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CONFORMAL SEMI-INVARIANT RIEMANNIAN MAPS TO
KÄHLER MANIFOLDS

MEHMET AKIF AKYOL AND BAYRAM ŞAHIN

Abstract. As a generalization of CR-submanifolds and semi-invariant Rie-
mannian maps, we introduce conformal semi-invariant Riemannian maps from
Riemannian manifolds to almost Hermitian manifolds. We give non-trivial ex-
amples, investigate the geometry of foliations, and obtain decomposition the-
orems by using the existence of conformal Riemannian maps. We also investi-
gate the harmonicity of such maps and find necessary and sufficient conditions
for conformal anti-invariant Riemannian maps to be totally geodesic.

1. Introduction

Let (M̄, g, J) be an almost Hermitian manifold with almost complex structure J.
CR-submanifolds of almost Hermitian manifolds were introduced by Bejancu as a
generalization of holomorphic submanifolds and totally real submanifolds. Let
M be a real submanifold M of an almost Hermitian manifold (M̄, J, ḡ). If there
are two complementary orthogonal distributions D and D⊥ on M such that D is
invariant (i.e., JD = D) and D⊥ is J-anti-invariant (i.e., JD⊥ ⊆ T (M)⊥), then M
is called a CR-submanifold, where T (M)⊥ is the normal bundle of M in M̄ . Real
hypersurfaces of Kähler manifolds are examples of CR-submanifolds; for details,
see [4] and [5].

Riemannian maps as a generalization of isometric immersions and Riemannian
submersions were defined by Fischer in [6]. Such maps have been studied widely
by many authors, see monograph [13]. On the other hand, as a generalization
of holomorphic submanifolds and totally real submanifolds, invariant Riemannian
maps and anti-invariant Riemannian maps from Riemannian manifolds to almost
Hermitian manifolds were introduced in [15]. Semi-invariant Riemannian maps
were introduced in [14] and it was shown that such maps include CR-submanifolds
(therefore holomorphic immersions and totally real immersions), invariant Rie-
mannian maps, and anti-invariant Riemannian maps. Recently, Riemannian maps
have been investigated for various manifolds; see [8, 9, 10, 11, 12, 13].
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As a generalization of Riemannian maps, conformal Riemannian maps have
been defined in [16] and it is shown that conformal submersions and conformal
immersions are particular conformal Riemannian maps. Recently, conformal anti-
invariant Riemannian maps and conformal slant Riemannian maps from Riemann-
ian manifolds to Kähler manifolds have been introduced and studied in [2] and [1],
respectively.

In this paper, we introduce and study conformal semi-invariant Riemannian
maps from Riemannian manifolds to almost Hermitian manifolds as a generalization
of CR-submanifolds of almost Hermitian manifolds and semi-invariant Riemannian
maps to almost Hermitian manifolds. We first present the notion of conformal semi-
invariant Riemannian maps supported by examples. Then by using the existence of
conformal semi-invariant Riemannian maps, we obtain a decomposition theorem.
We also observe that conformal semi-invariant maps allow us to obtain new condi-
tions for a map to be harmonic. The total geodesicity of conformal semi-invariant
maps is also studied.

2. Preliminaries

In this section, we recall some basic materials from [3, 19]. A 2n-dimensional
Riemannian manifold (M, g, JM ) is called an almost Hermitian manifold if there
exists a tensor field J of type (1, 1) on M such that J2 = −I and

g(X,Y ) = g(JX, JY ), ∀X,Y ∈ Γ(TM), (2.1)
where I denotes the identity transformation of TpM . Consider an almost Hermitian
manifold (M, g, J) and denote by ∇ the Levi-Civita connection on M with respect
to g. Then M is called a Kähler manifold if J is parallel with respect to ∇, i.e.

(∇XJ)Y = 0, (2.2)
∀X,Y ∈ Γ(TM).

Let (M, gM ) and (N, gN ) be Riemannian manifolds and suppose that ϕ : M → N
is a smooth map between them. Then the differential ϕ∗ of ϕ can be viewed a
section of the bundle Hom(TM,ϕ−1TN) → M , where ϕ−1TN is the pullback
bundle which has fibres (ϕ−1TN)p = Tϕ(p)N , p ∈ M . Hom(TM,ϕ−1TN) has
a connection ∇ induced from the Levi-Civita connection ∇M and the pullback
connection. Then the second fundamental form of ϕ is given by

(∇ϕ∗)(X,Y ) = ∇ϕ
Xϕ∗(Y )− ϕ∗(∇

M

XY ) (2.3)
for X,Y ∈ Γ(TM), where ∇ϕ is the pullback connection. It is known that the
second fundamental form is symmetric. A smooth map ϕ : (M, gM ) → (N, gN ) is
said to be harmonic if trace(∇ϕ∗) = 0. On the other hand, the tension field of ϕ
is the section τ(ϕ) of Γ(ϕ−1TN) defined by

τ(ϕ) = divϕ∗ =
m∑

i=1
(∇ϕ∗)(ei, ei), (2.4)

where {e1, . . . , em} is the orthonormal frame on M . Then it follows that ϕ is
harmonic if and only if τ(ϕ) = 0; for details, see [3].
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We denote by ∇2 both the Levi-Civita connection of (M2, g2) and its pullback
along F . Then according to [7], for any vector field X on M1 and any section
V of (rangeF∗)⊥, where (rangeF∗)⊥ is the subbundle of F−1(TM2) with fiber
(F∗(TpM))⊥ orthogonal complement of F∗(TpM) for g2 over p, we have ∇F⊥

X V
which is the orthogonal projection of ∇2

XV on (F∗(TpM))⊥ such that ∇F⊥g2 = 0.
We now define AV as

∇2
XV = −AV F∗X +∇F⊥

X V, (2.5)

where AV F∗X is the tangential component (a vector field along F ) of ∇2
XV . It is

easy to see that AV F∗X is bilinear in V and F∗ and AV F∗X at p depends only on
Vp and F∗pXp. By direct computations, we obtain

g2(AV F∗X,F∗Y ) = g2(V, (∇F∗)(X,Y )) (2.6)

for X,Y ∈ Γ((kerF∗)⊥) and V ∈ Γ((rangeF∗)⊥). Since (∇F∗) is symmetric, it
follows that AV is a symmetric linear transformation of rangeF∗. Here we have
the following definition from [17].

Definition 2.1. Let F : (Mm, gM )→ (Nn, gN ) be a conformal Riemannian map.
Then F is a horizontally homothetic map if H(gradλ) = 0.

We now recall the definition of conformal Riemannian maps from [16] as fol-
lows. Let (Mm, gM ) and (Nn, gN ) be Riemannian manifolds and F : (Mm, gM )→
(Nn, gN ) a smooth map between them. Then we say that F is a conformal Rie-
mannian map at p ∈M if 0 < rankF∗p ≤ min{m,n} and F∗p maps the horizontal
space H(p) = (ker(F∗p))⊥ conformally onto range(F∗p), i.e., there exists a number
λ2(p) 6= 0 such that

gN (F∗pX,F∗pY ) = λ2(p)gM (X,Y )

for X,Y ∈ H(p). Also F is called conformal Riemannian if F is conformal Rie-
mannian at each p ∈M .

Finally, we recall that, in [16], the second author of the present paper showed that
the second fundamental form (∇F∗)(X,Y ), ∀X,Y ∈ Γ((kerF∗)⊥), of a conformal
Riemannian map is in the form

(∇F∗)(X,Y )range F∗ = X(lnλ)F∗Y + Y (lnλ)F∗X − g1(X,Y )F∗(grad lnλ). (2.7)

Thus if we denote the (rangeF∗)⊥ component of (∇F∗)(X,Y ) by
(∇F∗)(X,Y )(range F∗)⊥ , we can write (∇F∗)(X,Y ) as

(∇F∗)(X,Y ) = (∇F∗)(X,Y )range F∗ + (∇F∗)(X,Y )(range F∗)⊥ , (2.8)

for X,Y ∈ Γ((kerF∗)⊥). Hence we have

(∇F∗)(X,Y ) = X(lnλ)F∗Y + Y (lnλ)F∗X − g1(X,Y )F∗(grad lnλ)

+ (∇F∗)(X,Y )(range F∗)⊥ .
(2.9)
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3. Conformal semi-invariant Riemannian maps

We present the following definition for conformal semi-invariant Riemannian
maps as a generalization of CR-submanifolds and semi-invariant Riemannian maps.

Definition 3.1. Let F be a conformal Riemannian map from a Riemannian man-
ifold (M1, g1) to an almost Hermitian manifold (M2, g2, J). Then we say that F
is a conformal semi-invariant Riemannian map at p ∈ M if there is a subbundle
D1 ⊆ (rangeF∗) such that

rangeF∗ = D1 ⊕D2

and
J(D1) = D1, J(D2) ⊆ (rangeF∗)⊥,

where D2 is orthogonal complementary to D1 in rangeF∗. If F is a conformal
semi-invariant Riemannian map for any p ∈M , then F is called a conformal semi-
invariant Riemannian map.

The following examples are our motivation to introduce and study conformal
semi-invariant Riemannian maps.

Example 3.1. Every CR-submanifold of an almost Hermitian manifold is a con-
formal semi-invariant Riemannian map with kerF∗ = {0} and λ = 1.

The theory of CR-submanifolds has been studied widely in differential geometry,
however this subject is an active research area of differential geometry, see for
instance [18].

Example 3.2. Every semi-invariant Riemannian map from a Riemannian manifold
to an almost Hermitian manifold is a conformal semi-invariant Riemannian map
with λ = 1.

Example 3.3. Every conformal anti-invariant Riemannian map from a Riemann-
ian manifold to an almost Hermitian manifold is a conformal semi-invariant Rie-
mannian map with D1 = {0}.

A conformal semi-invariant Riemannian map is said to be proper if it is not an
immersion (or submersion) and λ 6= 1. The following proposition gives a method
to obtain examples of conformal semi-invariant Riemannian maps.

Theorem 3.1. Let F1 : (M1, g1) → (M2, g2) be a conformal submersion from a
Riemannian manifold M1 onto a Riemannian manifold M2 with the square dilation
λ and F2 : (M2, g2) → (M3, g3, J) a CR-immersion from a Riemannian manifold
M2 to an almost Hermitian manifold M3 with the complex structure J . Then F2◦F1
is a conformal semi-invariant Riemannian map with the square dilation λ.

This proposition is obvious from [16, Theorem 5.2], and therefore we omit its
proof.

As an application of Theorem 3.1, we give the following example of proper
conformal semi-invariant Riemannian map.
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Example 3.4. Consider the map

F : (R5, g = ex5(dx2
1 + dx2

2 + dx2
3 + dx2

4 + dx2
5))→ E4

(x1, x2, x3, x4, x5) 7→
(
x1 + x2√

2
,
x3 + x4√

2
, x5, 0

)
,

which is the composition of the conformal submersion

π : (R5, g = ex5(dx2
1 + dx2

2 + dx2
3 + dx2

4 + dx2
5))→ E3

(x1, x2, x3, x4, x5) 7→
(
x1 + x2√

2
,
x3 + x4√

2
, x5

)
followed by the CR-immersion

φ : E3 → C2

(x1, x2, x3) 7→ (x1, x2, x3, 0).

It is easy to verify that F is a conformal semi-invariant Riemannian map with
λ2 = e−x5 with respect to the compatible almost complex structure J on R4.

Let F be a conformal semi-invariant Riemannian map from a Riemannian man-
ifold (M1, g1) to an almost Hermitian manifold (M2, g2, J). Then for F∗(X) ∈
Γ(rangeF∗), X ∈ Γ((kerF∗)⊥), we write

JF∗(X) = φF∗(X) + ωF∗(X), (3.1)

where φF∗(X) ∈ Γ(D1) and ωF∗(X) ∈ Γ(JD2). On the other hand, for V ∈
Γ((rangeF∗)⊥), we have

JV = BV + CV, (3.2)
where BV ∈ Γ(D2) and CV ∈ Γ(µ). Here µ is the complementary orthogonal
distribution to ω(D2) in (rangeF∗)⊥. It is easy to see that µ is invariant with
respect to J .

For the geometry of the leaves of D1, we have the following.

Theorem 3.2. Let F be a conformal semi-invariant Riemannian map from a
Riemannian manifold (M1, g1) to a Kähler manifold (M2, g2, J). Then D1 defines
a totally geodesic foliation on M2 if and only if

(i) g2(BV (lnλ)F∗X1 + F∗(
1
∇X1Z), JF∗X2) = g2(ACV F∗X1, JF∗X2),

(ii) φAJF∗W1F∗X1 has no components in Γ(D1),
for any X1, X2, Z,W1 ∈ Γ((kerπ∗)⊥) such that F∗X1, F∗X2 ∈ Γ(D1), F∗W1 ∈
Γ(D2) and V ∈ Γ((rangeF∗)⊥) such that F∗Z = BV .

Proof. For F∗X1, F∗X2 ∈ Γ(D1), V ∈ Γ((rangeF∗)⊥) and F∗W1 ∈ Γ(D2), since F
is a conformal Riemannian map, using (2.1), (3.2), (2.8) and (2.5) we have

g2(
2
∇X1F∗X2, V ) = −g2((∇F∗)(X1, Z)(range F∗) + F∗(

1
∇X1Z), JF∗X2)

+ g2(ACV F∗X1, JF∗X2),
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where F∗Z = BV ∈ Γ(D2) for Z ∈ Γ((kerF∗)⊥). Now from (2.9) we get

g2(
2
∇X1F∗X2, V ) = −g2(X1(lnλ)F∗Z + Z(lnλ)F∗X1 − g1(X1, Z)F∗(grad lnλ)

+ F∗(
1
∇X1Z), JF∗X2) + g2(ACV F∗X1, JF∗X2).

Hence we have

g2(
2
∇X1F∗X2, V ) = −g2(BV (lnλ)F∗X1 + F∗(

1
∇X1Z), JF∗X2)

+ g2(ACV F∗X1, JF∗X2).
(3.3)

On the other hand, by using (2.1) we have

g2(
2
∇X1F∗X2, F∗W1) = g2(F∗X2, J

2
∇X1JF∗W1).

Then by virtue of (2.5), (3.1) and (3.2), we get

g2(
2
∇X1F∗X2, F∗W1) = g2(F∗X2, φAJF∗WF∗X1). (3.4)

Thus the proof follows from (3.3) and (3.4). �

In a similar way, we get the following theorem for D2.

Theorem 3.3. Let F be a conformal semi-invariant Riemannian map from a
Riemannian manifold (M1, g1) to a Kähler manifold (M2, g2, J). Then D2 defines
a totally geodesic foliation on M2 if and only if

(i) (∇F∗)(W1, Z)(range F∗) +∇F⊥
F∗W2

CV has no components in Γ(JD2),
(ii) B(∇F∗)(W1, X3)(range F∗)⊥ has no components in Γ(D2)

for any W1,W2, X3, Z ∈ Γ((kerπ∗)⊥) such that F∗W1, F∗W2 ∈ Γ(D2), F∗X1 ∈
Γ(D2), V ∈ Γ((rangeF∗)⊥) such that F∗Z = BV .

We now investigate the geometry of the leaves of (rangeF∗) and (rangeF∗)⊥.
First, we give the following result.

Theorem 3.4. Let F be a conformal semi-invariant Riemannian map from a
Riemannian manifold (M1, g1) to a Kähler manifold (M2, g2, J). Then any two
conditions below imply the third:

(i) (rangeF∗) defines a totally geodesic foliation on M2.
(ii) F is a horizontally homothetic conformal Riemannian map.
(iii) g2(ACV F∗X+F∗(∇M1

X Z), φF∗Y ) = g2(∇F⊥
X ωF∗Y, CW )−g2(AωF∗Y F∗X,BW )

for any X,Y ∈ Γ((kerπ∗)⊥) such that F∗X,F∗Y ∈ Γ(rangeF∗), W ∈
Γ((rangeF∗)⊥) and V ∈ Γ((rangeF∗)⊥) such that F∗Z = BV .

Proof. For X,Y ∈ Γ((kerF∗)⊥) and W ∈ Γ((rangeF∗)⊥), using (2.1), (3.1) and
(3.2) we have

g2(∇2
XF∗Y,W ) = −g2(∇2

XF∗Z, φF∗Y ) + g2(∇2
XωF∗Y,BW )

− g2(∇2
XCW,φF∗Y ) + g2(∇2

XωF∗Y, CW ),
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where F∗Z = BW for Z ∈ Γ((kerF∗)⊥). Since F is a conformal Riemannian map,
using (2.3), (2.5), (2.8) and (2.9) we obtain

g2(∇2
XF∗Y,W ) = −g1(X,H grad lnλ)g2(F∗Z, φF∗Y )

− g1(Z,H grad lnλ)g2(F∗X,φF∗Y )

− g1(X,Z)g2(F∗(grad lnλ), φF∗Y ) + g2(F∗(
1
∇XZ), φF∗Y )

− g2(AωF∗Y F∗X,BW ) + g2(ACWF∗X,φF∗Y )
+ g2(∇F⊥

X ωF∗Y, CW ).

Hence we have

g2(∇2
XF∗Y,W ) = g2(ACWF∗X + F∗(

1
∇XZ)− Z(lnλ)F∗X,φF∗Y )

− g2(AωF∗Y F∗X,BW ) + g2(∇F⊥
X ωF∗Y, CW ).

From the above equation, we can conclude that the two assertions in the theorem
imply the third. �

In a similar way, we obtain the following theorem:

Theorem 3.5. Let F be a conformal semi-invariant Riemannian map from a
Riemannian manifold (M1, g1) to a Kähler manifold (M2, g2, J). Then (rangeF∗)⊥
defines a totally geodesic foliation on M2 if and only if

g2(W, [V, F∗X]−∇F⊥
F∗XJBV − C∇F⊥

F∗XCV ) = g2(CV, (∇F∗)(X,Z)range F⊥∗ ) (3.5)

for any V,W ∈ Γ((rangeF∗)⊥) and X,Z,Z ′ ∈ Γ((kerF∗)⊥) such that F∗Z ′ = BV .

From Theorem 3.4 and Theorem 3.5, we have the following theorem:

Theorem 3.6. Let F be a horizontally homothetic conformal semi-invariant Rie-
mannian map from a Riemannian manifold (M1, g1) to a Kähler manifold (M2, g2, J).
Then M2 is a locally product manifold M2(range F∗) ×M2(range F∗)⊥ if and only if

g2(ACV F∗X + F∗(∇M1
X Z), φF∗Y ) = g2(∇F⊥

X ωF∗Y, CW )− g2(AωF∗Y F∗X,BW )

and
g2(W, [V, F∗X]−∇F⊥

F∗XJBV − C∇F⊥
F∗XCV ) = g2(CV, (∇F∗)(X,Z)range F⊥∗ )

for any V,W ∈ Γ((rangeF∗)⊥) and X,Y, Z ∈ Γ((kerF∗)⊥) such that F∗Z = BV .

Now, we give necessary and sufficient conditions for a conformal semi-invariant
Riemannian map to be totally geodesic. We recall that a differentiable map F
between Riemannian manifolds (M1, g1) and (M2, g2) is called a totally geodesic
map if (∇F∗)(X,Y ) = 0 for all X,Y ∈ Γ(TM1).

Theorem 3.7. Let F be a conformal semi-invariant Riemannian map from a
Riemannian manifold (M1, g1) to a Kähler manifold (M2, g2, J). Then F is totally
geodesic if and only if

(a) The vertical distribution (kerF∗) defines a totally geodesic foliation on M1.
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(b) The horizontal distribution (kerF∗)⊥ defines a totally geodesic foliation on
M1.

(c) φ((∇F∗)(X,Y )(range F∗) + F∗(
1
∇XY )−AωF∗ZF∗X)

= −B((∇F∗)(X,Y )(range F∗)⊥ +∇F⊥
X ωF∗Z)− F∗(

1
∇XZ),

ω((∇F∗)(X,Y )(range F∗) + F∗(
1
∇XY )−AωF∗ZF∗X)

= −C((∇F∗)(X,Y )(range F∗)⊥ +∇F⊥
X ωF∗Z),

for any X,Y, Z ∈ Γ(kerF∗)⊥ such that F∗Y = φF∗Z.

Proof. (a) and (b) are clear from the second fundamental form. For X,Z ∈
Γ(kerF∗)⊥ and V ∈ Γ(rangeF∗), using (2.1), (2.3), (3.2) we have

(∇F∗)(X,Z) = −J(
2
∇X(φF∗Z + ωF∗Z))− F∗(

1
∇XZ).

Then (2.8) and (2.5) imply that

(∇F∗)(X,Z) = −J((∇F∗)(X,Y )(range F∗) + (∇F∗)(X,Y )(range F∗)⊥ + F∗(
1
∇XY )

−AωF∗ZF∗X +∇F⊥
X ωF∗Z − F∗(

1
∇XZ),

where F∗Y = φF∗Z for Y ∈ Γ((kerF∗)⊥). Since F is a conformal Riemannian
map, from (3.1) and (3.2) and taking the (rangeF∗) and (rangeF∗)⊥ components,
we get

(∇F∗)(X,Z)(range F∗) = −φ((∇F∗)(X,Y )(range F∗) + F∗(
1
∇XY )−AωF∗ZF∗X)

− B((∇F∗)(X,Y )(range F∗)⊥ +∇F⊥
X ωF∗Z)− F∗(

1
∇XZ)

and

(∇F∗)(X,Z)(range F∗)⊥ = −ω((∇F∗)(X,Y )(range F∗) + F∗(
1
∇XY )−AωF∗ZF∗X)

− C((∇F∗)(X,Y )(range F∗)⊥ +∇F⊥
X ωF∗Z).

Thus (∇F∗)(X,Z) = 0 if and only if

φ((∇F∗)(X,Y )(range F∗) + F∗(
1
∇XY )−AωF∗ZF∗X) = −B((∇F∗)(X,Y )(range F∗)⊥

+∇F⊥
X ωF∗Z)− F∗(

1
∇XZ)

and

ω((∇F∗)(X,Y )(range F∗) + F∗(
1
∇XY )−AωF∗ZF∗X) = −C((∇F∗)(X,Y )(range F∗)⊥

+∇F⊥
X ωF∗Z)

are satisfied. This completes the proof. �

In the sequel we are going to investigate the harmonicity of conformal semi-
invariant Riemannian maps. We first have the following general result.
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Theorem 3.8. Let F be a conformal semi-invariant Riemannian map from a Rie-
mannian manifold (M1, g1) to a Kähler manifold (M2, g2, J). Then F is harmonic
if and only if the following conditions are satisfied:

(a) the fibres are minimal,

(b) traceφAωF∗(.)(.)−B∇F⊥
(.) ωF∗(.)−F∗(

1
∇(.)(.))− (

2
∇(.)JφF∗(.))(range F∗) = 0,

(c) traceωAωF∗(.)(.)− C∇F⊥
(.) ωF∗(.)− (

2
∇(.)JφF∗(.))(range F∗)⊥ = 0.

Proof. For U ∈ Γ(kerF∗), using (2.3) we have

(∇F∗)(U,U) = −F∗(
1
∇UU). (3.6)

For X ∈ Γ(kerF∗)⊥, using (2.1), (2.3), (3.2), (2.8) and (2.5) we have

(∇F∗)(X,X) = −
2
∇XJφF∗X − J(−AωF∗XF∗X +∇F⊥

X ωF∗X)− F∗(
1
∇XX).

Since F is a conformal Riemannian map, from (3.1) and (3.2), and taking the
(rangeF∗) and (rangeF∗)⊥ components we obtain

(∇F∗)(X,X)(range F∗) = φAωF∗XF∗X − B∇F⊥
X ωF∗X − F∗(

1
∇XX)

− (
2
∇XJφF∗X)(range F∗)

(3.7)

and

(∇F∗)(X,X)(range F∗)⊥ = ωAωF∗XF∗X − C∇F⊥
X ωF∗X − (

2
∇XJφF∗X)(range F∗)⊥ .

(3.8)
Then the proof follows from (3.6), (3.7), and (3.8). �
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