6= Lµεβ ⊂ I, for some µ ∈ Λ, ε ∈ {±1},

and for any β ∈ Π. Now taking into account (4.4), there exist α ∈ Π and η ∈ Λ
such that

[[Lηα,L
−η
−α], φ(Lµεβ)] 6= 0. (4.5)

By the ε-Hom-Jacobi identity either [Lηα, φ(Lµεβ)] 6= 0] or [L−η−α, φ(Lµεβ)] 6= 0 and so
0 6= Lη+µ

αφ−1+εβφ−2 or 0 6= L−η+µ
αφ−1+εβφ−2 . That is,

0 6= Lκη+µ
καφ−1+εβφ−2 ⊂ I, (4.6)
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for some κ ∈ {±1}. Since εβ ∈ Πµ, we have by the maximal length of L that
−εβ ∈ Π−µ. From (4.6), the root-multiplicativity and maximal length of L, we
obtain

0 6= [Lκη+µ
καφ−1+εβφ−2 ,L−µ−εβφ−2 ] = Lκηεβφ−1 ⊂ I. (4.7)

By Lemma 2.6-(1), we can get
Lκηκα ⊂ I. (4.8)

Taking into account (4.7) and (4.5) gives us

βφ−1([Lµα,L
−µ
−α]) 6= 0.

We have for any ν ∈ Λ such that Lνεβ 6= 0 necessarily

0 6= [Lµα,L
−µ
−α], φ(Lνεβ)] = Lνεβφ−1 ⊂ I,

and so Lεβφ−1 ⊂ I. That is, we can get Lεβ ⊂ I for any β ∈ Π and some ε ∈ {±1}.
In both cases we have

0 6= [Lλβ , (Lλβ)∗] ⊂ I.
Hence,

(Lα0)∗ = L−a0 = −α0([Lλβ ,L−λ−β ])−1[[Lλβ ,L−λ−β ],L−α0 ] ⊂ I.

Finally, the fact that H =
∑
β∈Π[Lβ , (Lβ)∗] implies that

H ⊂ I.

In particular, as H∗ = H, we get (Hλ ∩ Iλ)∗ = Hλ ∩ Iλ. From here and taking into
account (

⊕
α∈Π, λ∈Λ Lλα)∗ =

⊕
α∈Π, λ∈Λ Lλα, (4.2) gives us I = I∗. �

Theorem 4.6. Let L be a perfect split involutive regular Hom-Lie color algebra of
maximal length and root-multiplicative. Then L is simple if and only if it has all
its nonzero roots connected.

Proof. The first implication is Theorem 3.6-(2). To prove the converse, consider
I a nonzero ideal of L = H ⊕ (

⊕
α∈Π Lα). By (4.7), we have H ⊂ I. Given any

α ∈ Π, by the fact that α 6= 0 and the maximal length of L we have

[H0,Lαφ−1 ] = Lα ⊂ I,

and so
⊕

α∈Π Lα ⊂ I. From here and H ⊂ I, we conclude that I = L. Therefore,
L is simple. �

Theorem 4.7. Let L be a perfect split involutive regular Hom-Lie color algebra of
maximal length and root-multiplicative. Then

L =
⊕

[α]∈Π/∼

I[α],

where any I[α] is a minimal involutive ideal of L, and each one being a simple split
involutive regular Hom-Lie color algebra having all its nonzero roots connected.
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Proof. By Corollary 3.9, we can write L =
⊕

[α]∈Π/∼ I[α] as direct sum of the
family of ideals

I[α] = I0,[α] ⊕ V[α] =
∑
β∈[α]

[Lβ , (Lβ)∗]⊕ (
⊕
β∈[α]

Lβ),

where each I[α] is a split involutive regular Hom-Lie color algebra having as root
system ΠI[α] = [α]. In order to apply Theorem 4.6 to each I[α], we have to observe
that the root-multiplicativity of L and Lemma 3.5 show that ΠI[α] has all of its
elements ΠI[α]-connected, that is, connected through connections contained in ΠI[α] .
We also get that any of the I[α] is root-multiplicative as consequence of the root-
multiplicativity of L. Clearly, I[α] is of maximal length, and finally ZI[α](I[α]) = 0,
as consequence of Lemma 3.5, Theorem 4.6, and Z(L) = 0. We can therefore apply
Theorem 4.6 to any I[α] so as to conclude that I[α] is simple. It is clear that the
decomposition L =

⊕
[α]∈Π/∼ I[α] satisfies the assertions of the theorem. �

5. Example

In this section, an example is provided to clarify the results in Sections 3 and 4.
The process of the example is described in four steps as follows.

Step 1 (Lie color algebra pso(2m + 1, 2n)). Let Λ = Z2 × Z2 and the skew-
symmetric bi-character on Λ is defined as

ε : Λ× Λ −→ K \ {0}; ε(a, b) = (−1)a.b,

where a = (a1, a2) and b = (b1, b2) are elements of Z2 × Z2 such that

a+ b = (a1 + b1, a2 + b2), a.b = a1b1 + a2b2.

As a linear space, the Λ-graded Lie superalgebra L is a direct sum of four graded
components:

L =
⊕
λ∈Λ

Lλ = L(0,0) ⊕ L(0,1) ⊕ L(1,0) ⊕ L(1,1).

If L admits a ε-bracket denoted by [., .], satisfying the identities Λ-grading,
ε-symmetry and ε-Jacobi, then L is referred to as a Z2 × Z2-graded Lie super-
algebra (for more details see [13]). By the ε-symmetry identity, the ε-bracket for
homogeneous elements is either a commutator or an anticommutator which we will
denote by [., .] and {., .}, respectively. Note that L(0,0) is a Lie superalgebra and
that L(0,0) ⊕ L(0,1) and L(0,0) ⊕ L(1,0) are Lie-subsuperalgebras of the Z2 × Z2-
graded Lie superalgebra L. However, we will say that L is a Lie color algebra. Let
us now construct the Z2 × Z2-graded Lie color algebra L = pso(2m + 1, 2n). Its
matrix form is closely related to, but diffrent from, that of the orthosymplectic Lie
superalgebra osp(2m + 1, 2n). The Lie color algebra L = pso(2m + 1, 2n) can be
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defined as the set of all block matrices of the form
a b u x y

c at v z w

−vt −ut 0 r s

−wt −yt st d e

zt xt −rt f −dt

 , (5.1)

where a is any (m×n)-matrix, b and c are skew-symmetric (m×m)-matrices, u and
v are (m× 1)-matrices, x, y, z, w are m× n-matrices, r and s are (1× n)-matrices,
d is any (n × n)-matrix and finally, e and f are symmetric (n × n)-matrices. The
Z2 × Z2 grading for matrices of L of the form (5.1) is determined by

L :=


L(0,0) L(1,1) L(0,1)

L(1,1) 0 L(1,0)

L(0,1) L(1,0) L(0,0)

 . (5.2)

Denote by ei,j the matrix with zero everywhere except a 1 on position (i, j),
where the row and the column indices run from 1 to 2m + 2n + 1. Similar to the
osp(2m+ 1, 2n) algebra, we introduce the following elements:

c+j =
√

2(ej,2m+1 − e2m+1,m+j),

c−j =
√

2(e2m+1,j − em+j,2m+1),
for j = 1, 2, 3, . . . ,m, and

c+m+j =
√

2(e2m+1,2m+1+n+j + e2m+1+j,2m+1),

c−m+j =
√

2(e2m+1,2m+1+j − e2m+1+n+j,2m+1),
for j = 1, 2, 3, . . . , n.

In [13], Tolstoy proved that the Z2×Z2-graded Lie superalgebra L is defined by
2m+ 2n generators c±j (j = 1, 2, 3, . . . ,m) and c±k+m (k = 1, 2, 3, . . . , n), subject to
the relations

[[cµj , c
η
k], cνl ] = |ν − η|δklcµj − |ν − µ|δjlc

η
k,

[cµm+j , c
η
m+k, c

ν
m+l] = (ν − µ)δjlcηm+k + (ν − η)δklcµm+j ,

[cµj , c
η
m+k], cνm+l = −|ν − µ|δjlcηm+k, [cµj , c

η
m+k, c

ν
m+l] = (ν − η)δklcµj ,

where j, k ∈ {1, 2, 3, . . . ,m} and µ, η, ν ∈ {±} is isomorphic to pso(2m+ 1, 2n).
Step 2 (Involutive Hom-Lie color algebra osp(2m + 1, 2n)). By using Theo-

rem 3.14 in [20], we construct an involutive Hom-Lie color algebra from the Lie
color algebra pso(2m+1, 2n). For this purpose, we consider an even automorphism
φ : pso(2m+ 1, 2n) −→ pso(2m+ 1, 2n) such that φ2 = id. More precisely, φ is an
involution given by

φ(e2m+1+j,k) = −e2m+1+j,k, j = 1, 2, 3, . . . , 2n and k = 1, 2, 3, . . . , 2m,
φ = id, otherwise.
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Notice that the image of the algebra pso(2m+ 1, 2n) under the even linear map φ
is exactly L = osp(2m+ 1, 2n), which can be defined as a set of all block matrices
of the form (5.1) and the Z2 × Z2 grading of L for matrices of the form (5.2).
One can easily check that the tuple (L = osp(2m + 1, 2n), [., .]φ = φ ◦ [., .], φ, ε)
is an involutive Hom-Lie color algebra exactly related to the orthosymplectic Lie
superalgebra osp(2m+ 1, 2n).

Step 3 (Root space decomposition). As a basis in the maximal involutive abelian
subalgebra H of (L, φ), consider

hi = ei,i − em+i,m+i = 1
2[c−i , c

+
i ], i = 1, 2, 3, . . . ,m

hm+j,m+j = e2m+1+j,2m+1+j − e2m+1+n+j,2m+1+n+j

= 1
2[c−m+j,m+j , c

+
m+j,m+j ], j = 1, 2, 3, . . . , n,

which belong to L(0,0)
0 . They span the space H of diagonal matrices in L. That is,

H = spanK{hi, hm+j : i = 1, 2, 3, . . . ,m; j = 1, 2, 3, . . . , n}.

In terms of dual basis, let {εi, δj : i = 1, 2, 3, . . . ,m; j = 1, 2, 3, . . . , n} be the
dual basis of H∗ given by

εi(hk) = δik, εi(hm+j) = 0; δj(εi) = 0, δj(hi) = δji, and ε2m+2n+1 = 0.

Then, the root vectors and the corresponding root spaces are given by:

ej,k − em+k,m+j ∈ L(0,0)
εj−εk , j 6= k = 1, 2, 3, . . . ,m

ej,m+k − ek,m+j ∈ L(0,0)
εj+εk , j < k = 1, 2, 3, . . . ,m

em+j,k − em+k,j ∈ L(0,0)
−(εj+εk), j < k = 1, 2, 3, . . . ,m

ej,2m+1 − e2m+1,m+j ∈ L(1,1)
εj , j = 1, 2, 3, . . . ,m

em+j,2m+1 − e2m+1,j ∈ L(1,1)
−εj , j = 1, 2, 3, . . . ,m

e2m+1+j,2m+1+k − e2m+1+n+k,2m+1+njj ∈ L(0,1)
δj−δk , j 6= k = 1, 2, 3, . . . , n

e2m+1+j,2m+1+n+k + e2m+1+k,2m+1+n+j ∈ L(0,0)
δj+δk , j 6= k = 1, 2, 3, . . . , n

e2m+1+n+j,2m+1+k + e2m+1+n+k,2m+1+j ∈ L(0,0)
−(δj+δk), j 6= k = 1, 2, 3, . . . , n

ej,2m+1+k − e2m+1+n+k,m+j ∈ L(0,1)
εj−δk , j = 1, 2, . . . ,m; k = 1, 2, 3, . . . , n

em+j,2m+1+k − e2m+1+n+k,j ∈ L(0,1)
−(εj+δk), j = 1, 2, . . . ,m; k = 1, 2, 3, . . . , n

e2m+1,2m+1+k − e2m+1+n+k,2m+1 ∈ L(1,0)
−δk , k = 1, 2, 3, . . . , n

ej,2m+1+n+k + e2m+1+k,m+j ∈ L(0,1)
εj+δk , j = 1, 2, . . . ,m; k = 1, 2, 3, . . . , n

em+j,2m+1+n+k − e2m+1+k,j ∈ L(0,1)
−εj+δk , j = 1, 2, . . . ,m; k = 1, 2, 3, . . . , n

e2m+1,2m+1+n+k − e2m+1+k,2m+1 ∈ L(1,0)
δk

, k = 1, 2, 3, . . . , n.
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The set of roots is given by
Π = {±εj ,±(εj±εk),±δk,±(δj±δk),±(εj±δk) : j = 1, 2, . . . ,m; k = 1, 2, 3, . . . , n}.

(5.3)
So, we have a split involutive Hom-Lie color algebra with respect to H, given by

L = H⊕ (
⊕
λ∈Λ

⊕
α∈Π
Lλα).

Step 4 (Inner structure). By the root system of the split involutive Hom-Lie
color algebra (L = osp(2m+ 1, 2n), [., .]φ, φ, ε) which is presented in (5.3), we have
just the case k = 1 in Definition 3.1 which is equivalent to the fact that β = εαφz,
for some z ∈ Z and ε ∈ {±1}. Then, we have the equivalent classes on the set of
nonzero roots by

[α] = {α,−α}, ∀α ∈ Π.
Now, for any α ∈ Π we have

I0,[α] =
∑

β∈[α], λ∈Λ

[Lλβ ,L−λ−β ]⊕
∑

β∈[α], λ,µ∈Λ, λ+µ 6=0

[Lλβ ,L
µ
−β ]

⊕
∑
j,k

[L(0,0)
εj+εk ,L

(0,0)
−(εj+εk)]⊕

∑
j

[L(1,1)
εj ,L(1,1)

−εj ]

⊕
∑
j,k

[L(0,0)
δj+δk ,L

(0,0)
−(δj+δk)]⊕

∑
k

[L(1,0)
δk

,L(1,0)
−δk ]

⊕
∑
j,k

[L(0,1)
εj+δk ,L

(0,1)
−(εj+δk)]⊕

∑
j,k

[L(0,1)
εj−δk ,L

(0,1)
−(εj−δk)],

and
V[α] =

⊕
λ∈Λ

⊕
β∈[α]

Lλβ =
∑
j,k

L(0,0)
εj−εk ⊕

∑
j,k

L(0,1)
δj−δk .

Finally, we have I[α] the direct sum of the two graded subspaces above, that is,
I[α] = I0,[α] ⊕ V[α].

This is the same involutive ideal of the split involutive Hom-Lie color algebra
(L = osp(2m+ 1, 2n), [., .]φ, φ, ε) which credits to Theorem 3.6. Since L is perfect,
we have

L =
⊕

[α]∈Π/∼

I[α].
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