
REVISTA DE LA UNIÓN MATEMÁTICA ARGENTINA
Vol. 60, No. 1, 2019, Pages 79–98
Published online: March 20, 2019
https://doi.org/10.33044/revuma.v60n1a06

THE MULTIVARIATE BISECTION ALGORITHM

MANUEL LÓPEZ GALVÁN

Abstract. The aim of this paper is to study the bisection method in Rn. We
propose a multivariate bisection method supported by the Poincaré–Miranda
theorem in order to solve non-linear systems of equations. Given an initial
cube satisfying the hypothesis of the Poincaré–Miranda theorem, the algo-
rithm performs congruent refinements through its center by generating a root
approximation. Through preconditioning we will prove the local convergence
of this new root finder methodology and moreover we will perform a numerical
implementation for the two dimensional case.

1. Introduction

The problem of finding numerical approximations to the roots of a non-linear
system of equations was the subject of various studies, and different methodologies
have been proposed between optimization and Newton’s procedures. In [4] D. H.
Lehmer proposed a method for solving polynomial equations in the complex plane
testing increasingly smaller disks for the presence or absence of roots. In other
work, Herbert S. Wilf developed a global root finder of polynomials of one complex
variable inside any rectangular region using Sturm sequences [12].

The classical Bolzano’s theorem or Intermediate Value theorem ensures that a
continuous function that changes sign in an interval has a root, that is, if f : [a, b]→
R is continuous and f(a)f(b) < 0 then there exists c ∈ (a, b) such that f(c) = 0. In
the multidimensional case the generalization of this result is the known Poincaré–
Miranda theorem that ensures that if we have f1, . . . , fn n continuous functions of
the n variables x1, . . . , xn and the variables are subjected to vary between ai and
−ai, then if fi(x1, . . . , ai, . . . , xn)fi(x1, . . . ,−ai, . . . , xn) < 0 for all xi then there
exists c ∈ [−ai, ai]n such that f(c) = 0. This result was announced for the first
time by Poincaré in 1883 [8] and published in 1884 [9] with reference to a proof
using homotopy invariance of the index. The result obtained by Poincaré has come
to be known as the theorem of Miranda, who in 1940 showed that it is equivalent to
the Brouwer fixed point [5]. For different proofs of the Poincaré–Miranda theorem
in the n-dimensional case, see [3, 10].

2010 Mathematics Subject Classification. 65K05, 65H10, 65G30.
Key words and phrases. Root-finding algorithm; Non-linear preconditioning; Bisection

method; Interval analysis.

79

https://doi.org/10.33044/revuma.v60n1a06

80 MANUEL LÓPEZ GALVÁN

Theorem 1.1 (Poincaré–Miranda theorem). Let K be the cube

K = {x ∈ Rn : |xj − x̂j | ≤ ρ, j = 1(1)n}

where ρ ≥ 0 and F = (f1, f2, . . . , fn) : K → Rn a continuous map on K. Also, let

F+
i = {x ∈ K : xi = x̂i + ρ}, F−i = {x ∈ K : xi = x̂i − ρ}

be the pairs of parallel opposite faces of the cube K.
If for i = 1(1)n the i-th component fi of F has opposite sign or vanishes on the

corresponding opposite faces F+
i and F−i of the cube K, i.e.

fi(x)fi(y) ≤ 0, x ∈ F+
i , y ∈ F

−
i (1.1)

then the mapping F has at least one zero point r = (r1, r2, . . . , rn) in K.

Throughout this paper we will recall the opposite signs condition (1.1) as the
Poincaré–Miranda property P.M. The aim of this work is to develop a bisection
method that allows us to solve the non-linear system of equations F(X) = 0, X =
(x1, x2, . . . , xn), using the above Poincaré–Miranda theorem. The idea of the al-
gorithm will be similar to the classical one dimensional algorithm: we perform
refinements of the cube domain in order to check the sign conditions on the par-
allel faces. In one dimension it is clear that an initial sign change in the border
of an interval produces another sign change in a half partition of it, but in several
dimensions we cannot guarantee that the Poincaré–Miranda conditions maintain
after a refinement. Even if r is an exact solution, there may not be any such K
(for which (1.1) holds). However, J. B. Kioustelidis [2] has pointed out that, for x̂
close to a simple solution (where the Jacobian is nonsingular) of F(X), Miranda’s
theorem will be applicable to some equivalent system for suitable K. Therefore
in case of a fail in the sign conditions with the original system, we should try to
transform it. The idea will be to find an equivalent system through non-linear
preconditioning where the equations are better balanced in the sense that the new
system could be close to some hyperplane in order to improve the chances to check
the sign conditions in some member of the refinement.

We will denote the infinity norm by ‖x‖∞ = max{|x1|, . . . , |xn|}, the Euclidean
norm by ‖x‖2 =

√
x2

1 + · · ·+ x2
n, and the 1-norm by ‖x‖1 = |x1|+ · · ·+ |xn|. Given

a vector norm on Rn, the associated matrix norm for a matrix M ∈ Rn×n is defined
by

‖M‖p = max
‖x‖p=1

‖Mx‖p where p =∞, 2, or 1.

It is known that in the case of the ∞-matrix norm it can be expressed as a maxi-
mum sum of its rows, that is if M = (mij) then ‖M‖∞ = maxi=1,...,n

∑n
j=1 |mij |,

therefore it is easy to see that a sequence of matrices (Mk)k converge if and only
if their coordinates converge. Since the domains involved are multidimensional
cubes, the most proper norm to handle the distance will be the ∞-norm.

We will accept r as a root with a small tolerance level δ if ‖F(r)‖p ≤ δ.

Rev. Un. Mat. Argentina, Vol. 60, No. 1 (2019)

THE MULTIVARIATE BISECTION ALGORITHM 81

2. The algorithm and its description

This section gives a step-by-step description of our algorithm, whose core lies in
the classical bisection algorithm in one dimension.

Definition 2.1. A 2n-refinement of a cube K ⊂ Rn is a refinement into 2n con-
gruent cubes Q = {K1,K2, . . . ,K2n}.

K1 K2

K3 K4

Figure 1. 4-refinement in R2.

Figure 2. 8-refinement in R3.

We say that a 2n-refinement of Q satisfies the Poincaré–Miranda condition if
there exist Kl ∈ Q such that F : Kl → Rn satisfies the condition of Theorem 1.1.

Given a system F(X) = 0, the preconditioned system is G(X) = MF(X) = 0
for some matrix M such that the jacobian at X0 satisfies DG(X0) = Id. Since
DG(X0) = MDF(X0) it turns out that M = DF(X0)−1 and it is clear that the
preconditioned system is an equivalent system of F and both have the same roots.
After preconditioning, the equations in G(X) = 0 are close to a hyperplane having
equation xi = ki, where ki is some constant. This fact comes from the Taylor
expansion of G around X0, indeed if X is close to X0 then

G(X) ≈ G(X0) +DG(X0)(X −X0) = G(X0) +X −X0

and therefore it is clear that the equations are close to some hyperplane. Moreover
if X0 is nearly a zero point of F then

G(X) ≈ X −X0

and therefore it will behave like the components of X−X0, and take nearly opposite
values on the corresponding opposite faces of the cube.

Rev. Un. Mat. Argentina, Vol. 60, No. 1 (2019)

82 MANUEL LÓPEZ GALVÁN

2.1. Algorithm procedure. The multivariate bisection algorithm proceeds as
follows:

(1) We start choosing an initial guessK0 = [a10 , b10]×[a20 , b20]×· · ·×[an0 , bn0] ⊂
Rn satisfying the Poincaré–Miranda condition on F.

(2) We locate the center

c1 =
(
a10 + b10

2 ,
a20 + b20

2 , . . . ,
an0 + bn0

2

)
of K0.

(3) Generate a first 2n-refinement Q1 through c1.
(4) IfQ1 satisfies the Poincaré–Miranda condition, letK1 = [a11 , b11]×[a21 , b21]×
· · · × [an1 , bn1] be the quarter of Q1 where the conditions of Theorem 1.1
are satisfied, we chose

c2 =
(
a11 + b11

2 ,
a21 + b21

2 , . . . ,
an1 + bn1

2

)
the center of K1. If Q1 does not satisfy the Poincaré–Miranda condition
we preconditioning the system in c1 setting

G1(X) := DF(c1)−1F(X)

and then we check again the sign conditions with the preconditioned system
G1(X) in Q1.

This recursion is repeated while the Poincaré–Miranda condition are
satisfied, generating a sequence of equivalent systems

Gk(X) :=
{

Gk−1(X) if Gk−1 satisfies P.M. in Qk

DGk−1(ck)−1Gk−1(X) if Gk−1 does not satisfy P.M. in Qk

and a decreasing cube sequence Kk, such that

Kk+1 ⊂ Kk = [a1k
, b1k

]× · · · × [ank
, bnk

],

where the vertices satisfy

aj0 ≤ aj1 ≤ aj2 ≤ . . . ≤ ajk
≤ . . . ≤ bj0 (2.1)

bj0 ≥ bj1 ≥ bj2 ≥ . . . ≥ bjk
≥ . . . ≥ aj0 (2.2)

for each j = 1(1)n and where the length of the current interval [ajk
, bjk

] is
a half of the last iteration,

ajk
− bjk

=
ajk−1 − bjk−1

2 = . . . = aj0 − bj0

2k
. (2.3)

The root’s approximation after the k-th iteration will be

ck =
(
a1k

+ b1k

2 ,
a2k

+ b2k

2 , . . . ,
ank

+ bnk

2

)
,

and the method is stopped until the zero’s estimates gives sufficiently ac-
curacy or until the Poincaré–Miranda condition no longer holds.

Rev. Un. Mat. Argentina, Vol. 60, No. 1 (2019)

THE MULTIVARIATE BISECTION ALGORITHM 83

Remark 2.2. The kth-preconditioning system Gk(X) = (g1k
(X), . . . , gnk

(X)) can
be expressed as DF(ck)−1F(X), indeed, by induction suppose that it is true for
k − 1, then differencing and evaluating in ck we have

Gk(X) = DGk−1(ck)−1Gk−1(X)
= DGk−1(ck)−1DF(ck−1)−1F(X)
= DF(ck)−1DF(ck−1)DF(ck−1)−1F(X)
= DF(ck)−1F(X).

Since we cannot always ensure that a refinement of a given cube will satisfy
the Poincaré–Miranda condition, we cannot ensure the converge for any map that
only has a sign change in a given initial cube. So, in case of a fail in the sign
conditions in some step, we try to rebalance the system using preconditioning in
the center of the current box recursion. The preconditioning allows us to increase
the chances to be more often in the sign conditions and therefore keep going with
the quadrisection procedure in order to get a better root’s approximation. In
[2], J. B. Kioustelidis found sufficient conditions for the validity of the Poincaré–
Miranda Miranda condition for preconditioning system, there it was proved that
the sign conditions are always valid if the center of the cube K is close enough
to some root of F. So, if we start the multivariate bisection algorithm with an
initial guess close to some root, Kioustelidis’s theorem will guarantee the validity
of Poincaré–Miranda in each step of our method allowing the local convergence
of it.

In the next theorem we will prove the local convergence for the multivariate
bisection algorithm when we preconditioning at each step.

Theorem 2.3. Let F = (f1, . . . , fn) : K0 → Rn be a C2 map defined on the cube
K0 = {x ∈ Rn : ‖x − c1‖∞ ≤ ρ} = [a10 , b10]× · · · × [an0 , bn0] with ρ small enough
satisfying the Poincaré–Miranda sign condition; assume that DF(X) is invertible
for all X ∈ K0; furthermore, suppose that we perform the preconditioning at each
step. Then the multivariate bisection algorithm generates a sequence ck such that

(1) Starting at K0, ck
‖·‖−→ r with F(r) = 0.

(2) ‖ck − r‖2 ≤
∑n

j=1 bj0 − aj0

2k
.

Proof. (1) The Poincaré–Miranda sign conditions guarantee the existence of a root
inside K0 and given a refinement Q1 of K0 since ρ is small enough Item c of
Theorem 2 in [2] guarantees the validity of Poincaré–Miranda sign conditions for a
member of Q1. Performing successive refinements we will always find a member Kk

of the refinement Qk satisfying the sign conditions for the preconditioned system
Gk(X). For each j = 1(1)n the sequences (ajk

)k, (bjk
)k are monotone and bounded

and therefore they converge. From equation (2.3) we have for each j = 1(1)n,

lim
k→∞

ajk
= lim

k→∞
bjk

= rj (2.4)

Rev. Un. Mat. Argentina, Vol. 60, No. 1 (2019)

84 MANUEL LÓPEZ GALVÁN

and from the border conditions,

g1k
(a1k

, x2, . . . , xn)g1k
(b1k

, x2, . . . , xn) ≤ 0 ∀ x ∈ Kk

. . .

gjk
(x1, . . . , xj−1, ajk

, xj+1, . . . , xn)gjk
(x1, . . . , xj−1, bjk

, xj+1, . . . , xn) ≤ 0 ∀ x ∈ Kk

. . .

gnk
(x1, . . . , xn−1, ank

)gnk
(x1, . . . , xn−1, bnk

) ≤ 0 ∀ x ∈ Kk

(2.5)
Since the diameter of Kk tends to zero by Cantor’s intersection theorem the

intersection of the Kk contains exactly one point,

{p} =
∞⋂

n=0
Kk

and the equations (2.4) guarantee that p = (r1, . . . , rn). Then, we can evaluate
equations (2.5) in p = (r1, . . . , rn), getting

g1k
(a1k

, r2, . . . , rn)g1k
(b1k

, r2, . . . , rn) ≤ 0 ∀ k ∈ N
. . .

gnk
(r1, . . . , rn−1, ank

)gnk
(r1, . . . , rn−1, bnk

) ≤ 0 ∀ k ∈ N
(2.6)

It is clear that

ck =
(
a1k

+ b1k

2 ,
a2k

+ b2k

2 , . . . ,
ank

+ bnk

2

)
−→

k→∞
(r1, . . . , rn) = r;

then by the continuity of DF and the continuity of the inversion in the ∞-matrix
norm we have

DF(ck)−1 → DF(r)−1.

Let G(X) = DF(r)−1F (X) = (g1(X), . . . , gn(X)); since

‖DF(ck)−1F (X)−DF(r)−1F (X)‖∞ ≤ ‖DF(ck)−1 −DF(r)−1‖∞‖F (X)‖∞ → 0

for each X ∈ K0 then we get the punctual convergence for each coordinate function

gjk
(X) →

k→∞
gj(X).

From equations (2.4) we have

gjk
(r1, . . . , rj−1, ajk

, rj+1, . . . , rn)→ gj(r1, . . . , rj , . . . , rn) for each j = 1(1)n,

gjk
(r1, . . . , rj−1, bjk

, rj+1, . . . , rn)→ gj(r1, . . . , rj , . . . , rn) for each j = 1(1)n;

therefore taking limit in equations (2.6) we get

gj(r1, r2, . . . , rn)2 ≤ 0 ∀j = 1(1)n,

and finally it is clear that F(r1, . . . , rn) = 0.

Rev. Un. Mat. Argentina, Vol. 60, No. 1 (2019)

THE MULTIVARIATE BISECTION ALGORITHM 85

(2) Let (cjk
)k, j = 1(1)n, be the coordinates of the sequence (ck)k; we have the

following estimation:

|cjk
− rj | ≤

bj0 − aj0

2k
for each j = 1(1)n.

Indeed, since the sequences (ajk
) and (bjk

) are monotone and bounded by rj we
get for each j = 1(1)n,

cjk
− rj =

ajk−1

2 +
bjk−1

2 − rj ≤
ajk−1

2 +
bjk−1

2 − ajk−1

=
bjk−1

2 −
ajk−1

2 = bj0 − aj0

2k
.

On the other hand,

cjk
− rj =

ajk−1

2 +
bjk−1

2 − rj ≥
ajk−1

2 +
bjk−1

2 − bjk−1

= −
(bjk−1

2 −
ajk−1

2
)

= −
(bj0 − aj0

2k

)
.

Therefore,

‖ck − r‖2 =
√∑n

j=1(cjk
− rj)2 ≤

∑n
j=1 |cjk

− rj |

≤
∑n

j=1 bj0 − aj0

2k
. �

As in the classical one dimensional bisection algorithm, Item 2 of Theorem 2.3
gives a way to determine the number of iterations that the bisection method would
need to converge to a root to within a certain tolerance. The number of iterations
needed, k, to achieve the given tolerance δ is given by

k = log2

(∑n
j=1 bj0 − aj0

δ

)
=

log
(∑n

j=1 bj0 − aj0

)
− log δ

log 2 .

3. Implementation, performance, and testing

Throughout this section we will focus in the implementation and performance
of the bisection algorithm in R2. The bisection algorithm was developed in Mat-
lab in a set of functions running from a main function. In order to check the
P.M. conditions for the function F = (f1, f2) we need to compute the intervals
fi(F+

i), fi(F−i) (i = 1, 2) and one way to achieve this is by using interval analysis
(IA). IA was marked by the appearance of the book Interval Analysis by Ramon
E. Moore in 1966 [6] and it gives a fast way to find an enclosure for the range of
the functions. A disadvantage of IA is the well-known overestimation. If intervals
fi(F+

i), fi(F−i) are available then the P.M. follows from the condition
sup{y : y ∈ fi(F−i)} ≤ 0 ≤ inf{y : y ∈ fi(F+

i)} (3.1)

or

sup{y : y ∈ fi(F+
i)} ≤ 0 ≤ inf{y : y ∈ fi(F−i)}. (3.2)

Rev. Un. Mat. Argentina, Vol. 60, No. 1 (2019)

86 MANUEL LÓPEZ GALVÁN

Interval-valued extensions of real functions give a way to find an enclosure of the
range of a given real-valued function. Most generally, if we note by [R] the set of all
finite intervals, we say that [f] : [R]n → [R] is an interval extension of f : Rn → R
if

[f](X) ⊇ {f(x) : x ∈ X},

where X = (X1, . . . , Xn) represents a vector of intervals. There are different kinds
of interval functional extensions; if we have the formula of a real-valued function f
then the natural interval extension is achieved by replacing the real variable x with
an interval variable X and the real arithmetic operations with the corresponding
interval operations. Another useful interval extension is the mean value form. Let
m = m(X) be the center of the interval vector X and let [∂fi

∂xi
] be an interval

extension of ∂fi

∂xi
; by the mean value theorem we have

f(X) ⊆ [fmv](X) = f(m) +
n∑

i=1
[∂fi

∂xi
](X)(Xi −mi),

where [fmv](X) is the mean value extension of f .
Let [fi](F+

i), [fi](F−i) be an interval extension of fi(F+
i), fi(F−i); then it is clear

that if

sup{y : y ∈ [fi](F−i)} ≤ 0 ≤ inf{y : y ∈ [fi](F+
i)} (3.3)

or

sup{y : y ∈ [fi](F+
i)} ≤ 0 ≤ inf{y : y ∈ [fi](F−i)}, (3.4)

equations (3.1) and (3.2) are also true. So, in order to check the P.M. conditions
along the edges we will compute equations (3.3) and (3.4).

Various interval-based software packages for Matlab are available; we have
chosen the well-known INTLAB toolbox [11]. The toolbox has several interval
class constructor for intervals, affine arithmetic, gradients, hessians, slopes and
more. Ordinary interval arithmetic has sometimes problems with dependencies and
wrapping effect given large enclosures of the range and therefore overestimating the
sign behaviour. A way to fight with this is affine arithmetic. In affine arithmetic
an interval is stored as a midpoint X0 together with error terms E1, . . . , Ek and it
represents

X = X0 + E1U1 + E2U2 + · · ·+ EkUk,

where U1, . . . , Uk are parameters independently varying within [−1, 1]. In order
to avoid an overestimation in the range enclosure of fi(F−i) and fi(F+

i) we also
compute the interval extension using the affine arithmetic.

Rev. Un. Mat. Argentina, Vol. 60, No. 1 (2019)

THE MULTIVARIATE BISECTION ALGORITHM 87

Another way to improve the enclosure of the range and get sharper lower and
upper bounds is through subdivision or refinements. In this methodology we per-
form subdivision of the domain and then we take the union of interval extensions
over the elements of the subdivision; this procedure is called a refinement of [f]
over X. Let N be a positive integer; we define

Xi,j = [inf Xi + (j − 1)w(Xi)
N

, inf Xi + j
w(Xi)
N

], j = 1, . . . , N.

We have Xi = ∪N
j=1Xi,j and w(Xi,j) = w(Xi)

N
and furthermore,

X = ∪N
ji=1(X1,j1 , . . . , Xn,jn

) with w(X1,j1 , . . . , Xn,jn
) = w(X)

N
.

The interval quantity

[f]N (X) = ∪N
ji=1[f](X1,j1 , . . . , Xn,jn

)

is the refinement of [f] over X.
The algorithms that we have performed to compute equations (3.3) and (3.4)

combine all the above methodologies and were adapted from [7]. In the following
steps we summarize the routines that we have performed. The mean value exten-
sion was implemented using an approximation of [∂fi

∂xi
] through the central finite

difference of the natural interval extension of f , that is

[∂fi

∂xi
](X) ≈ [f](X + 0.0001)− [f](X − 0.0001)

2 0.0001 .

Algorithm 1 shows the routine for the mean value extension.

Algorithm 1: Function meanValue(), computes the mean value extension
Data: f, X
Result: returns F mv the value for the mean value extension form for f evaluated

over the interval X.
1 m ← mid(X)
2 fm ← f(m)
3 derf ← f(X + 0.0001)− f(X − 0.0001)/(2 ∗ 0.0001)
4 Fmv ← fm + derf ∗ (X−m)

The refinement procedure was implemented twice, one for the case of mean
value extension and other for the affine arithmetic implementation. Algorithm 2
computes the mean value extension over an uniform refinement of the interval X
with N subintervals and Algorithm 3 computes the natural extension using affine
arithmetic.

Rev. Un. Mat. Argentina, Vol. 60, No. 1 (2019)

88 MANUEL LÓPEZ GALVÁN

Algorithm 2: Function meanValueRefinement(), computes the refinement
procedure using mean value extension

Data: f, X, N
Result: returns Y the value for the mean value extension form for f evaluated over

a partition of X.
1 h ← (sup(X)− inf(X))/N

2 xi ← inf(X)
3 x1 ← xi
4 for i = 1 : N do
5 xip1 ← x1 + i*h
6 Xs(i) ← infsup(xi,xip1) // Interval class constructor for each subinterval.
7 xi ← xip1
8 Xs(N) ← infsup(inf(Xs(N)), sup(X))
9 Y ← meanValue(f ,Xs(1))

10 if N > 1 then
11 for i = 2 : N do
12 Y ← hull(Y,meanValue(f ,Xs(i)) // take the union of mean extension.

Algorithm 3: Function affineIntervalRefinement(), computes the refinement
procedure using affine natural extension

Data: f, X, N
Result: returns Y the value for the affine natural extension form for f evaluated

over a partition of X.
1 h ← (sup(X)− inf(X))/N

2 xi ← inf(X)
3 x1 ← xi
4 for i = 1 : N do
5 xip1 ← x1 + i*h
6 Xs(i) ← infsup(xi,xip1) // Interval class constructor for each subinterval.
7 xi ← xip1
8 Xs(N) ← infsup(inf(Xs(N)), sup(X))
9 Y ← f(affine(Xs(1)))

10 if N > 1 then
11 for i = 2 : N do
12 Y ← hull(Y,f(affine(Xs(i))) // take the union of natural affine extension.

Now we are ready to compute equations (3.3) and (3.4) using the above algo-
rithms. Let Kl = [a1l

, b1l
]× [a2l

, b2l
] = I1l

× I2l
be a member of the refinement Q

Rev. Un. Mat. Argentina, Vol. 60, No. 1 (2019)

THE MULTIVARIATE BISECTION ALGORITHM 89

and let

f11 = f2(·, a2l
) : [a1l

, b1l
]→ R, f12 = f2(·, b2l

) : [a1l
, b1l

]→ R,

f21 = f1(a1l
, ·) : [a2l

, b2l
]→ R, f22 = f1(b1l

, ·) : [a2l
, b2l

]→ R

be the coordinate functions on the edges ofKl (l = 1 . . . 4), Algorithm 4 summarizes
the routine that we have performed using IA in order to compute the sign along
the edges.

Algorithm 4: Function signeval(), computes the sign along the edges of Kl

Data: fij , Iil = [ail , bil], N
Result: returns signfij , the sign of fij on Iil, 1 means positive, −1 negative and

NaN indicates an empty output when the sign is not constant.
1 Dom ← infsup(ail , bil) // interval class constructor for Iil

2 Fmv ← meanValueRefinement(fij ,Dom,N) // Apply Algorithm 2
3 extmin ← inf(Fmv)
4 extmax ← sup(Fmv) // computes the max and min of the mean extension
5 if extmin ≥ 0 then
6 signfij ← 1 // check equation (3.3)
7 return
8 if extmax ≤ 0 then
9 signfij ← −1

10 return
11 aff ← affineIntervalRefinement(fij ,Dom,N) // Apply Algorithm 3
12 extmin ← inf(aff)
13 extmax ← sup(aff) // computes the max and min of the affine extension
14 if extmin ≥ 0 then
15 signfij ← 1 // check equation (3.3)
16 return
17 if extmax ≤ 0 then
18 signfij ← −1
19 return
20 signfij ← NaN

Algorithm 5 summarizes the implementation of the Bisection Algorithm that we
have performed in Matlab.

Rev. Un. Mat. Argentina, Vol. 60, No. 1 (2019)

90 MANUEL LÓPEZ GALVÁN

Algorithm 5: Bisection algorithm
Data: K0, F= (f1, f2) system to solve, DF Jacobian of F, δ, N
Result: c root’s approximation

1 if K0 satisfies P.M. then
2 c← center of K0;
3 error ← ‖F(c)‖;
4 stop ← 1;
5 F1orig ← f1;
6 F2orig ← f2;
7 while (error > δ) ∧ (stop < 3) do
8 (K1,K2,K3,K4) ← Generate a refinement of K0 through c;
9 (signf11,signf12,signf21,signf22) ← signeval (fij , Ii1,N) i, j = 1, 2 // Apply

Algorithm 4 on each edge of K1

10 stop ← stop+1;
11 if signf11signf12 ≤ 0 ∧ signf21signf22 ≤ 0 then
12 c← center of K1;
13 K0 ← K1;
14 error ← ‖F(c)‖;
15 stop ← stop− 1;
16 Pass to next iteration

17 (signf11,signf12,signf21,signf22) ← signeval (fij , Ii2,N) i, j = 1, 2; // Apply
Algorithm 4 on each edge of K2

18 if signf11signf12 ≤ 0 ∧ signf21signf22 ≤ 0 then
19 c← center of K2;
20 K0 ← K2;
21 error ← ‖F(c)‖;
22 stop ← stop− 1;
23 Pass to next iteration

24 (signf11,signf12,signf21,signf22) ← signeval (fij , Ii3,N) i, j = 1, 2; // Apply
Algorithm 4 on each edge of K3

25 if signf11signf12 ≤ 0 ∧ signf21signf22 ≤ 0 then
26 c← center of K3;
27 K0 ← K3;
28 error ← ‖F(c)‖;
29 stop ← stop− 1;
30 Pass to next iteration

31 (signf11,signf12,signf21,signf22) ← signeval (fij , Ii4,N) i, j = 1, 2; // Apply
Algorithm 4 on each edge of K4

32 if signf11signf12 ≤ 0 ∧ signf21signf22 ≤ 0 then
33 c← center of K4;
34 K0 ← K4;
35 error ← ‖F(c)‖;
36 stop ← stop− 1;
37 Pass to next iteration

38 DFc ← DF(c); // Build the preconditioning G(X)
39 invDFc ← inv(DFc);
40 f1 ← invDFc(1,1)*F1orig+invDFc(1,2)*F2orig;
41 f2 ← invDFc(2,1)*F1orig+invDFc(2,2)*F2orig;

42 else
43 return Wrong R0

Rev. Un. Mat. Argentina, Vol. 60, No. 1 (2019)

THE MULTIVARIATE BISECTION ALGORITHM 91

In order to check the accuracy and performance of the algorithm, we test it
through different systems of equations. We start testing the new algorithm in a
transcendental system of equations used by Broyden in [1],

f1 = 1
2 sin(x1x2)− x2

4π −
x1

2
f2 = (1− 1

4π)(e2x1 − e) + ex2

π
− 2ex1.

The initial guess rectangle used for this problem wasK0 = [0.4, 0.55]×[3, 3.5] and
the tolerance level was setted in δ = 10−15. The interval analysis refinement used
to compute the sign along the edges is N = 3. Figure 3 illustrates the algorithm
behaviour with the respective preconditioning procedure and Table 1 shows the
numerical solution.

Figure 3. Bisection algorithm procedure for Broyden system.
The solid red line represents f1 and the dashed blue line repre-
sents f2 for the equivalent system Gk(X) = 0.

c F(c) iter K0

0.500000000000000 -0.227513305973815 1e-15 48 [0.4, 0.55]× [3, 3.5]
3.141592653589793 -0.643347227536409 1e-15

Table 1. Root’s approximation, evaluation, iteration performed
and initial guess for Broyden system.

A straightforward computation shows that the solution for the system is (x1, x2) =
(0.5, π) and therefore we can check the consistency of the error estimation given

Rev. Un. Mat. Argentina, Vol. 60, No. 1 (2019)

92 MANUEL LÓPEZ GALVÁN

by Theorem 2.3 at each iteration,

ek = ‖ck − (0.5, π)‖2 ≤
(0.55− 0.4) + (3.5− 3)

2k
= 0.65

2k
.

Figure 4 illustrates the error behaviour in logarithmic scale at each iteration.

Figure 4. Error procedure for Broyden transcendental system.
The red line represents ek and the dashed blue line represents the
error bound.

In the following steps we test the algorithm in several other problems. We will
see that in some systems the algorithm needs preconditioning in order to guarantee
the P.M. conditions through the refinement. Let

F1(x, y) = (x2 + y2 − 1, x− y2)
F2(x, y) = (2x− y − e−x,−x+ 2y − e−y)
F3(x, y) = (sin(x) + cos(y) + 2(x− 1), y − 0.5(x− 0.5)2 − 0.5)
F4(x, y) = (x2 − cos(xy), exy + y)

F5(x, y) = (x cos(y) + y sin(x)− 0.5, ee−(x+y)
− y(1 + x2))

F6(x, y) = (x+ 5(x− y)3 − 1, 0.5(y − x)3 + y)

be the testing maps. In Table 2 we show the numerical performance for the testing
maps. The method was implemented setting the tolerance level in δ = 10−15 and
the interval analysis refinement in N = 3.

Rev. Un. Mat. Argentina, Vol. 60, No. 1 (2019)

THE MULTIVARIATE BISECTION ALGORITHM 93

F c F(c) iter K0

F1 0.618033988749895 0.004965068306495 1e-14 51 [0, 1]× [0, 1]
0.786151377757422 -0.123942463016433 1e-14

F2 0.567143290409784 0.111022302462516 1e-15 50 [0, 1]× [0, 1]
0.567143290409784 0.111022302462516 1e-15

F3 0.378316940137480 0.139577647543639 1e-15 51 [0, 1]× [0, 1]
0.507403383528753 -0.072495394968176 1e-15

F4 0.926174872358938 0.129347223584252 1e-15 49 [0, 1]× [−1, 0]
-0.582851662173280 -0.115653908517277 1e-15

F5 0.353246619596717 -0.244439451327881 1e-15 52 [0, 1.1]× [0, 2]
0.606081736641465 0.047257391058546 1e-15

F6 0.510030862987151 -0.045236309398304 1e-13 42 [0.4, 1]× [0, 0.4]
0.048996913701194 -0.904901681894059 1e-13
Table 2. Root’s approximation, evaluation, iteration performed
and initial guess for testing maps.

Figure 5 illustrates the algorithm behaviour for the testing maps with the re-
finement procedure. The systems of equations and their successive possible precon-
ditionings are represented by a zero contour level on an mesh on the initial guess
K0 and the refinement procedure was illustrated using the rectangle Matlab’s
functions.

4. Newton’s comparison

In this section we are going to compare the performance of our method against
the classical multivariate Newton algorithm. It is well-known that the classi-
cal Newton’s method has several numerical problems when the systems are ill-
conditioned, i.e., systems having a “nearly singular” Jacobian at some iterate, get-
ting slower rate of convergence and large numerical errors. The main advantage of
our methodology is that it is not always necessary to perform the preconditioning
at each step and therefore it can skip the ill-conditioned problem.

Let us consider the following system, F(x, y) = (x2 + y2 − 1, xy − x2). This

function has a zero in x∗ = (
√

2
2 ,

√
2

2) and a straightforward computation shows
that the system is ill-conditioned for any value sufficiently close to the origin.
Newton’s method cannot be initialized in (0, 0), however our algorithm can be
evaluated in (0, 0) avoiding the singularity of the Jacobian.

Rev. Un. Mat. Argentina, Vol. 60, No. 1 (2019)

94 MANUEL LÓPEZ GALVÁN

x

0 0.2 0.4 0.6 0.8 1

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

0 0.2 0.4 0.6 0.8 1

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

0 0.2 0.4 0.6 0.8 1

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

0 0.2 0.4 0.6 0.8 1

y

-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x

y

x

0.4 0.5 0.6 0.7 0.8 0.9 1

y

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Figure 5. The first row illustrates the algorithm procedure for
F1,F2, the second for F3,F4 and the third for F5,F6. The solid
red line represents the first coordinate, while the dashed blue
line represents the second coordinate for the equivalent system
Gk(X) = 0.

Rev. Un. Mat. Argentina, Vol. 60, No. 1 (2019)

THE MULTIVARIATE BISECTION ALGORITHM 95

Figure 6 and Table 3 show the behaviour of the reduction of error norms ‖ck−x∗‖
and ‖F(ck)‖ through iteration steps for the Bisection and Newton methods.

k

0 5 10 15 20 25 30

‖
F
(c

k
)‖

10
-10

10
-5

10
0

10
5

10
10

10
15

10
20

Bisection

Newton

k

0 5 10 15 20 25 30

‖c
k
−

x
∗
‖

10
-10

10
-5

10
0

10
5

10
10

Bisection

Newton

Figure 6. Newton vs Bisection performance.

Newton Bisection
Step ‖F(ck)‖ ‖ck − x∗‖ ‖F(ck)‖ ‖ck − x∗‖
2 1,88e+15 4,32e+07 3,54e-01 2,93e-01
4 1,34e+14 1,15e+07 3,87e-02 2,77e-02
6 8,38e+12 2,89e+06 7,94e-03 5,63e-03
8 5,24e+11 7,22e+05 1,51e-04 1,07e-04
12 2,05e+09 4,51e+04 3,37e-04 2,38e-04
14 1,28e+08 1,13e+04 2,90e-05 2,05e-05
16 7,99e+06 2,82e+03 1,53e-06 1,08e-06
18 4,99e+05 7,04e+02 6,10e-06 4,32e-06
20 3,12e+04 1,75e+02 3,82e-07 2,70e-07
24 1,22e+02 1,00e+01 2,42e-08 1,71e-08
28 2,51e-01 1,22e-01 1,85e-09 1,31e-09

Table 3. Error norms ‖F(ck)‖, ‖ck−x∗‖ for the Newton and the
Bisection methods after the iteration step for both cases.

Rev. Un. Mat. Argentina, Vol. 60, No. 1 (2019)

96 MANUEL LÓPEZ GALVÁN

The initial guess used to perform the Newton’s method was (10−8, 10−9) which
is inside and very close to the vertex of the initial square K0 = [0, 1] × [0, 1] used
to perform the Bisection method. As depicted in Figure 6 the Bisection method
is highly superior to the Newton method in respect to achieve convergence. Bisec-
tion’s method achieves a norm error of 1,31e-09 after 28 iteration, however Newton’s
method achieves a norm error of 1,22e-01 demanding much higher numerical effort.

As a second example, we try the system F(x, y) = (x2 − 4y + y2 − 1, 2x − y2).
In Figure 7 and Table 4 we compare the Newton method and the Bisection; the
starting square was K0 = [1.0000001, 1.98]× [1, 2] and the initial guess for Newton
was the lower left vertex (1.0000001, 1) of K0.

k

0 5 10 15 20 25

‖F
(c

k
)‖

10
-10

10
-5

10
0

10
5

10
10

10
15

Bisection

Newton

Figure 7. Newton vs Bisection performance.

Newton Bisection
Step ‖F(ck)‖ ‖F(ck)‖
2 4,76e+13 4,14e-01
4 3,03e+12 1,10e-01
6 1,91e+11 6,55e-03
8 1,19e+10 4,08e-03
12 4,66e+07 1,12e-04
14 2,91e+06 2,48e-05
16 1,82e+05 4,26e-06
18 1,14e+04 4,07e-06
20 7,10e+02 8,86e-07
24 2,33e+00 4,06e-08

Table 4. Error norms ‖F(ck)‖ for the Newton and the Bisection
method after the iteration step for both cases.

Rev. Un. Mat. Argentina, Vol. 60, No. 1 (2019)

THE MULTIVARIATE BISECTION ALGORITHM 97

The condition number of the Jacobian matrix is close to 4e7 and therefore we
are present to a ill-conditioned problem induced by a bad initial guess given by
(1.0000001, 1). However, the bisection method can start in this same vertex and
can skip the Jacobian illness without preconditioning in the first steps. Bisection’s
method achieves a norm error of 4,06e-08 after 24 iteration, however Newton’s
method achieves a norm error of 2,33e+00.

5. Conclusion

In this work we have clarified how a multidimensional bisection algorithm should
be performed extending the idea of the classic one dimensional bisection algorithm.
Due to the preconditioning at each step we could prove a local convergence theorem
and we also found an error estimation. Interval analysis allowed a fast and reliable
way of computing the Poincaré–Miranda conditions and the numerical implemen-
tation showed that the method has a very good accuracy similar with the classic
methods like Newton or continuous optimization. We also have compared the per-
formance of the Bisection method against the classical Newton method and we
found that our methodology improves the speed of convergence in ill-conditioned
problems.

References
[1] C. G. Broyden; A new method of solving nonlinear simultaneous equations, Computer J. 12

(1969), 94–99. MR 0245197.
[2] J. B. Kioustelidis, Algorithmic error estimation for approximate solutions of nonlinear sys-

tems of equations, Computing 19 (1978), 313–320. MR 0474779.
[3] W. Kulpa, The Poincaré–Miranda theorem, Amer. Math. Monthly 104 (1997), no. 6, 545–550.

MR 1453657.
[4] D. H. Lehmer, A machine method for solving polynomial equations, J. ACM 8 (1961), 151–

162.
[5] C. Miranda, Un’osservazione su un teorema di Brouwer, Boll. Un. Mat. Ital. (2) 3 (1940),

5–7. MR 0004775.
[6] R. E. Moore, Interval Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1966. MR 0231516.
[7] R. E. Moore, R. B. Kearfott and M. J. Cloud, Introduction to Interval Analysis, SIAM,

Philadelphia, PA, 2009. MR 2482682.
[8] H. Poincaré, Sur certaines solutions particulières du problème des trois corps, C. R. Acad

Sci. Paris 97 (1883), 251–252.
[9] H. Poincaré, Sur certaines solutions particulières du problème des trois corps, Bulletin As-

tronomique 1 (1884), 65–74.
[10] N. Rouche and J. Mawhin, Équations Différentielles Ordinaires. Tome I: Théorie Générale,

Masson, Paris, 1973. MR 0481181.
[11] S. M. Rump, INTLAB - INTerval LABoratory. In: Developments in Reliable Computing,

77–104, Kluwer Academic Publishers, Dordrecht, 1999.
[12] H. S. Wilf, A global bisection algorithm for computing the zeros of polynomials in the complex

plane, J. ACM 25 (1978), no. 3, 415–420. MR 0483384.

Rev. Un. Mat. Argentina, Vol. 60, No. 1 (2019)

http://www.ams.org/mathscinet-getitem?mr=0245197
http://www.ams.org/mathscinet-getitem?mr=0474779
http://www.ams.org/mathscinet-getitem?mr=1453657
http://www.ams.org/mathscinet-getitem?mr=0004775
http://www.ams.org/mathscinet-getitem?mr=0231516
http://www.ams.org/mathscinet-getitem?mr=2482682
http://www.ams.org/mathscinet-getitem?mr=0481181
http://www.ams.org/mathscinet-getitem?mr=0483384

98 MANUEL LÓPEZ GALVÁN

M. López Galván
Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Intendente Güiraldes
2160, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina
amlopezgalvan@gmail.com, mlopezgalvan@hotmail.com

Received: January 10, 2018
Accepted: August 29, 2018

Rev. Un. Mat. Argentina, Vol. 60, No. 1 (2019)

	1. Introduction
	2. The algorithm and its description
	2.1. Algorithm procedure

	3. Implementation, performance, and testing
	4. Newton's comparison
	5. Conclusion
	References

