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CONFORMAL SEMI-INVARIANT RIEMANNIAN MAPS TO
KAHLER MANIFOLDS

MEHMET AKIF AKYOL AND BAYRAM SAHIN

ABSTRACT. As a generalization of CR-submanifolds and semi-invariant Rie-
mannian maps, we introduce conformal semi-invariant Riemannian maps from
Riemannian manifolds to almost Hermitian manifolds. We give non-trivial ex-
amples, investigate the geometry of foliations, and obtain decomposition the-
orems by using the existence of conformal Riemannian maps. We also investi-
gate the harmonicity of such maps and find necessary and sufficient conditions
for conformal anti-invariant Riemannian maps to be totally geodesic.

1. INTRODUCTION

Let (M, g,J) be an almost Hermitian manifold with almost complex structure J.
CR-submanifolds of almost Hermitian manifolds were introduced by Bejancu as a
generalization of holomorphic submanifolds and totally real submanifolds. Let
M be a real submanifold M of an almost Hermitian manifold (M, J,3). If there
are two complementary orthogonal distributions D and D+ on M such that D is
invariant (i.e., JD = D) and D is J-anti-invariant (i.e., JD+ C T(M)>), then M
is called a CR-submanifold, where T (M)~ is the normal bundle of M in M. Real
hypersurfaces of Kéhler manifolds are examples of CR-submanifolds; for details,
see [4] and [5].

Riemannian maps as a generalization of isometric immersions and Riemannian
submersions were defined by Fischer in [6]. Such maps have been studied widely
by many authors, see monograph [I3]. On the other hand, as a generalization
of holomorphic submanifolds and totally real submanifolds, invariant Riemannian
maps and anti-invariant Riemannian maps from Riemannian manifolds to almost
Hermitian manifolds were introduced in [I5]. Semi-invariant Riemannian maps
were introduced in [I4] and it was shown that such maps include CR-submanifolds
(therefore holomorphic immersions and totally real immersions), invariant Rie-
mannian maps, and anti-invariant Riemannian maps. Recently, Riemannian maps
have been investigated for various manifolds; see [8], [9] 10, [T}, 12} [13].
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As a generalization of Riemannian maps, conformal Riemannian maps have
been defined in [16] and it is shown that conformal submersions and conformal
immersions are particular conformal Riemannian maps. Recently, conformal anti-
invariant Riemannian maps and conformal slant Riemannian maps from Riemann-
ian manifolds to Kéhler manifolds have been introduced and studied in [2] and [IJ,
respectively.

In this paper, we introduce and study conformal semi-invariant Riemannian
maps from Riemannian manifolds to almost Hermitian manifolds as a generalization
of CR~submanifolds of almost Hermitian manifolds and semi-invariant Riemannian
maps to almost Hermitian manifolds. We first present the notion of conformal semi-
invariant Riemannian maps supported by examples. Then by using the existence of
conformal semi-invariant Riemannian maps, we obtain a decomposition theorem.
We also observe that conformal semi-invariant maps allow us to obtain new condi-
tions for a map to be harmonic. The total geodesicity of conformal semi-invariant
maps is also studied.

2. PRELIMINARIES

In this section, we recall some basic materials from [3, [19]. A 2n-dimensional
Riemannian manifold (M, g, Jys) is called an almost Hermitian manifold if there
exists a tensor field J of type (1,1) on M such that J? = —I and

g(X,Y)=g(JX,JY), VX,Y €(TM), (2.1)

where I denotes the identity transformation of 7, M. Consider an almost Hermitian
manifold (M, g, J) and denote by V the Levi-Civita connection on M with respect
to g. Then M is called a Kdhler manifold if J is parallel with respect to V, i.e.

(VxJ)Y =0, (2.2)

VX,Y € I(TM).

Let (M, gpr) and (N, gn) be Riemannian manifolds and suppose that ¢ : M — N
is a smooth map between them. Then the differential ¢, of ¢ can be viewed a
section of the bundle Hom(T'M,p *TN) — M, where ¢ TN is the pullback
bundle which has fibres (¢™'TN), = T, N, p € M. Hom(TM, o 'TN) has
a connection V induced from the Levi-Civita connection VM and the pullback
connection. Then the second fundamental form of ¢ is given by

(Vo) (X,Y) = V§pu(Y) = 9. (VxY) (2.3)

for XY € T'(TM), where V¥ is the pullback connection. It is known that the
second fundamental form is symmetric. A smooth map ¢ : (M, gyn) — (N, gn) is
said to be harmonic if trace(Vp,) = 0. On the other hand, the tension field of ¢
is the section 7(¢) of T'(¢ T N) defined by

T(p) =dive, = Z(v@*)(eiv €i), (2.4)
i=1
where {ej,...,e,} is the orthonormal frame on M. Then it follows that ¢ is

harmonic if and only if 7(p) = 0; for details, see [3].
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We denote by V2 both the Levi-Civita connection of (Ma, g2) and its pullback
along F. Then according to [7], for any vector field X on M; and any section
V of (range F,)*, where (range F,)* is the subbundle of F~!(T'My) with fiber
(F.(T,M))* orthogonal complement of F.(T,M) for go over p, we have VLtV
which is the orthogonal projection of V4V on (F,(T,M))* such that VE+g, = 0.
We now define Ay as

ViV = —AyF.X + V&Y, (2.5)

where Ay F, X is the tangential component (a vector field along F) of V4 V. It is
easy to see that Ay F, X is bilinear in V and F, and Ay F, X at p depends only on
Vp and FypX,. By direct computations, we obtain

g2(AvE. X, F.Y) = g2(V,(VF,)(X,Y)) (2.6)

for X,V € I'((ker F,)*) and V € I'((range F,)*). Since (VF,) is symmetric, it
follows that Ay is a symmetric linear transformation of range F,.. Here we have
the following definition from [I7].

Definition 2.1. Let F': (M™,gp) — (N™, gn) be a conformal Riemannian map.
Then F is a horizontally homothetic map if H(grad \) = 0.

We now recall the definition of conformal Riemannian maps from [16] as fol-
lows. Let (M™,gar) and (N7, gn) be Riemannian manifolds and F : (M™, gar) —
(N™, gn) a smooth map between them. Then we say that F is a conformal Rie-
mannian map at p € M if 0 < rank F,,, < min{m,n} and F, maps the horizontal
space H(p) = (ker(F.,))* conformally onto range(F,,), i.e., there exists a number
A2(p) # 0 such that

gn (FipX, FipY) = X (p)gn (X, Y)

for X, Y € H(p). Also F is called conformal Riemannian if F' is conformal Rie-
mannian at each p € M.

Finally, we recall that, in [16], the second author of the present paper showed that
the second fundamental form (VF,)(X,Y), VX,Y € I'((ker F,)*), of a conformal
Riemannian map is in the form

(VE)(X,Y)ree s — X(InA\)FY + Y(InA\)F. X — g1(X,Y)F.(gradIn \). (2.7)

Thus if we denote the (range F,.)*- component of (VF,)(X,Y) by
(VF)(X, Y)(range )™ e can write (VF)(X,Y) as

(VE)(X,Y) = (VE)(X, V)@ P 4 (VE,)(X,Y)ranse )™ (2.8)
for X,V € T'((ker F,)1). Hence we have
(VE)(X,)Y)=XInNEY +Y(In M) F. X — g1(X,Y)Fi(gradIn A)
+(VE)(X, Y)(rangeF*)J'.
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3. CONFORMAL SEMI-INVARIANT RIEMANNIAN MAPS

We present the following definition for conformal semi-invariant Riemannian
maps as a generalization of CR-submanifolds and semi-invariant Riemannian maps.

Definition 3.1. Let F' be a conformal Riemannian map from a Riemannian man-
ifold (M1, ¢1) to an almost Hermitian manifold (Ms, ga,J). Then we say that F
is a conformal semi-invariant Riemannian map at p € M if there is a subbundle
D C (range Fy) such that
range F, = D1 & Do
and
J(D1) = D1, J(D3) C (vange F.)*,

where Dy is orthogonal complementary to D; in range F,. If F' is a conformal
semi-invariant Riemannian map for any p € M, then F' is called a conformal semi-
invariant Riemannian map.

The following examples are our motivation to introduce and study conformal
semi-invariant Riemannian maps.

Example 3.1. Every CR-submanifold of an almost Hermitian manifold is a con-
formal semi-invariant Riemannian map with ker Fy, = {0} and A = 1.

The theory of CR-submanifolds has been studied widely in differential geometry,
however this subject is an active research area of differential geometry, see for
instance [I§].

Example 3.2. Every semi-invariant Riemannian map from a Riemannian manifold
to an almost Hermitian manifold is a conformal semi-invariant Riemannian map
with A = 1.

Example 3.3. Every conformal anti-invariant Riemannian map from a Riemann-
ian manifold to an almost Hermitian manifold is a conformal semi-invariant Rie-
mannian map with D; = {0}.

A conformal semi-invariant Riemannian map is said to be proper if it is not an
immersion (or submersion) and A # 1. The following proposition gives a method
to obtain examples of conformal semi-invariant Riemannian maps.

Theorem 3.1. Let Fy : (My,q1) — (Ms,g2) be a conformal submersion from a
Riemannian manifold My onto a Riemannian manifold My with the square dilation
A and Fy : (M, g2) — (Ms,gs,J) a CR-immersion from a Riemannian manifold
Ms to an almost Hermitian manifold M3 with the complex structure J. Then FyoF}
s a conformal semi-invariant Riemannian map with the square dilation .

This proposition is obvious from [I6], Theorem 5.2], and therefore we omit its
proof.

As an application of Theorem [3.1] we give the following example of proper
conformal semi-invariant Riemannian map.
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Example 3.4. Consider the map
F: (R g =% (do? + do3 + do2 + doi + dx?)) — E*

1+ T2 T3+ x4
71'5,0 )

V2 V2

(xla T2, T3, T4, 1'5) = (
which is the composition of the conformal submersion
7 (R% g = " (da? + da? + da? + da? + da?)) — B3

($]_,Z‘2,.’L’3,.’IJ4,.’175) = (xl i xza s il x47x5>
V2 V2

followed by the CR-immersion
¢:E* = C?
(21,22, 23) = (21, 22, 23,0).
It is easy to verify that F' is a conformal semi-invariant Riemannian map with

A2 = 7% with respect to the compatible almost complex structure .JJ on R*.

Let F be a conformal semi-invariant Riemannian map from a Riemannian man-
ifold (Mi,g91) to an almost Hermitian manifold (Ms, g2, J). Then for F.(X) €
[(range Fy.), X € I'((ker F})1), we write

JF.(X) = ¢F.(X) + wF,(X), (3.1)
where ¢F.(X) € I'(D;) and wF.(X) € T'(JD3). On the other hand, for V' €
I'((range F,)"), we have

JV =BV +CV, (3.2)

where BV € T'(D3) and CV € T'(u). Here p is the complementary orthogonal
distribution to w(Ds) in (range F.)*. It is easy to see that y is invariant with
respect to J.

For the geometry of the leaves of Dy, we have the following.

Theorem 3.2. Let F be a conformal semi-invariant Riemannian map from a
Riemannian manifold (M, g1) to a Kdahler manifold (Ms, go, J). Then Dy defines
a totally geodesic foliation on My if and only if

1
(i) g2(BV(In N F. X, + F.(Vx, Z), JF.X2) = g2(Acy Fu X1, JF. X5),
(ii) dAsr,w, FuX1 has no components in T'(D1),
for any X1, X, Z, Wy € T'((kerm,) ) such that F. X1, F.Xs € T'(D;), F,W; €
['(Dz) and V € T'((range F.)*) such that F.Z = BV.

Proof. For F, X1, F.Xy € T'(D;), V € I'((range F,.)*) and F.W; € I'(Dy), since F
is a conformal Riemannian map, using (2.1)), (3.2), (2.8) and (2.5) we have

2 1
92(Vx, F. X0, V) = —g2(VE) (X1, Z2)20ee B) L B (Vy, Z), JF. X>)
+ gQ(ACVF*Xh JF*X2)7
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where F,.Z = BV € I'(Dy) for Z € T'((ker F,)*). Now from (2.9) we get
2
92(Vx, Fi X0, V) = —go (X1 (In N F Z + Z(In M) F. X7 — g1(X1, Z) Fi(grad In \)
1
+F.(Vx,2),JF.X2) + g2(Acv Fi. X1, JF. X3).
Hence we have

2 1
92(Vx, Fi X3, V) = —go2(BV(In N Fu X1 + Fu(Vx,Z), JF. X5)
+92(ACVF*X17JF*X2)~

On the other hand, by using (2.1) we have

(3.3)

2 2
gg(VXlF*XQ, F*Wl) = QQ(F*XQ, Jle JF*Wl)
Then by virtue of (2.5)), (3.1)) and (3.2)), we get
2
92(Vx, Fi Xo, FEW1) = g2(FuXa, pA . w Fu X1). (3.4)
Thus the proof follows from (3.3)) and (3.4)). O

In a similar way, we get the following theorem for Ds.

Theorem 3.3. Let F' be a conformal semi-invariant Riemannian map from a
Riemannian manifold (M, g1) to a Kdhler manifold (Ms, g2, J). Then Dy defines
a totally geodesic foliation on My if and only if

(i) (VF,)(Wy, Z)(range F) 4 Vi5v,CV has no components in T'(JDs),

(i) B(VF,)(Wy, X3)(ranee FI™ has no components in I'(Ds)
for any Wi, W, X3,7Z € T'((kerm,)*) such that F.Wy, F.Wy € T'(Dy), F.X; €
I'(Dy), V € I'((range F,)*) such that F.Z = BV,

We now investigate the geometry of the leaves of (range F,) and (range F, ).
First, we give the following result.

Theorem 3.4. Let F be a conformal semi-invariant Riemannian map from a
Riemannian manifold (Mi,g1) to a Kahler manifold (Ma, g2, J). Then any two
conditions below imply the third:
(i) (range Fy) defines a totally geodesic foliation on M.
(ii) F is a horizontally homothetic conformal Riemannian map.
(iif) go(Acy FuX+F. (VY Z), 0F.Y) = go(VE WY, CW ) —go(Aur.y F. X, BW)
for any X,Y € T((kerm,)t) such that F.X,F.Y € T'(rangeF.), W €
I'((range F.)*) and V € T'((range F.)*) such that F.Z = BV.

Proof. For X,Y € T((ker F,)*) and W € T'((range F,)*), using (2.1)), (3.1) and
(13.2) we have

G (VAXFY,W) = —g2(VX F. Z, oF.Y ) + g2(VXWF.Y, BW)
— g2(VXCW, 9F.Y) + go(VRwE.Y,CW),
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where F,.Z = BW for Z € T'((ker F,)1). Since F is a conformal Riemannian map,
using (22.3), (2.5)), (2.8) and (2.9) we obtain
@ (VXEY,W) = —g;(X,Hgradln \) g2 (F. Z, pF.Y)
—g1(Z, Hgradln X)g2(F. X, F.Y)

1
—g1(X, Z)g2(Fy(gradIn A), o F.Y) + ¢2(Fu(Vx Z), oF.Y)
— 92(Awr.y FL X, BW) + g2(Aew F. X, ¢F.Y)

+ g2(VErWE,Y, CW).

Hence we have

1
G@(VAEY, W) = go(Aew F. X + F.(VxZ) — Z(In A\ F. X, pF.Y)
— g2(Awr.y F.X, BW) + go(VEwEY,CWV).
From the above equation, we can conclude that the two assertions in the theorem
imply the third. (]

In a similar way, we obtain the following theorem:

Theorem 3.5. Let F' be a conformal semi-invariant Riemannian map from a
Riemannian manifold (M, g1) to a Kihler manifold (Mo, g2, J). Then (range F,)*
defines a totally geodesic foliation on My if and only if
g (W, [V, F.X] = Vi JBV — CVESCV) = go(CV, (VE)(X, Z)5 7 (3.5)
for any V,W € I'((range F}.)1) and X, Z,Z' € T((ker F,)*) such that F.Z' = BV.
From Theorem [3.4) and Theorem we have the following theorem:

Theorem 3.6. Let F be a horizontally homothetic conformal semi-invariant Rie-
mannian map from a Riemannian manifold (M1, g1) to a Kahler manifold (Ms, g2, J).
Then Mz is a locally product manifold Maange F,) X M2 (range r,)+ i and only if

g2(Acy F. X + F. (VY 2),0F.Y) = g2 (VR WEY,CW) — go(Aur.y F. X, BW)
and
€
92(W, [V, F.X] = Vs JBV — OV EXCV) = ga(CV, (VE) (X, Z)"75e )
for any V,W € T'((range F,)*) and X,Y, Z € I'((ker F.,)*) such that F.Z = BV
Now, we give necessary and sufficient conditions for a conformal semi-invariant
Riemannian map to be totally geodesic. We recall that a differentiable map F

between Riemannian manifolds (M, g1) and (Ma, g2) is called a totally geodesic
map if (VF,)(X,Y) =0 for all X, Y € I'(TM).

Theorem 3.7. Let F' be a conformal semi-invariant Riemannian map from a
Riemannian manifold (M, g1) to a Kdhler manifold (Ms, g2, J). Then F is totally
geodesic if and only if

(a) The vertical distribution (ker F) defines a totally geodesic foliation on Mj.
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(b) The horizontal distribution (ker F,)* defines a totally geodesic foliation on
M.

(¢) S(VE)(X,Y) 8 F) 4 B (YY) — Ay, ,F.X)

n 1

= —B((VE,)(X,Y)tanee )™ L GLBLGR, 7) — F (Vx Z),
1

w((VE)(X,Y)tanee ) L B (VxY) — Ayp 2 F. X)

= —C((VF,)(X, Y)(rangeF*)J' +VELLE.Z),
for any X,Y,Z € I'(ker F,)* such that F.Y = ¢F.Z.

Proof. (a) and (b) are clear from the second fundamental form. For X,Z €

I'(ker Fy)* and V € I'(range F}), using (2.1)), (2.3), we have
(VE)(X, Z) = —J(Vx(6F.Z + wF.2)) — F.(Vx Z).
Then and imply that
(VEN(X,Z) = —J((VE)(X,Y)rmee ) 4 (VF,)(X,Y)ranse )™ F*&XY)
— Apr. zF. X + VB WE.Z — F*(%XZ),

where F,.Y = ¢F.Z for Y € I'((ker F,)1). Since F is a conformal Riemannian
map, from (3.1)) and (3.2) and taking the (range F.) and (range F,)* components,
we get

1
(VE)(X, Z)tranee ) = —¢((VE,)(X,Y) e ) 4 B (VXY) — Ayp, 2P X)
n 1
— B((VFE,)(X,y)anse )™ L gBLyE 7) — F (VX Z)
and
€ 1
(VE,) (X, z)rmee )™ — _(VE,)(X,Y)0aee ) L B (VYY) — Aup, 2 F. X)
— C((VE)(X,Y)tange F)* 4 gFL,p 7y,
Thus (VF)(X, Z) = 0 if and only if
1 s

H(VEN(X,Y)0anee F) 4 B (VxY) — Ayp, zF.X) = —B((VF,)(X,Y)ranee )

1
+ VB WE.Z) — F.(Vx 2)

and

W(VE)(X,Y)5 P L (VY) = Ay 2 F.X) = —C((VE)(X, Y) o0 P
+ VR wF.Z)

are satisfied. This completes the proof. O

In the sequel we are going to investigate the harmonicity of conformal semi-
invariant Riemannian maps. We first have the following general result.
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Theorem 3.8. Let F' be a conformal semi-invariant Riemannian map from a Rie-
mannian manifold (M1, g1) to a Kahler manifold (Ms, g2, J). Then F is harmonic
if and only if the following conditions are satisfied:

(a) the fibres are minimal,

(b) trace 9A,p, () () = BY{jwF(.) - Fu(V () = (V) JoF. () tamee F) = g,

2
(c) tracewAwF*(_)(.) — CVF)J‘LL)F*() — (V(.)J(Zﬂ*—’*(,))(rangeF*)L =0.
Proof. For U € T'(ker F,), using (2.3]) we have
1
(VE)(U,U) = —F,(VyU). (3.6)

For X € I(ker F,)*, using @), @3), B2), @3) and @5) we have

2 1
(VEN(X,X) = —~VyxJoF.X — J(—Aur. x F. X + VEXwF, X) — F.(Vx X).

Since F' is a conformal Riemannian map, from (3.1) and (3.2)), and taking the
(range F,) and (range F, )" components we obtain

1
(VE) (X, X)ange ) — A p v F, X — BVS - wF,. X — F,(VxX) 57)

2
_ (VXJ¢F*X)(range F.)

and
2
(VE)(X, X)rnee PO = g4 p v F X — CVELWwE, X — (Vx JoF, X )Fange )™
(3.8)
Then the proof follows from (3.6)), (3.7)), and (3.8]). O
p ) )
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