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ON SUPERSOLVABLE GROUPS WHOSE MAXIMAL
SUBGROUPS OF THE SYLOW SUBGROUPS ARE
SUBNORMAL

PENGFEI GUO, XINGQIANG XIU, AND GUANGJUN XU

ABSTRACT. A finite group G is called an MSN*-group if it is supersolvable,
and all maximal subgroups of the Sylow subgroups of G are subnormal in G.
A group G is called a minimal non-MSN*-group if every proper subgroup of
G is an MSN*-group but G itself is not. In this paper, we obtain a complete
classification of minimal non-MSN*-groups.

1. INTRODUCTION

Only finite groups are considered in this paper and our notation is standard.

Let § be a class of groups. A group G is called a minimal non-§-group or
§-critical group if all subgroups but G itself belong to §. The characterization
of minimal non-F-groups plays a critical role in analyzing the structure of groups
with certain group theory property. It is important to obtain a detailed knowl-
edge of minimal non-F-groups so that some deep insights into what makes a group
belong to § may turn to be achievable. Moreover, when proving that a group
belongs to §, researchers can benefit from such descriptions of the minimal non-
$-groups by induction or minimal counterexample. Many meaningful results on
this topic have been obtained, and they have indeed pushed forward the devel-
opment of group theory. For example, Schmidt [I0] determined the structure of
minimal non-nilpotent groups, and Doerk [3] determined the structure of minimal
non-supersolvable groups. Ballester-Bolinches and Esteban-Romero [I] provided a
complete classification of minimal non-supersolvable groups, which is shown to be
useful and hence is exploited in solving the problem studied in this paper.

Srinivasan [I2] studied groups in which all maximal subgroups of the Sylow sub-
groups are normal, and proved that such groups are supersolvable. Later, Walls
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[13] called such groups MNP-groups and investigated the structure of the MNP-
groups. Recently, Guo et al. [4] determined the complete classification of minimal
non-MNP-groups (those groups which are not MNP-groups but whose proper sub-
groups are all MNP-groups).

On the other hand, Srinivasan [I2] also proved that a group G is solvable but
not necessarily supersolvable if all maximal subgroups of the Sylow subgroups are
subnormal in G. The alternating group A, is such an example. Guo et al. [5] called
such groups MSN-groups and gave a characterization of minimal non-MSN-groups
(defined similarly as minimal non-MNP-groups above). Unfortunately, a complete
classification of such groups is still unknown.

Naturally, we consider imposing some weaker conditions on MSN-groups. It is
well known that CLT-groups (a group is said to be CLT if it possesses subgroups
of every possible order, i.e., it satisfies the converse of Lagrange’s theorem) are
solvable (see [8]) and that supersolvable groups must be CLT (see [7]). Therefore,
we investigate MSN-groups with the CLT-property as well as supersolvable MSN-
groups. Specific definitions are as follows.

Definition 1.1. A CLT-group G is called a CMSN-group if all maximal subgroups
of the Sylow subgroups of G are subnormal in G.

Definition 1.2. A supersolvable group G is called an MSN*-group if all maximal
subgroups of the Sylow subgroups of G are subnormal in G.

It is clear that MSN*-groups must be CMSN-groups, but CMSN-groups need
not to be MSN*-groups. For instance, G = A4 x Cs is a non-supersolvable CMSN-
group, where Ay is the alternating group and Cs is cyclic of order 2. It is interesting
that they are equivalent under the assumption on minimal non-§-groups although
these two subgroups are different.

A group G is said to be a minimal non-MSN*-group (respectively, a minimal
non-CMSN-group) if every proper subgroup of G is an MSN*-group (respectively,
a CMSN-group) but G itself is not. In this paper, the minimal non-MSN*-groups
(i.e., minimal non-CMSN-groups) are classified completely.

2. PRELIMINARY RESULTS
We collect some definitions and lemmas which will be used in the sequel.

Definition 2.1 ([6, Definition 1.4]). Let o be an automorphism of a group G.
Then « is a semi-power automorphism of G if there exist elements aq, as, ..., a,
which generate G such that o maps a; into a power of a; for all i € {1,2,...,n}.

By a result of [I5, Theorem 2.7] and its Remark, the following lemma is true.

Lemma 2.1. A group G is an M SN -group if and only if G = H x K, where H
s a nilpotent normal Hall subgroup of G, K is a group whose Sylow subgroups are
cyclic and the maximal subgroups of its Sylow subgroups are normal in G.

Based on Lemma the following result follows easily by applying [6, Lemma
2.2].
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Lemma 2.2. A group G is an MSN*-group if and only if G = H x K, where
H is a nilpotent normal Hall subgroup of G, K is a group whose Sylow subgroups
are cyclic and the mazimal subgroups of its Sylow subgroups are normal in G, and

every element of K induces a semi-power automorphism of order dividing a prime

Lemma 2.3. Let G be a supersolvable minimal non-MSN*-group. Then |n(G)| is
2, where w(G) is the set of all primes dividing the order of G.

Proof. Let {Py, Pa,...,Ps} be a Sylow system of G. By the hypothesis, there
exists some P; (1 < ¢ < s) and a maximal subgroup P* of P; such that P* is not
subnormal in G. Assume s > 3. If P; is non-cyclic, then P, P; (j # i) are MSN*-
groups. By Lemma @ P; is normal in P;P; and also normal in G. Thus, P* is
subnormal in G, a contradiction. Hence P; is cyclic. In this case, by Lemma
again, P* is normal in P;P; (j # i), and so P* is normal in G, a contradiction.
Thus, |7(G)| = 2. O

Lemma 2.4 ([9, 13.4.3]). Let « be a power automorphism of an abelian group A.
If A is a p-group of finite exponent, then there is a positive integer | such that
a® = a' for all a in A. If « is nontrivial and has order prime to p, then o is
fized-point-free.

Lemma 2.5 ([5, Lemma 2.9]). If a q-group G of order ¢"* has a unique non-cyclic
mazximal subgroup, then G is isomorphic to one of the following groups:
(I) Cyn x Cy = (a,b|a? =b? =1, [a,b] = 1), where n > 2;
(IT) Mgnir = (a,b | a?" =7 =1, b ab = a9 "), where n > 2 and n > 3 if
q=2.

Lemma 2.6 ([I4, Chapter 3, Theorem 1.1)). A group G is supersolvable if and
only if all subgroups of G are CLT-groups.

3. MAIN RESULTS
In this section, we give the complete classification of minimal non-MSN*-groups.

Theorem 3.1. The minimal non-MSN*-groups are exactly the groups of the fol-
lowing types:
() G = (z,y|a? =y? =1,y 'ay = 2"), where 7 # 1 (mod p), rd® =
1 (modp),qlp—1,n=2with0d<r<p.
(I) G={(z,y| 2?1 =y? =1,y toy = 2"), wherep =1 (mod ¢), r = 1 (mod q),
r? =1 (mod p) with 1 <r < p.
(I) G = (z,y |2 =1, y?> = 2?P, y Loy = 7 1) with p > 2.
(1V) G={z,y,z | 2P = qul =20=1,y tay=2a", [x,2] =1, [y,2] = 1), where
n>=3,p=1(modq), r#1 (mod p), 7 =1 (mod p) with 1 <r < p.
(V) G = (z,y,z | 2P = yqn_1 =21 =1Ly toy = 2", [z,2]) = 1, 27 lyz =
Y+ ) wheren >3 andn >4 ifq=2,p=1 (mod q), r # 1 (mod p),
r? =1 (mod p) with 1 <r < p.

1
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(VI) G =P xQ, where Q = (y) is cyclic of order ¢" > 1, withqtp—1, and P is

an irreducible Q-module over the field of p elements with kernel (y?) in Q.

(VII) G = P x Q, where P is a non-abelian special p-group of rank 2m, the order
of p modulo q being 2m, Q = (y) is cyclic of order ¢" > 1, y induces an
automorphism in P such that P/®(P) is a faithful and irreducible Q-module,
and y centralizes ®(P). Furthermore, |P/®(P)| = p*™ and |P'| < p™.

(VIII) G = P x Q, where P = {ag,a1,...,a4—1) is an elementary abelian p-group
of order p?, Q = (y) is cyclic of order q", q is the highest power of q dividing
p—1andn>1. Define a¥ = ajy1 for0<j<g—1andaj ;= al, where
1 18 a primitive q-th root of unity modulo p.

Proof. Assume that G is a minimal non-MSN*-group. Since every proper subgroup
of G is an MSN*-group, G is supersolvable or minimal non-supersolvable by the
definition. By applying a result of [I, Theorems 9, 10] and Lemma |7 (G)] is 2
or 3, and G has a unique normal Sylow subgroup.

We first consider the case of G with |7(G)| = 2, and assume G = PQ with PG
and @ ¢ G, where P € Syl,(G), and @ € Syl (G). Since all the Sylow g-subgroups
are conjugate in GG, we only consider the case that @) acts on P.

There are four situations, as follows.

(1) Assume that P = (z) and Q = (y), with |z| = p™, |y| = ¢", and p > q.

In this case, G is metacyclic, y~'zy = 2" with 77" = 1 (mod p™), q | p — 1,
0<r<p™, and (p™,¢"(r — 1)) = 1. Since (y?) is not subnormal in G, it follows
that (y9) " 'zy? = 2" # 2. So 77 # 1 (mod p™). The subnormality of <yq2> in
<x>§yq> implies that (y¢°) is normal in (x){(y?) by Lemma So (y¢')lay? =

2™ = 2. Hence ¥ =1 (mod p™) and y induces a power automorphism of

order ¢ on P. Surely, y?¢ induces a power automorphism of order ¢ on P and
every proper subgroup of (y?) is normal in G. If 2P # 1, then by Lemma
(P (y?) # (aP) x (y?). Lemma implies that (y?) is normal in (a?)(y). Thus,
(xP)(y9) = (xP) x (y7), a contradiction. So 2 =1 and G is of type (I).

(2) Assume that P is cyclic and @ is non-cyclic.

Clearly, if p < ¢, then @ < G, a contradiction. Hence p > q.

If @ has two non-cyclic maximal subgroups @; and @, then by Lemma [2.2]
PQ, = P x @y and PQ>; = P x Q3. Hence Q = Q1Q2 is normal in G, a con-
tradiction. Therefore, every maximal subgroup of @ is cyclic or Q has a unique
non-cyclic maximal subgroup. Thus, @ is the elementary abelian group of order
¢, the quaternion group Qg or one of the types of Lemma

Case 1. Assume P = (2), Q@ = (a? = b? = 1, [a,b] = 1). If 2P £ 1, then
(zPYQ = (2P) x @ by Lemma If the actions of a and b on P by conjugation
are both trivial, then G is nilpotent, a contradiction. Therefore, we may assume
that the action of @ on P by conjugation is non-trivial. By applying Lemma
(2P)(a) # (zP) x (a), a contradiction. Hence zP = 1. If Cg(P) = P, then G/C¢(P)
is an elementary abelian group of order ¢?>. However, G/Cqg(P) < Aut(P), and
Aut(P) is cyclic, a contradiction. Hence either a or b is contained in Cg(P). Let
Ce(P) = (z), y"lzy = 2" with 1 < r < p, where z = zb is a generator of
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Ca(P), |z| = pq, y = a. Then we have that p = 1 (mod ¢), » = 1 (mod ¢) and
r? =1 (mod p). So G is of type (II).

Case 2. Assume Q = Qg = {(a,b| a* = 1,b% = a?, b~ lab=a"!) and P = (2).
If 2P #£ 1, then (2P)Q = (2P) x Q by Lemma Using the same argument as in
Case 1, we obtain the same contradiction. Hence 2P = 1. Since P(a) is an MSN*-
group, (a%) < Cg(P) by Lemma 2.2] If Cq(P) = P x (a?), then G/Cq(P) is an
elementary abelian group of order 4. Again, there is a contradiction as in Case 1.
So C¢(P) has an element of order 4 and Cq(P) = (z) is a cyclic group of order 4p.
Surely, G has an element y of order 4 such that y # zP. Now we let y~lay = 2"
where r # 1 (mod 4p). Since (y?) lzy? = 2" =z, we have 72 = 1 (mod 4p). By
computations, G = (z,y | % =1, y?> = 2?P, y~lay = 271). So G is of type (III).

Case 3. Assume that P = (z) and @ is of type (I) with |Q| = ¢" in Lemma [2.5]
Namely, Q = (y,z | yqn_1 =27 =1, [y,z] = 1), where n > 3. Then @ has
maximal subgroups H = (y), Ko = (y%,2) and K, = (y?, zy®) = (zy°) with s =
1,...,9g—1, where Ky is the unique non-cyclic maximal subgroup of (). Lemma
implies PKy = P x Ky. By the hypothesis, PH # P x H and y induces a power
automorphism of order ¢ on P. Surely, z € Z(G). Further, by similar arguments
as in Case 1, we have 2P = 1. Hence G = (z,y,z | 2P = " =20 =1,y lay =
", [x,z) = 1, [y, 2] = 1), where p = 1 (mod ¢), r Z 1 (mod p), 7?7 = 1 (mod p)
with 1 <7 < p. So G is of type (IV).

Case 4. Assume that P = (z) and Q is of type (II) with |Q| = ¢" in Lemma [2.5]
Namely, Q = (y,z | 7" =27 =1, 27 yz = y'**" ") where n > 3 and n > 4
if p = 2. Similarly as above, y induces a power automorphism of order ¢ on
P and (z) < Cg(P). Further, we can prove that P = 1, y~lzy = 2", where
p=1(mod q), r # 1 (mod p), 7?7 =1 (mod p) with 1 < r < p. So G is of type (V).

(3) Assume that P is non-cyclic and @ = (y) is a cyclic subgroup of G with
lyl = q".

If G is supersolvable, we can assume that 1 <--- <RI P <--- <G is a chief
series of G. By Maschke’s theorem [9, 8.1.2], there exists a subgroup H of P such
that P/®(P) = R/®(P) x H/®(P), where |H/®(P)| = p and H/®(P) I G/P(P).
Clearly, H 4G, H « Rand 1 < H < P <G is a normal series of G. By applying
Schreier’s refinement theorem [9, 3.1.2], there exists a maximal subgroup K of P
such that K is normal in G and K # R. By the minimality of G, RQ and K(Q are
both MSN*-groups of G. Lemma implies that (y9) is normal in G, so G is an
MSN*-group, a contradiction. Therefore, G is minimal non-supersolvable.

Case 1. If GG is also a minimal non-nilpotent group and P is abelian, by applying
[2, Theorem 3], G is of one of the types (VI)—(VII).

Case 2. If GG is not a minimal non-nilpotent group and P is abelian, by applying
[T, Theorems 9, 10], we assume that G = PQ), where P = (ag,a1,...,aq-1) is an
elementary abelian p-group of order p?, Q = (y) is cyclic of order ¢", ¢f is the
highest power of ¢ dividing p—1 and n > f > 1. Define a} = aj; for 0 <j < g—1
and a271 = af, where i is a primitive ¢/-th root of unity modulo p.
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Considering a maximal group P(y?) of G, by Lemma/2.2] (yq2> < Cg(P). Hence,

2
ay = agq = ap. Thus i? =1 (mod p), i.e., f =1, G is of type (VIII).

Case 3. If G is not a minimal non-nilpotent group and P is non-abelian, by
applying [I, Theorems 9, 10], we may assume that G = PQ such that P = {ag,a1)
is an extraspecial group of order p* with exponent p, @ = (y) is a cyclic group of
order 2" with 2/ the largest power of 2 dividing p— 1 and n > f > 1, and af = a;
and a{ = a}z, where x € ([ag, a;]) and 7 is a primitive 2/-th root of unity modulo p.

Since P(y?) and ®(P)(y) are MSN*-groups, we have that (y*) < Cg(P) and
(y*) < Ce(®(P)) by Lemma However, ag4 = ai 2t1 £ ag, a contradiction.
Therefore, G is not of the type as above.

(4) Assume that P and @ are both non-cyclic.

Using similar arguments as in Situation (3), we easily have that G is minimal
non-supersolvable. By the same arguments as in Situation (2), @ is the elementary
abelian group of order ¢2, the quaternion group Qg or one of the two types of
Lemma 2.5

Case 1. Let Q be an elementary abelian group of order ¢?. By applying [1}
Theorems 9, 10], none of them satisfies a minimal non-MSN*-group.

Case 2. Let Q = Qs = {a,b | a* = 1,0 = a% b~ tab = a~!). For maximal
subgroups P(a) and P(b) of G, we have ®(Q) = (a?) < Cg(P) by Lemma
By examining Type 6 and Type 7 in [I, Theorems 9, 10], none of them satisfies a
minimal non-MSN*-group.

Case 3. Let @ be as in Lemma (I) with |Q| = ¢™. Namely, Q@ = (a,b |

n—1

al = b1 =1, [a,b] = 1) where n > 3. By similar arguments as Case 2 in
Situation (3), none of the types 6-10 in [I, Theorems 9, 10] satisfies a minimal
non-MSN*-group.

Case 4. Let Q be as in Lemma (I1) with |Q| = ¢"™. Namely, Q = (a,b |
" =bl=1,b"lab= a1+q"72>, where n > 3 and n > 4 if ¢ = 2. It is clear that
?(Q) = (a?) < Cg(P). By examining types 6-10 in [I, Theorems 9, 10], none of
them satisfies a minimal non-MSN*-group.

We next consider the case of G with |7(G)| = 3.

Lemma implies that G is minimal non-supersolvable. By types 11-12 in [,
Theorems 9, 10], we may assume that G = PQR with P 4G, Q is neither cyclic
nor normal in G, and R ¢ G, where P € Syl (G), Q € Syl (G) and R € Syl,(G).
However, by Lemma 2.2} @ is normal in both PQ and QR, and so @ is normal in
G = (P,Q, R), a contradiction. Hence none of them satisfies a minimal non-MSN*-
group.

Conversely, it is clear that a group satisfying one of the types (I)—-(VIII) is a
minimal non-MSN*-group. t

Corollary 3.2. The following statements for a group G are equivalent:

(1) G is a minimal non-MSN*-group.
(2) G is a minimal non-CMSN-group.
(3) G is exactly of one type of Theorem .
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Proof. From Theorem [3.1] it suffices to prove that a minimal non-CMSN-group is
a minimal non-MSN*-group.

Let G be a minimal non-CMSN-group. For each maximal subgroup M of G,

all subgroups of M are CLT-groups by the minimality of G. By Lemma M is
supersolvable, so G is a minimal non-MSN*-group. O
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