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SOME NEW Z-EIGENVALUE LOCALIZATION SETS FOR
TENSORS AND THEIR APPLICATIONS

ZHENGGE HUANG, LIGONG WANG, ZHONG XU, AND JINGJING CUI

Abstract. In this paper some new Z-eigenvalue localization sets for general
tensors are established, which are proved to be tighter than those newly de-
rived by Wang et al. [Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 187–198].
Also, some relationships between the Z-eigenvalue inclusion sets presented by
Wang et al. and the new Z-eigenvalue localization sets for tensors are given.
Besides, we discuss the effects of orthonormal transformations for the pro-
posed sets. As applications of the proposed sets, some improved upper bounds
for the Z-spectral radius of weakly symmetric nonnegative tensors are given.
Numerical examples are also given to verify the advantages of our proposed
results over some known ones.

1. Introduction

For a positive integer n, let N = {1, 2, . . . , n} and C (R) denote the set of all
complex (real) numbers. A ∈ C[m,n] (R[m,n]) denotes the order m dimension n
tensor with nm complex (real) entries, where ij ∈ N for j = 1, 2, . . . ,m. A real
tensor A = (ai1...im) is called symmetric [29, 42, 16, 17, 20, 21] if

ai1...im = aπ(i1...im), ∀π ∈ Πm,

where Πm is the permutation group of m indices. Furthermore, a real tensor of
order m dimension n is called the unit tensor [18], denoted by I, if its entries are
δi1...im for i1, . . . , im ∈ N , where

δi1...im =
{

1, if i1 = · · · = im,

0, otherwise.
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Throughout this paper, for A = (ai1...im) ∈ R[m,n] and i, j ∈ N , j 6= i, the
following notations are utilized repeatedly in our proofs.

Ri(A) =
n∑

i2,...,im=1
|aii2...im |,

P ii (A) =
∑

i2,...,im∈N,
i/∈{i2,...,im}

|aii2...im |,

P ij (A) =
∑

i2,...,im∈N,
i/∈{i2,...,im}

|aji2...im |.

For each vector x = (x1, . . . , xn)T of dimension n, real or complex, we define
the following vector of dimension n [24]:

Axm−1 =

 n∑
i2,...,im=1

aii2...imxi2 · · ·xim


1≤i≤n

.

The definitions of H-eigenvalue and Z-eigenvalue of tensors were first introduced
and studied by Qi and Lim [29, 27].

Definition 1.1 ([29]). A pair (λ, x) ∈ C× (Cn/{0}) is called an eigenpair of A if

Axm−1 = λx[m−1], (1.1)

where x[m−1] = (xm−1
1 , xm−1

2 , . . . , xm−1
n )T . Here xT denotes the transpose of x.

Furthermore, we call (λ, x) an H-eigenpair, if both λ and x are real.

This definition was introduced by Qi in [29] where he assumed thatA = (ai1...im) ∈
R[m,n] is symmetric and m is even. Independently, in [27], Lim gave such a defini-
tion but restricted x to be a real vector and λ to be a real number. It is noteworthy
that the definition of eigenvalues of tensors proposed by Lim in [27] is different from
Definition 1.1 in the case of odd order as the right hand side of (1.1) is taken ab-
solute value.

Definition 1.2 ([29, 27]). A pair (λ, x) ∈ C× (Cn \ {0}) is called an E-eigenpair
of A, if they satisfy the equation{

Axm−1 = λx,

xTx = 1.

We call (λ, x) a Z-eigenpair, if both λ and x are real.

Definition 1.3 ([29, 39, 11, 24]). We define σ(A) the Z-spectrum of A by the set
of all Z-eigenvalues of A. Assume σ(A) 6= ∅. Then the Z-spectral radius of A is
defined by

ρ(A) = max{|λ| : λ ∈ σ(A)}.
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Due to the fact that both H-eigenvalue and Z-eigenvalue problems of tensors
have become important topics in numerical multilinear algebra, and they have wide
applications in magnetic resonance imaging [34], higher order Markov chains [28],
spectral hypergraph theory [7] and so forth, there has been a surge of interest in
spectral theory of tensors recently [29, 31, 30, 3, 4, 5, 42, 40, 10, 11, 39, 36, 26, 24,
8, 16, 9].

Definition 1.4 ([3, 42, 40, 26, 30, 12]). A tensor A is called nonnegative (positive),
denoted by A ≥ 0 (A > 0), if any entry ai1i2...im ≥ 0 (ai1i2...im > 0, respectively).

Definition 1.5 ([5, 11, 24, 37]). A tensor A = (ai1···im) ∈ R[m,n] is called weakly
symmetric if the associated homogeneous polynomial

fA(x) = Axm =
n∑

i1,i2,...,im=1
ai1i2...imxi1xi2 · · ·xim

satisfies ∇fA(x) = mAxm−1.

This concept was first introduced and used by Chang et al. [5] for studying the
properties of Z-eigenvalue of nonnegative tensors and the authors presented the
Perron–Frobenius theorem for the Z-eigenvalue of nonnegative tensors, which was
later reproved as Lemma 4.7 by Song and Qi in [36], using a different technique.

It is noteworthy that the Z-eigenvalue problem plays a significant role in some
applications such as high order Markov chains (see e.g. [25, 6]), best rank-one
approximations in Statistical Data Analysis (see e.g. [43, 15]). In [5, 33, 23], the
authors focused on investigating the effective algorithms for finding Z-eigenpair of
tensors.

However, as mentioned in [37], we can not judge that Z-eigenvalues generated
by the aforementioned algorithms are the largest Z-eigenvalue in general. To over-
come this difficulty, one should study and develop the Z-eigenvalue inclusion set
which includes all Z-eigenvalues of general tensors. For eigenvalue inclusion sets
for tensors, many researchers have investigated this topic and many related results
have been developed recently, see [29, 16, 17, 18, 2, 20, 21, 22, 14, 1, 13, 38] and
references therein. Nevertheless, characterizations of inclusion set for Z-eigenvalue
are still underdeveloped for general tensors. Based on this fact, Wang et al. [37] pro-
posed some Z-eigenvalue inclusion sets which capture all Z-eigenvalues of general
tensors. Very recently, several new Z-eigenvalue inclusion sets for tensors have been
put forward, see [41, 35] and the references therein. To capture all Z-eigenvalues of
a tensor more precisely than some newly proposed results, in this paper we derive
some new Z-eigenvalue localization sets for general tensors, which are proved to be
sharper than the ones in [37].

In [29], Qi extended the well-known Geršgorin eigenvalue localization set of
matrices to real symmetric tensors of higher order, and this result can be easily
generalized to general tensors [42, 20]. However, Example 1 in [37] shows that
the Geršgorin eigenvalue localization set can not be generalized to Z-eigenvalues
of a general tensor and the authors in [37] established the Geršgorin Z-eigenvalue
inclusion theorem for general tensors as follows.
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Lemma 1.6 ([37]). Let A = (ai1...im) ∈ C[m,n], n ≥ 2. Then all Z-eigenvalues of
A are located in the union of the following sets:

σ(A) ⊆ K(A) =
⋃
i∈N
Ki(A),

where Ki(A) = {z ∈ C : |z| ≤ Ri(A)}.

To obtain sharper Z-eigenvalue localization sets than K(A), they also devel-
oped other three Z-eigenvalue localization sets for general tensors in the following
lemmas.

Lemma 1.7 ([37]). Let A = (ai1...im) ∈ C[m,n], n ≥ 2. Then all Z-eigenvalues of
A are located in the union of the following sets:

σ(A) ⊆ L(A) =
⋃
i∈N

⋂
j∈N, j 6=i

Li,j(A),

where Li,j(A) = {z ∈ C : [|z| − (Ri(A)− |aij...j |)]|z| ≤ |aij···j |Rj(A)}.

Lemma 1.8 ([37]). Let A = (ai1...im) ∈ C[m,n] and n ≥ 2. Then all Z-eigenvalues
of A are located in the union of the following sets:

σ(A) ⊆M(A) =
⋃

i,j∈N, i6=j

(
Mi,j(A)

⋃
Hi,j(A)

)
,

where
Mi,j(A) = {z ∈ C : (|z|−[Ri(A)−|aij...j |])(|z|−P ij (A)) ≤ |aij...j |(Rj(A)−P ij (A))},

Hi,j(A) = {z ∈ C : |z| − (Ri(A)− |aij...j |) < 0, |z| < P ij (A))}.

Lemma 1.9 ([37]). Let A = (ai1...im) ∈ C[m,n] and n ≥ 2. Then all Z-eigenvalues
of A are located in the union of the following sets:

σ(A) ⊆ N (A) =
⋃

i,j∈N, i6=j
Ni,j(A),

where Ni,j(A) = {z ∈ C : (|z| − [Ri(A)− P ii (A)])|z| ≤ P ii (A)Rj(A)}.

Corollaries 3.1–3.3 in [37] showed that the sets in Lemmas 1.7–1.9 are better
than the one in Lemma 1.6.

Spectral theory of nonnegative tensors has developed rapidly and attracted a lot
of researchers in late years. In the meanwhile, they have put forward various bounds
to estimate the spectral radius of nonnegative tensors [42, 40, 39, 36, 26], and the
upper bounds for the largest Z-eigenvalue of tensors are no exception. In [5], Chang
et al. proposed upper bounds for the Z-spectral radius of nonnegative tensors. On
the basis of the relationship between the Gelfand formula and the spectral radius,
Song and Qi [36] developed the new upper bounds for the Z-spectral radius, which
improve the ones in [5]. After that, He and Huang [11] obtained the Ledermann-
like upper bound for the largest Z-eigenvalue of the weakly symmetric positive
tensors. To get the sharper upper bounds for the Z-spectral radius, Li et al. [24]
gave some new upper bounds and proved that these bounds are tighter than the
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one in [11]. Very recently, Wang et al. [37] developed some new upper bounds for
the largest Z-eigenvalue of weakly symmetric nonnegative tensors by applying the
proposed Z-eigenvalue inclusion sets in [37]. Numerical results of [37] show that
the proposed bounds are tighter than existing bounds of [11, 24, 5]. As mentioned
before, estimating the largest Z-eigenvalue is of significance. Hence, we continue
this research on the Z-spectral radius of weakly symmetric nonnegative tensors
and propose some new tighter bounds compared with those in [11, 24, 37, 5] on the
basis of the new set derived in this paper.

To improve the Z-eigenvalue inclusion sets in [37, Theorems 3.1 and 3.3-3.4],
some new Z-eigenvalue localization sets for general tensors are employed in this
paper. They are proved to be more precise than the Z-eigenvalue localization sets in
Lemmas 1.6, 1.8 and 1.9. Meanwhile, some relationships between the Z-eigenvalue
inclusion sets derived in [37] and the new Z-eigenvalue localization sets for tensors
are given. Additionally, the effects of orthonormal transformations for the proposed
sets are investigated. As applications, some new bounds for the Z-spectral radius
of weakly symmetric nonnegative tensors are established, which outperform some
known results. Several numerical results illustrate these facts.

2. Two new Z-eigenvalue localization sets for tensors

In this section, we investigate Z-eigenvalue localization sets and present some
new Z-eigenvalue localization sets for tensors, and the comparison results of the
proposed sets with those in Lemmas 1.6, 1.8 and 1.9 are given. By making use of
the technique applied in [22, Theorem 2.1], we establish the following theorem.

Theorem 2.1. Let A = (ai1...im) ∈ C[m,n] and n ≥ 2. Then all Z-eigenvalues of
A are located in the following localization sets:

σ(A) ⊆ B(A) =
(⋃
i∈N
B1
i (A)

)⋃ ⋃
i,j∈N, i6=j

(
B2
i,j(A)

⋂
Ki(A)

) , (2.1)

where

B1
i (A) =

{
z ∈ C : |z| ≤ Ri(A)− P ii (A)

}
, Ki(A) = {z ∈ C : |z| ≤ Ri(A)} ,

B2
i,j(A) =

{
z ∈ C : (|z| − [Ri(A)− P ii (A)])(|z| − P ij (A)) ≤ P ii (A)(Rj(A)− P ij (A))

}
.

Proof. Let λ be a Z-eigenvalue of A and the corresponding eigenvector be x =
(x1, x2, . . . , xn)T ∈ Cn\{0} with |xt| ≥ |xs| ≥ max{|xk| : k ∈ N, k 6= s, k 6= t}.
Then it is evident that |xt| > 0 and

Axm−1 = λx, xTx = 1. (2.2)

It follows from (2.2) that

λxt =
∑

i2,...,im∈N,
t∈{i2,...,im}

ati2...imxi2 · · ·xim +
∑

i2,...,im∈N,
t/∈{i2,...,im}

ati2...imxi2 · · ·xim .
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Since |xt|m−1 ≤ |xt| ≤ 1, |xs|m−1 ≤ |xs| ≤ 1, it holds that

|λ||xt| ≤
∑

i2,...,im∈N,
t∈{i2,...,im}

|ati2...im ||xi2 | · · · |xim |+
∑

i2,...,im∈N,
t/∈{i2,...,im}

|ati2...im ||xi2 | · · · |xim |

≤
∑

i2,...,im∈N,
t∈{i2,...,im}

|ati2...im ||xt|m−1 +
∑

i2,...,im∈N,
t/∈{i2,...,im}

|ati2...im ||xs|m−1

≤ [Rt(A)− P tt (A)]|xt|+ P tt (A)|xs|,

which leads to

|λ| − [Rt(A)− P tt (A)] ≤ P tt (A) |xs|
|xt|

. (2.3)

If |xs| = 0, it follows from (2.3) that |λ|−[Rt(A)−P tt (A)] ≤ 0, that is, |λ| ≤ Rt(A)−
P tt (A). Evidently, λ ∈ B1

t (A) ⊆ B(A). Otherwise, |xs| > 0. If λ /∈
⋃
i∈N B1

i (A), it
is easy to see that for any i ∈ N ,

|λ| > Ri(A)− P ii (A).

In particular, |λ| > Rt(A) − P tt (A), i.e., |λ| − [Rt(A) − P tt (A)] > 0. By (3), it is
not difficult to verify that λ ∈ Kt(A). Besides, it follows from (2.2) that

λxs =
∑

i2,...,im∈N,
t∈{i2,...,im}

asi2...imxi2 · · ·xim +
∑

i2,...,im∈N,
t/∈{i2,...,im}

asi2...imxi2 · · ·xim .

Taking absolute values in the above equation and using the triangle inequality yield

|λ||xs| ≤
∑

i2,...,im∈N,
t∈{i2,...,im}

|asi2...im ||xi2 | · · · |xim |+
∑

i2,...,im∈N,
t/∈{i2,...,im}

|asi2...im ||xi2 | · · · |xim |

≤
∑

i2,...,im∈N,
t∈{i2,...,im}

|asi2...im ||xt|m−1 +
∑

i2,...,im∈N,
t/∈{i2,...,im}

|asi2...im ||xs|m−1

≤ [Rs(A)− P ts(A)]|xt|+ P ts(A)|xs|.

(2.4)

Recalling that |xs| > 0, then from inequality (2.4) we have

|λ| − P ts(A) ≤ [Rs(A)− P ts(A)] |xt|
|xs|

. (2.5)

Note that |λ| − [Rt(A)− P tt (A)] > 0; multiplying (2.3) with (2.5) gives

(|λ| − [Rt(A)− P tt (A)])(|λ| − P ts(A)) ≤ P tt (A)(Rs(A)− P ts(A)),

which implies that λ ∈
(
B2
t,s(A)

⋂
Kt(A)

)
⊆ B(A). This completes our proof of

Theorem 2.1. �

The following theorem gives some comparisons between B(A) and the results in
Lemmas 1.6, 1.8 and 1.9. To prove the relations, we need the following lemma.
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Lemma 2.2 ([17]). Let a, b, c ≥ 0 and d > 0.
(I) If a

b+c+d ≤ 1, then
a− (b+ c)

d
≤ a− b
c+ d

≤ a

b+ c+ d
.

(II) If a
b+c+d ≥ 1, then

a− (b+ c)
d

≥ a− b
c+ d

≥ a

b+ c+ d
.

Theorem 2.3. Let A = (ai1...im) ∈ C[m,n] and n ≥ 2. Then
B(A) ⊆ N (A) ⊆ K(A), B(A) ⊆M(A) ⊆ K(A).

Proof. We prove this theorem in view of the methods of [22, Theorem 2.3]. By
Corollaries 3.2 and 3.3 in [37], it can be seen that N (A) ⊆ K(A) and M(A) ⊆
K(A) hold true. Thus, we only need to show the relations B(A) ⊆ N (A) and
B(A) ⊆M(A). Now, we prove B(A) ⊆ N (A). Let z ∈ B(A). Then

z ∈
⋃
i∈N
B1
i (A) or z ∈

⋃
i,j∈N, i6=j

(
B2
i,j(A)

⋂
Ki(A)

)
.

Without loss of generality, we first assume that z ∈
⋃
i∈N B1

i (A). Under this
condition, there exists one index i0 ∈ N such that

|z| ≤ Ri0(A)− P i0i0 (A),

i.e., |z| − [Ri0(A)− P i0i0 (A)] ≤ 0. Hence, for any j 6= i0, it follows that

(|z| − [Ri0(A)− P i0i0 (A)])|z| ≤ P i0i0 (A)Rj(A),

which implies that z ∈ Ni0,j(A) ⊆ N (A). If z /∈
⋃
i∈N B1

i (A), then for any i ∈ N ,
it holds that

|z| > Ri(A)− P ii (A) (2.6)
and

z ∈
⋃

i,j∈N, i6=j

(
B2
i,j(A)

⋂
Ki(A)

)
. (2.7)

It follows from (2.7) that there exist p, q ∈ N and p 6= q such that
|z| ≤ Rp(A) (2.8)

and
(|z| − [Rp(A)− P pp (A)])(|z| − P pq (A)) ≤ P pp (A)(Rq(A)− P pq (A)). (2.9)

If P pp (A)(Rq(A)− P pq (A)) = 0, combining (2.6) and (2.9) results in
|z| − P pq (A) ≤ 0 ≤ Rq(A)− P pq (A),

that is, |z| ≤ Rq(A), which is equivalent to
|z| − [Rq(A)− P qq (A)] ≤ P qq (A). (2.10)

By multiplying (2.8) with (2.10), we derive
(|z| − [Rq(A)− P qq (A)])|z| ≤ P qq (A)Rp(A).
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This means that z ∈ Nq,p(A) ⊆ N (A).
Afterwards, if P pp (A)(Rq(A) − P pq (A)) > 0, dividing (2.9) by P pp (A)(Rq(A) −

P pq (A)) yields
(|z| − [Rp(A)− P pp (A)])(|z| − P pq (A))

P pp (A)(Rq(A)− P pq (A)) ≤ 1.

Let a = |z| ≥ 0, b + c = P pq (A) ≥ 0 with b, c ≥ 0 and d = Rq(A) − P pq (A) > 0. If
|z|−Pp

q (A)
Rq(A)−Pp

q (A) ≥ 1, then by (2.6) and (II) of Lemma 2.2 we have

|z| − [Rp(A)− P pp (A)]
P pp (A)

|z|
Rq(A) ≤

|z| − [Rp(A)− P pp (A)]
P pp (A)

|z| − P pq (A)
Rq(A)− P pq (A) ≤ 1,

which is equivalent to
(|z| − [Rp(A)− P pp (A)])|z| ≤ P pp (A)Rq(A).

This implies that z ∈ Np,q(A) ⊆ N (A). Furthermore, if |z|−Pp
q (A)

Rq(A)−Pp
q (A) ≤ 1, then

(2.10) holds. Multiplying (2.8) with (2.10) leads to
(|z| − [Rq(A)− P qq (A)])|z| ≤ P qq (A)Rp(A),

which implies that z ∈ Nq,p(A) ⊆ N (A). Hence, B(A) ⊆ N (A).
In what follows, we show the relation B(A) ⊆M(A). Similar to the above proof,

we first suppose that z ∈
⋃
i∈N B1

i (A), then there exists one index i0 ∈ N such
that |z| ≤ Ri0(A)− P i0i0 (A). For j0 ∈ N and j0 6= i0, we have |ai0j0...j0 | ≤ P

i0
i0

(A),
from which it follows that

|z| ≤ Ri0(A)− P i0i0 (A) ≤ Ri0(A)− |ai0j0...j0 |.
For j0 ∈ N and j0 6= i0, it holds that

|z| < P i0j0
(A) or |z| ≥ P i0j0

(A).

If |z| ≥ P i0j0
(A), then we have

[|z| − (Ri0(A)− |ai0j0...j0 |)](|z| − P
i0
j0

(A)) ≤ 0 ≤ |ai0j0...j0 |(Rj0(A)− P i0j0
(A)),

which implies that z ∈ Mi0,j0(A) ⊆ M(A). Otherwise, |z| < P i0j0
(A). Under this

condition, if |z| = Ri0(A) − |ai0j0...j0 |, then it is evident that z ∈ Mi0,j0(A) ⊆
M(A). If |z| < Ri0(A)− |ai0j0...j0 |, then z ∈ Hi0,j0(A) ⊆M(A).

If z /∈
⋃
i∈N B1

i (A), then (2.6)-(2.9) hold true. If P pp (A)(Rq(A) − P pq (A)) = 0,
then P pp (A) = 0 or Rq(A) = P pq (A). When P pp (A) = 0, then |apq...q| = 0 and
therefore

(|z| − [Rp(A)− |apq...q|])(|z| − P pq (A))
= (|z| − [Rp(A)− P pp (A)])(|z| − P pq (A))
≤ P pp (A)(Rq(A)− P pq (A)) = |apq...q|(Rq(A)− P pq (A)),

which implies that z ∈Mp,q(A) ⊆M(A).
If Rq(A) = P pq (A), then it follows from |z| > Rp(A)−P pp (A) and inequality (2.9)

that |z| ≤ P pq (A). If |z| = P pq (A), then it is obvious that z ∈ Mp,q(A) ⊆ M(A).
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Otherwise, |z| < P pq (A). Under this case, if |z| − [Rp(A) − P pp (A)] < 0, then
z ∈ Hp,q(A) ⊆M(A). If |z| − [Rp(A)− P pp (A)] ≥ 0, then

[|z| − (Rp(A)− |apq...q|)](|z| − P pq (A)) ≤ 0 = |apq...q|(Rq(A)− P pq (A)),

which means that z ∈Mp,q(A) ⊆M(A).
If P pp (A)(Rq(A)− P pq (A)) > 0, then

|z| − [Rp(A)− P pp (A)]
P pp (A)

|z| − P pq (A)
Rq(A)− P pq (A) ≤ 1. (2.11)

Since |z| ≤ Rp(A), we have |z|−[Rp(A)−Pp
p (A)]

Pp
p (A) ≤ 1. If |z| < P pq (A) and |z| < Rp(A)−

|apq...q|, then z ∈ Hp,q(A) ⊆ M(A). If |z| < P pq (A) and |z| ≥ Rp(A) − |apq...q|,
then z ∈ Mp,q(A) ⊆ M(A). If |z| ≥ P pq (A) and |apq...q| > 0, then let |z| = a ≥ 0,
b = Rp(A) − P pp (A) ≥ 0, c = P pp (A) − |apq...q| ≥ 0, and d = |apq...q|. Thus, from
inequality (2.11), we have that

|z| − [Rp(A)− |apq...q|]
|apq...q|

|z| − P pq (A)
Rq(A)− P pq (A)

≤
|z| − [Rp(A)− P pp (A)]

P pp (A)
|z| − P pq (A)

Rq(A)− P pq (A) ≤ 1, (2.12)

by virtue of Lemma 2.2. From inequality (2.12) we derive

(|z| − [Rp(A)− |apq...q|])(|z| − P pq (A)) ≤ |apq...q|(Rq(A)− P pq (A)),

from which it follows that z ∈ Mp,q(A) ⊆M(A). If |z| ≥ P pq (A) and |apq...q| = 0,
then |z| ≤ Rp(A) = Rp(A)− |apq...q|, which leads to

(|z| − [Rp(A)− |apq...q|])(|z| − P pq (A))
= (|z| −Rp(A))(|z| − P pq (A)) ≤ 0 = |apq...q|(Rq(A)− P pq (A)).

This implies that z ∈ Mp,q(A) ⊆ M(A). Therefore, B(A) ⊆ M(A). The conclu-
sions follow immediately from what we have proved. �

Thus, the Z-eigenvalue localization set of Theorem 2.1 is more precise than those
in Lemmas 1.6, 1.8 and 1.9. Now we give an example to verify the fact.

Example 2.4 ([37]). Consider the tensor A = (aijk) ∈ R[3,3] defined by

aijk =


a111 = 1; a112 = −1; a131 = 1; a133 = 1;
a211 = −1; a222 = 2; a232 = 1;
a311 = 1; a323 = 1; a333 = 3;
aijk = 0, otherwise.

By some calculation, the comparative results are given in Table 1. As observed
in this table, B(A) is the sharpest among the aforementioned localization sets.

In the following theorem, motivated by [1, Theorem 3.3], we develop another
Z-eigenvalue localization set for tensors.

Rev. Un. Mat. Argentina, Vol. 60, No. 1 (2019)



108 ZHENGGE HUANG, LIGONG WANG, ZHONG XU, AND JINGJING CUI

Table 1. Some Z-eigenvalue localization sets for A.

Theorem 3.1 of [37] K(A) = {z ∈ C : |z| ≤ 5}
Theorem 3.3 of [37] M(A) = {z ∈ C : |z| ≤ 5}
Theorem 3.4 of [37] N (A) = {z ∈ C : |z| ≤ 2 + 2

√
2}

Theorem 2.1 B(A) = {z ∈ C : |z| ≤ 4.7913}

Theorem 2.5. Let A = (ai1...im) ∈ C[m,n], m,n ≥ 2 and Ri(A) > 0 for i ∈ N .
Then all Z-eigenvalues of A are located in the following localization sets:

σ(A) ⊆ F(A) =
⋃

ai1i2...im 6=0

z ∈ C : |z| ≤
(

m∏
l=1

Ril(A)
) 1

m

 .

Proof. Let λ be a Z-eigenvalue of A with the corresponding eigenvector x, i.e.,
Axm−1 = λx. Let |xα| = max{|xi1 ||xi2 | · · · |xim | : ai1i2...im 6= 0, i1, . . . , im ∈ N}.
Then for all i ∈ N , it holds that

|λx2
i | =

∣∣∣∣∣∣
n∑

i2,...,im=1
aii2...imxixi2 · · ·xim

∣∣∣∣∣∣
≤

n∑
i2,...,im=1

|aii2...im ||xi||xi2 | · · · |xim |

=
∑

aii2...im 6=0
|aii2...im ||xi||xi2 | · · · |xim | ≤ Ri(A)|xα|.

(2.13)

Now, we consider two cases as follows.
(i) |xα| = 0. Since x 6= 0, suppose that xp 6= 0, p ∈ N . Then from (2.13), we

have |λx2
p| = 0, i.e., λ = 0. Clearly, λ ∈ F(A).

(ii) |xα| > 0. Suppose that |xα| = |xj1 ||xj2 | · · · |xjm
|. Then from (2.13), we

obtain the inequalities

|λ||xj1 |2 ≤ Rj1(A)|xα|,
...

|λ||xjm |2 ≤ Rjm(A)|xα|.

Then
m∏
l=1
|λ||xjl

|2 ≤ |xα|m
m∏
l=1

Rjl
(A),

which yields that

|xα|2
m∏
l=1
|λ| ≤ |xα|m

m∏
l=1

Rjl
(A),
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and therefore
m∏
l=1
|λ| ≤ |xα|m−2

m∏
l=1

Rjl
(A) ≤

m∏
l=1

Rjl
(A)

by m ≥ 2 and |xα| ≤ 1. Hence, we obtain

σ(A) ⊆ F(A) =
⋃

ai1i2...im 6=0

z ∈ C : |z| ≤
(

m∏
l=1

Ril(A)
) 1

m

 .

The proof is completed. �

In the following theorem we show that F(A) ⊆ K(A).

Theorem 2.6. Let A = (ai1...im) ∈ C[m,n], m,n ≥ 2 and Ri(A) > 0 for i ∈ N .
Then F(A) ⊆ K(A).

Proof. For any z ∈ F(A), if z /∈ K(A), then |z| > Ri(A) for all i ∈ N . In this case,
for all ai1i2...im 6= 0, ij ∈ N and j = 1, 2, . . . ,m, it follows that

|z| >

(
m∏
l=1

Rjl
(A)
) 1

m

,

which contradicts the fact that z ∈ F(A). �

Next, enlightened by [19], we investigate the relationships of F(A), K(A), and
N (A).

Theorem 2.7. Let A = (ai1...im) ∈ C[m,n] with m,n ≥ 2. If ai...i 6= 0 for each
i ∈ N , then N (A) ⊆ F(A) = K(A).

Proof. If ai...i 6= 0 for each i ∈ N , then⋃
i∈N

{
z ∈ C : |z| ≤ (Ri(A)m)

1
m = Ri(A)

}
= K(A)

⊆ F(A) =
⋃

ai1i2...im 6=0

z ∈ C : |z| ≤
(

m∏
l=1

Ril(A)
) 1

m

 ,

which together with F(A) ⊆ K(A) results in F(A) = K(A). According to Theorem
2.2, we obtain N (A) ⊆ F(A) = K(A). �

Now, we utilize the following example to confirm the result in Theorem 2.5.

Example 2.8. Consider the tensor A = (aijk) ∈ R[3,2] defined by

aijk =


a111 = 2; a222 = 1;

a112 = a122 = a211 = −4
3 ;

aijk = 0, otherwise.
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Table 2. Some Z-eigenvalue localization sets for A.

K(A) {z ∈ C : |z| ≤ 4.6667}
N (A) {z ∈ C : |z| ≤ 4.0934}
B(A) {z ∈ C : |z| ≤ 3.9384}
F(A) {z ∈ C : |z| ≤ 4.6667}

Obviously, a111, a222 6= 0. We present the comparative results in Table 2. As
seen in this table, the relationship N (A) ⊆ F(A) = K(A) holds; what is more, we
also get B(A) ⊆ F(A).

Theorem 2.9. Let A = (ai1...im) ∈ C[m,n], m,n ≥ 2 and Ri(A) 6= 0. If Ri(A) =
P ii (A) for each i ∈ N , then F(A) ⊆ N (A) ⊆ K(A).

Proof. It follows from Ri(A) = P ii (A) for each i ∈ N that ai...i = 0 for all i ∈ N
and

N (A) =
⋃

i,j∈N, i6=j
{z ∈ C : (|z| − [Ri(A)− P ii (A)])|z| ≤ P ii (A)Rj(A)}

=
⋃

i,j∈N, i6=j
{z ∈ C : |z|2 ≤ Ri(A)Rj(A)}.

Let λ be any eigenvalue of the tensor A. By Theorem 2.5 and Ri(A) 6= 0 for all
i ∈ N , there exists ah1...hm

6= 0 such that

|λ| ≤

(
m∏
l=1

Rhl
(A)
) 1

m

.

On squaring the above inequality, we have |λ|2m ≤
m∏
l=1

[Rhl
(A)]2. Since Ri(A) 6= 0

for all i ∈ N , the inequality |λ|2m ≤
m∏
l=1

[Rhl
(A)]2 can be rewritten as(

|λ|2

Rh1(A)Rh2(A)

)
· · ·
(

|λ|2

Rhm
(A)Rh1(A)

)
≤ 1.

It follows from this inequality that at least one of the factors in its left-hand side is
at most 1. Without loss of generality, we assume that there exists p with 1 ≤ p ≤ n
such that

|λ|2 ≤ Rhp
(A)Rhp+1(A),

where if p = m, then hp+1 = h1. This inequality implies that

λ ∈ {z ∈ C : |z|2 ≤ Rhp(A)Rhp+1(A)} ⊆ N (A).

As a result, we derive F(A) ⊆ N (A) ⊆ K(A) by virtue of Theorem 2.3. The result
follows. �
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The following example illustrates the relationship F(A) ⊆ N (A) ⊆ K(A) in
Theorem 2.9.

Example 2.10. Let A = (ai1i2i3) ∈ R[3,3], where a123 = 1, a132 = a211 = 2,
a213 = a321 = 1.5, a312 = 2.5, and the other entries are zero.

By computations, it is not difficult to verify that Ri(A) = P ii (A) 6= 0 (i = 1, 2, 3).
We compare the Z-eigenvalue localization sets B(A) and F(A) with N (A) and
K(A) in Table 3. From the observations in this table, it can be clearly seen that
F(A) ⊆ N (A) ⊆ K(A) and F(A) ⊆ B(A).

Table 3. Some Z-eigenvalue localization sets for A.

K(A) {z ∈ C : |z| ≤ 4}
N (A) {z ∈ C : |z| ≤ 3.7417}
B(A) {z ∈ C : |z| ≤ 3.7417}
F(A) {z ∈ C : |z| ≤ 3.4760}

Remark 2.11. From Tables 2 and 3, we observe that the set B(A) or the set F(A)
can work better than the other one. Here, an interesting problem arises: What is
the relationship between the set B(A) and the set F(A)? In the future, we will
research this problem.

3. Orthogonal transformation for the Z-eigenvalue localization
sets of tensors

It is noteworthy that the Z-eigenvalues of the tensors are invariant under or-
thonormal transformations [32] and have applications in physics and mechanics.
Thus it is meaningful to analyze whether Z-eigenvalue localization sets for tensors
obtained in Theorems 2.1 and 2.5 are invariant under orthonormal transformations,
or what are the effects of orthonormal transformations. In physics and mechanics, it
is most important that the results are independent from coordinate system choice.
Now we introduce the definition of the orthogonal transformation for tensors.

Definition 3.1 ([32]). For any given n× n real orthogonal matrix P = (pij) and
tensor A = (ai1...im) ∈ C[m,n], the orthogonal transformation Pm(A) is defined as

Pm(A) =

 n∑
i1,i2,...,im=1

ai1...impj1i1 · · · pjmim

 ∈ C[m,n].

For any given two tensors A = (ai1...im),D = (dj1...jm
) ∈ C[m,n], we say that A

is orthogonally similar to D if there exists some orthogonal matrix P such that
D = Pm(A).

The following lemma shows that the Z-eigenvalues of the tensors are invariant
under orthonormal transformations.
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Lemma 3.2 ([32]). Let A = (ai1...im),D = (dj1...jm) ∈ C[m,n] be orthogonally
similar with D = Pm(A), where P = (pij) is an n × n orthogonal matrix. Then
A and D have the same Z-eigenvalues. In particular, if λ is a Z-eigenvalue of A
with a Z-eigenvector x, then λ is also a Z-eigenvalue of D with a Z-eigenvector
y = Px.

Next, we discuss whether Z-eigenvalue localization sets for tensors obtained in
Theorems 2.1 and 2.5 are invariant under orthonormal transformations, or what
are the effects of orthonormal transformations.

For a given orthogonal matrix P = (pij) ∈ Rn×n, D = Pm(A). Based on
Lemma 3.2 and applying the same technique used in Theorem 2.1, we can derive

σ(A) = σ(D) ⊆ B̄(D) =
(⋃
i∈N
B̄1
i (D)

)⋃ ⋃
i,j∈N,i6=j

(
B̄2
i,j(D)

⋂
K̄i(D)

) , (3.1)

where

B̄1
i (D) =

{
z ∈ C : |z| ≤ Ri(D)− P ii (D)

}
, K̄i(D) = {z ∈ C : |z| ≤ Ri(D)} ,

B̄2
i,j(D) =

{
z ∈ C : (|z| − [Ri(D)− P ii (D)])(|z| − P ij (D)) ≤ P ii (D)(Rj(D)− P ij (D))

}
.

Similarly, we can establish the following Z-eigenvalue localization set by virtue of
Theorem 2.5:

σ(A) = σ(D) ⊆ F̄(D) =
⋃

di1i2...im 6=0

z ∈ C : |z| ≤
(

m∏
l=1

Ril(D)
) 1

m

 . (3.2)

Now we illustrate that the Z-eigenvalue localization sets for tensors obtained in
Theorems 2.1 and 2.5 are variant under orthonormal transformations.

For Example 2.4, we choose the orthogonal matrix generated by the function
orth of Matlab

P =

 −0.6612 −0.4121 −0.6269
−0.6742 −0.0400 0.7375
−0.3290 0.9103 −0.2513

 . (3.3)

By (3.1), we obtain B̄(D) = {z ∈ C : |z| ≤ 7.1733}, while B(A) = {z ∈ C :
|z| ≤ 4.7913} in terms of Theorem 2.1. This means that B(A) (no orthonormal
transformations) is better than B̄(D).

For Example 2.10, we also consider the orthogonal matrix (3.3); then we have
the Z-eigenvalue localization set F̄(D) = {z ∈ C : |z| ≤ 6.1935} by Theorem 2.5
under this orthonormal transformation, which means that F(A) also becomes worse
under this orthonormal transformation.

The following example indicates that under orthonormal transformations, the
Z-eigenvalue localization sets obtained in this paper may become sharper.
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Example 3.3. Consider the tensor A = (ai1i2i3) ∈ R[3,3] generated by Matlab
randomly, where

A(:, :, 1) =

 0.6948 0.3171 0.9502
0.4898 0.4456 0.6463
0.1190 0.4984 0.9597

 ,

A(:, :, 2) =

 0.0344 0.4387 0.3816
0.7094 0.7547 0.2760
0.3404 0.5853 0.2238

 ,

A(:, :, 3) =

 0.7655 0.7952 0.1869
0.6797 0.6551 0.1626
0.7513 0.2551 0.5060

 .

We report in Table 4 the Z-eigenvalue localization sets for A by Theorem 2.1,
(3.1), Theorem 2.5, and (3.2). By comparing the results in this table, we conclude
that under orthonormal transformations with the orthogonal matrix (3.3), the sets
derived in Theorems 2.1 and 2.5 become better, and it implies that orthonormal
transformations may make the Z-eigenvalue localization sets sharper.

Table 4. Some Z-eigenvalue localization sets for A.

B(A) {z ∈ C : |z| ≤ 4.7162}
B̄(D) {z ∈ C : |z| ≤ 3.6766}
F(A) {z ∈ C : |z| ≤ 4.8192}
F̄(D) {z ∈ C : |z| ≤ 4.6232}

In summary, the Z-eigenvalue localization sets for tensors obtained in this paper
are variant under orthonormal transformations. Under proper orthonormal trans-
formations, they may be better. An interesting problem is: How to choose the
orthogonal matrix P such that the Z-eigenvalue localization sets are best under
orthonormal transformations. It is a difficult task for us at present, and we will
investigate this problem in our further work.

4. Some new upper bounds for the Z-spectral radius of weakly
symmetric nonnegative tensors

On the basis of the results in Section 2, we establish two new upper bounds
for the Z-spectral radius of weakly symmetric tensors in this section, and compare
those with some known bounds derived in [36, 11, 24, 37]. To this end, we start
with a lemma which will be useful in the following proofs.

Lemma 4.1 ([37]). Assume A is a weakly symmetric nonnegative tensor. Then
ρ(A) = λ∗, where λ∗ denotes the largest Z-eigenvalue.
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Theorem 4.2. Let A ∈ R[m,n] be a weakly symmetric nonnegative tensor. Then
ρ(A) ≤ Θmax(A) = max{Θ1(A),Θ2(A)},

where Θ1(A) = max
i∈N
{Ri(A)− P ii (A)} and

Θ2(A) = max
i,j∈N,i6=j

min
{

1
2

(
Ri(A)− P ii (A) + P ij (A) + Υ

1
2
i,j(A)

)
, Ri(A)

}
,

with Υi,j(A) = (Ri(A)− P ii (A)− P ij (A))2 + 4P ii (A)(Rj(A)− P ij (A)).

Proof. Since A is a weakly symmetric nonnegative tensor, we see that ρ(A) is the
largest Z-eigenvalue of A by virtue of Lemma 4.1; then it follows from Theorem 2.1
that

ρ(A) ∈ B(A) =
(⋃
i∈N
B1
i (A)

)⋃ ⋃
i,j∈N, i6=j

(
B2
i,j(A)

⋂
Ki(A)

) .

If ρ(A) ∈
⋃
i∈N
B1
i (A), then there exists i0 ∈ N such that ρ(A) ≤ Ri0(A)− P i0i0 (A),

which yields that
ρ(A) ≤ Ri0(A)− P i0i0 (A) ≤ max

i∈N
{Ri(A)− P ii (A)}. (4.1)

For the case that ρ(A) ∈
⋃

i,j∈N, i6=j

(
B2
i,j(A)

⋂
Ki(A)

)
, there exist p, q ∈ N and

p 6= q such that
ρ(A) ≤ Rp(A) (4.2)

and
(ρ(A)− [Rp(A)− P pp (A)])(ρ(A)− P pq (A)) ≤ P pp (A)(Rq(A)− P pq (A)). (4.3)

Solving the quadratic inequality (4.3) gives

ρ(A) ≤ 1
2{Rp(A)− P pp (A) + P pq (A) + Υ

1
2
p,q(A)}, (4.4)

where Υp,q(A) = (Rp(A)− P pp (A)− P pq (A))2 + 4P pp (A)(Rq(A)− P pq (A)).
Combining (4.2) and (4.4) gives

ρ(A) ≤ min
{

1
2

(
Rp(A)− P pp (A) + P pq (A) + Υ

1
2
p,q(A)

)
, Rp(A)

}
≤ max
i,j∈N, i6=j

min
{

1
2

(
Ri(A)− P ii (A) + P ij (A) + Υ

1
2
i,j(A)

)
, Ri(A)

}
.

(4.5)

The conclusion follows from inequalities (4.1) and (4.5). �

Remark 4.3. Due to the fact that the upper bounds for ρ(A) in Theorems 4.6 and
4.7 in [37] are deduced from the Z-eigenvalue localization sets M(A) and N (A),
respectively, and that in Theorem 4.2 is derived from the Z-eigenvalue localization
set B(A), and B(A) ⊆ M(A) ⊆ K(A), B(A) ⊆ N (A) ⊆ K(A), we can prove that
Θmax(A) ≤ v̄ ≤ max

i∈N
Ri(A) and Θmax(A) ≤ w̄ ≤ max

i∈N
Ri(A), where v̄ and w̄ are

defined as in Theorems 4.6 and 4.7 in [37], respectively.
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We have showed that our bound in Theorem 4.2 is sharper than some existing
ones. Now we take an example to show the efficiency of the new upper bound.

Example 4.4 ([11, 24, 37, 5]). Consider the tensor A = (aijkl) ∈ R[4,2] with entries
defined as follows:

a1111 = 1
2 , a2222 = 3, and aijkl = 1

3 elsewhere.

We compute the bounds for ρ(A) in Table 5. From this table, it can be found
that the upper bound in Theorem 4.2 outperforms the ones in Corollary 4.5 of [36],
Theorem 2.7 of [11], Theorem 3.3 of [24], and Theorems 4.6-4.7 of [37].

Table 5. Some upper bounds for the Z-spectral radius of A.

Corollary 4.5 of [36] ρ(A) ≤ 5.3333
Theorem 2.7 of [11] ρ(A) ≤ 5.2846
Theorem 3.3 of [24] ρ(A) ≤ 5.1935
Theorem 4.6 of [37] ρ(A) ≤ 5.1822
Theorem 4.7 of [37] ρ(A) ≤ 5.1822
Theorem 4.2 ρ(A) ≤ 5.1667

Theorem 4.5. Let A ∈ R[m,n] be a weakly symmetric nonnegative tensor with
m ≥ 2 and Ri(A) > 0. Then

ρ(A) ≤ max
ai1...im 6=0

(
m∏
l=1

Ril(A)
) 1

m

.

Proof. Because A is a weakly symmetric nonnegative tensor, ρ(A) is the largest
Z-eigenvalue of A; then it follows from Theorem 2.5 that

ρ(A) ∈ F(A) =
⋃

ai1i2...im 6=0

z ∈ C : |z| ≤
(

m∏
l=1

Ril(A)
) 1

m

 .

Since Ri(A) > 0, there exists at1t2...tm 6= 0 such that

ρ(A) ≤
(

m∏
l=1

Rtl(A)
) 1

m

,

which means that

ρ(A) ≤ max
ai1...im 6=0

(
m∏
l=1

Ril(A)
) 1

m

.

This completes our proof. �
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Remark 4.6. Similar to the discussions in Remark 4.3, we conclude that the upper
bound in Theorem 4.5 is better than that in Corollary 3.5 of [36].

Let us show the advantage of the new upper bound in Theorem 4.5 over the one
in Corollary 3.5 of [36] by a simple example as follows.

Example 4.7. Consider the weakly symmetric nonnegative tensor

A = [A(1, :, :), A(2, :, :), A(3, :, :)] ∈ R[3,3],

where

A(1, :, :) =

 0 3 0
3 1 2
0 2 1.5

 , A(2, :, :) =

 3 1 2
1 0 2.5
2 2.5 1

 , A(3, :, :) =

 0 2 1.5
2 2.5 1

1.5 1 0

 .

We compare the upper bound exhibited in Theorem 4.5 with that in Corollary 4.5
of [36] in Table 6. From the observations in this table, it can be clearly seen that
the upper bound in Theorem 4.5 is tighter than that in Corollary 4.5 of [36], which
is in accordance with the conclusions in Theorem 2.6 and Remark 4.6.

Table 6. Upper bounds for the Z-spectral radius of A.

Corollary 4.5 of [36] ρ(A) ≤ 15
Theorem 4.5 ρ(A) ≤ 14.1155

Remark 4.8. We have recently developed a new S-type eigenvalue localization
set for tensors in [14]. The differences between both papers are as follows:

• The kinds of the eigenvalue localization sets of these two papers are dif-
ferent. Both papers introduce some eigenvalue localization sets for ten-
sors. While the main aim of the present paper is to establish some new
Z-eigenvalue (see Definition 1.2) localization sets for tensors, in [14] we
derive a new S-type eigenvalue (see Definition 1.1) localization set for
tensors.

• There is a difference between the techniques used in these two papers.
Theorem 3.1 of [14] is derived by breaking N into disjoint subsets S and
its complement, and the eigenvalue localization set proposed in [14] relies
on the choice of S. But the Z-eigenvalue localization sets developed in the
present paper do not contain the set S.

• The applications of eigenvalue localization sets in the two papers are dif-
ferent. One of the applications of the eigenvalue localization set in [14] is
obtaining new sufficient conditions for positive (semi-)definiteness of ten-
sors, which involve the H -eigenvalues of tensors, but this application can
not be established by the Z-eigenvalue localization set in the present paper.
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5. Concluding remarks

To localize all Z-eigenvalues of a tensor much sharper compared with some
known ones, some new Z-eigenvalue localization sets for tensors are derived in this
paper, which are proved to be more precise than the ones in [37], and we also study
the effects of orthonormal transformations for the proposed sets. Based on the
new sets, we establish some new upper bounds for the Z-spectral radius of weakly
symmetric nonnegative tensors. These bounds are tighter than those proposed by
Wang et al. [37] in theory. Some numerical results worked out in this paper verify
that the proposed results are superior to some existing ones.

Besides, we should mention that there exist some problems to be studied in the
future:

• Study the new Z-eigenvalue localization set which is sharper than the one
in Lemma 1.7 in theory.
• Research the relationship between the set B(A) and the set F(A).
• Choose the optimal orthogonal matrix P such that B(A) and F(A) are

best under orthonormal transformations.
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