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SELBERG ZETA-FUNCTION ASSOCIATED TO COMPACT
RIEMANN SURFACE IS PRIME

RAMŪNAS GARUNKŠTIS

Abstract. Let Z(s) be the Selberg zeta-function associated to a compact
Riemann surface. We consider decompositions Z(s) = f(h(s)), where f and
h are meromorphic functions, and show that such decompositions can only be
trivial.

1. Introduction

We continue the investigation of decompositions of the Selberg zeta-function
which was started in Garunkštis and Steuding [6]. First we reproduce required
definitions. Let s = σ+it be a complex variable and X a compact Riemann surface
of genus g ≥ 2 with constant negative curvature −1. The surface X can be written
as a quotient Γ\H, where Γ ⊂ PSL(2,R) is a strictly hyperbolic Fuchsian group
and H is the upper half-plane of C. Then the Selberg zeta-function associated with
X = Γ\H is defined by (see Hejhal [8, § 2.4, Definition 4.1])

Z(s) =
∏
{P0}

∞∏
k=0

(1−N(P0)−s−k). (1.1)

Here {P0} is the conjugacy class of a primitive hyperbolic element P0 of Γ and
N(P0) = α2 if the eigenvalues of P0 are α and α−1 with |α| > 1. Equation (1.1)
defines the Selberg zeta-function in the half-plane σ > 1. The function Z(s) can
be extended to an entire function (see [8, § 2.4, Theorem 4.25]).
Definition 1.1 (Gross [7], Chuang and Yang [1, Section 3.2], [6]). Let F be a
meromorphic function. Then an expression

F (z) = f(h(z)), (1.2)
where f is meromorphic and h is entire (h may be meromorphic when f is a
rational function), is called a decomposition of F , with f and h as its left and right
components, respectively. F is said to be prime in the sense of a decomposition
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if for every representation of F of the form (1.2) we have that either f or h is
linear. If every representation of F of the form (1.2) implies that f is rational or
h is a polynomial, we say that F is pseudo-prime in the sense of a decomposition.
Furthermore, F is said to be left-prime (right-prime) if every factorization (1.2)
implies that f is linear whenever h is transcendental (h is linear whenever f is
transcendental).

Liao and Yang [10] showed that the Riemann zeta-function is prime. In [6] the
following theorem is proved.

Theorem A. The Selberg zeta-function Z associated with a compact Riemann
surface of genus g is pseudo-prime and right-prime. Moreover, if Z(s) = f(h(s)),
where f is rational and h is meromorphic, then f is a polynomial of degree k, where
k divides 2g − 2, and h is an entire function.

Here we complete Theorem A.

Theorem 1.2. The Selberg zeta-function Z associated with a compact Riemann
surface of genus g ≥ 2 is prime.

Theorem 1.2 follows from Theorem A, the property that Z(s) has a simple zero
at s = 1 ([8, § 2.4, Theorem 4.11]), and the following lemma.

Lemma 1.3. If there exist a polynomial P and an entire function h such that
Z(s) = P (h(s)) then the polynomial P has only one root in the complex plane
(counting without multiplicities).

The proof of Lemma 1.3 is based on the distribution of zeros of Z(s)−a, a ∈ C,
(such zeros are called a-points of Z(s)) and of zeros of Z ′(s) in the left half-plane
of C. These zeros are described below.

The Selberg zeta-function Z(s) has trivial zeros at integers s = −n, n ≥ 1, of
multiplicity (2g − 2)(2n + 1); at s = 0 with multiplicity 2g − 1; and an already
mentioned zero at s = 1 with multiplicity 1 (see [8, § 2.4, Theorem 4.11], also for
nontrivial zeros).

For the trivial zeros of Z ′(s), Theorem 1 from [5] together with the equality
Z(s) = Z(s) give the following proposition.

Proposition 1.4.
(i) There is σ0 ≥ 1 such that Z ′(s) 6= 0 in σ ≥ σ0;

(ii) the function Z ′(s) has zeros at s = n of multiplicity (2g − 2)(1− 2n)− 1 for
any n ≤ −1, and at s = 0 of multiplicity 2g − 2.

Moreover, for any 0 < ε < 1/2, there is a constant n0 = n0(ε) ≤ −1 such that
(iii) Z ′(s) has a simple real zero in the disc |s+ 1/2− n| ≤ ε for any n ≤ n0;
(iv) Z ′(s) has no other zeros in σ ≤ n0 except those mentioned in (ii) and (iii).

For more about the zeros of the derivative of the Selberg zeta-function see [4,
11, 12].

For the a-points of Z(s) we will prove the following two statements.
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Proposition 1.5. Let b > 0 and 1/6 < r < 1/2. Then there exists a negative
number N = N(Z, b, r) such that, for a ∈ C, 0 < |a| ≤ b, the function Z(s)− a has
(2g−2)(1−2n) simple zeros in |s−n| < r, where n < N are integers. Furthermore,
Z(s)− a has no other zeros in σ < N .

On the other hand, Proposition 1.4 implies that, for sufficiently large negative n,
a neighborhood of n+ 1/2 contains a double zero of Z(s)− Z(n+ 1/2).

Using Proposition 1.5 and the particular kind of polynomials P (z) = zk +C we
can easily demonstrate the main idea of the proof of Lemma 1.3. Indeed, let

Z(s) = h(s)k + C,

where C 6= 0 and h(s) is an entire function. Then all zeros of Z(s) − C are at
least of order k. By Proposition 1.5 we see that k = 1 and Lemma 1.3 is true for
this particular kind of polynomials. To consider the general case we will need the
following consequence of Proposition 1.5.

Corollary 1.6. Let a : [0, 1] → C \ 0 be a continuous function. Then for any
sufficiently large negative n there are (2g − 2)(2n + 1) continuous functions sj :
[0, 1] → C such that, for each j, we have Z(sj(x)) = a(x), |sj(x) − n| < 1/3, and
sj(x) 6= sm(x) if j 6= m and x ∈ [0, 1].

In the last corollary, 1/3 can be replaced by any number r, 1/6 < r < 1/2.
Various properties of a-points of Selberg zeta-functions were considered in [2, 3].

The next section contains the proofs of Proposition 1.5, Corollary 1.6, and
Lemma 1.3.

2. Proofs

Proof of Proposition 1.5. We have (see [8, § 2.4, Theorem 4.12])

Z(s) = f(s)Z(1− s), (2.1)

where

f(s) = exp
(

area(X)
∫ s−1/2

0
v tan(πv) dv

)
.

It is known ([5, Lemma 6]) that, for t ≥ 0 and s not an integer,∫ s−1/2

0
v tan(πv) dv

= i(s− 1/2)2

2 − s− 1/2
π

log
(
1 + e2πi(s−1/2))+ i

2π2 Li2(−e2πi(s−1/2)) + i

24 ,

where the integration is along the straight line segment joining the origin to s−1/2
if s is not on the real line; if s is on the real line, and not an integer, we define
the integral by the requirement of continuity as s is approached from the upper
half-plane; furthermore, the branch of the logarithm is chosen such that

−π/2 ≤ = log
(
1 + e2πi(s−1/2)) ≤ π/2.
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Then, for σ → −∞,

|f(s)|

= exp
(

area(X)
(
− (σ − 1/2)t− σ − 1/2

π
log |1 + e2iπ(s−1/2)|+O(|t|+ 1)

))
(2.2)

uniformly in t ≥ 0. Let

g(σ, t) = t+ 1
π

log |1 + e2iπ(σ−1/2+it)|.

We will observe that there is δr > 0 such that

g(σ, t) > δr, (2.3)

where s = σ+ it lies on the semicircle |s−n| = r, t ≥ 0, n ∈ Z, and 1/6 < r < 1/2.
Note that g(x + n, t) = g(−x + n, t), x ∈ R. Thus it is enough to prove (2.3) for
the following quarter of the circle: |s − n| = r, t ≥ 0, 0 ≤ σ − n ≤ r, which we
parametrize by t = x, σ =

√
r2 − x2 + n, x ∈ [0, r]. Consequently we consider the

function
q(x) = g(

√
r2 − x2 + n, x).

Straightforward calculations show that q(0) > 0 and q′(x) > 0 for 0 ≤ x ≤ r,
1/6 < r ≤ 1/2. This establishes the inequality (2.3).

Hence, for any given real positive number Y and 1/6 < r < 1/2, there is a
negative number M = M(Y, r) such that

|f(s)| = exp (area(X)(−(σ − 1/2)g(σ, t) +O(|t|+ 1))) > Y,

if |s− n| = r, t ≥ 0, and n < M . The Dirichlet series expansion of Z(s) yields

|Z(s)| > 1/2 (2.4)

if σ is sufficiently large. Note that

Z(s) = Z(s). (2.5)

Then Rouché’s theorem gives that for sufficiently large negative n the functions
Z(s) and Z(s) − a have the same number of zeros in the disc |s − n| ≤ r. In
this disc Z(s) has only one distinct zero at s = n and clearly Z(n) 6= a. This,
1/6 < r < 1/2, and Proposition 1.4 give that Z(s)−a and (Z(s)−a)′ = Z ′(s) have
no common zeros in σ < N . Accordingly, all zeros of Z(s)−a located in |s−n| ≤ r
are simple.

It remains to show that for any sufficiently large negative n the area {s : |s−n| >
r, n − 1/2 ≤ σ ≤ n + 1/2} is free from zeros of Z(s) − a. This follows by the
inequalities ∂g(σ, t)/∂t > 0 if t > 0, σ ∈ R and g(σ, 0) > 0 if |σ − 1/2 − n| < 1/3,
together with formulas (2.1)–(2.5). Proposition 1.5 is proved. �
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Lemma 2.1. If the polynomial P (z) has at least two different roots, then there is
a nonzero constant c such that P (z)− c has a multiple root.

Proof. Let degP = k ≥ 2. Conversely to the statement of the lemma, suppose
that the roots of P (z) − c are simple for all c 6= 0. Then (P (z) − c)′ = P ′(z)
has no common roots with P (z) − c for any c 6= 0. Therefore, for any root z′j ,
j ∈ {1, . . . , k − 1}, of P ′(z), we have P (z′j) = 0. This is possible only if P (z) =
a(z−z′1)k and z′j = z′1, for all j ∈ {2, . . . , k−1}. The contradiction obtained proves
the lemma. �

Proof of Corollary 1.6. By Proposition 1.5, for any large negative n and fixed x ∈
[0, 1], there are exactly (2g − 2)(n + 1) simple zeros sj(x) of Z(s) − a(x) in the
disc |s − n| < 1/3. Then the corollary follows by the implicit function theorem
([9, Theorem 2.4.1]) from which we see that Z(s) is a one-to-one function in some
neighborhood of each sj(x), j = 1, . . . , (2g − 2)(n+ 1), x ∈ [0, 1]. �

Proof of Lemma 1.3. Note that P cannot be a constant polynomial. To obtain a
contradiction, assume that Z(s) = P (h(s)) and the polynomial P , degP = k, has
at least two different roots. Then Lemma 2.1 implies the existence of a1 such that
P ′(a1) = 0 and P (a1) 6= 0. Therefore we can write

P (z)− P (a1) = d(z − a1)k1 . . . (z − am)km , (2.6)

where k1 ≥ 2 and k1 + · · ·+ km = k. In view of Proposition 1.5 there are infinitely
many zeros of Z(s)− P (a1) each of which lies at a distance smaller than 1/3 from
some negative integer. Thus there are an infinite subset S of these zeros and aj
defined by (2.6) such that h(ρ) − aj = 0 for ρ ∈ S. If kj ≥ 2 then the zeros ρ are
multiple zeros of Z(s)−P (a1) and this contradicts Proposition 1.5. Hence kj = 1,
P ′(aj) 6= 0, and by (2.6) we see that j ≥ 2. Therefore there is a continuous function
a : [0, 1]→ C, such that a(0) = aj , a(1) = a1, and

P ′(a(x)) 6= 0 for x ∈ [0, 1). (2.7)

By Corollary 1.6 there is a continuous function ψ : [0, 1]→ C such that ψ(0) ∈ S,

Z(ψ(x)) = P (a(x)), (2.8)

and, for x ∈ [0, 1] and some large negative integer n,

|ψ(x)− n| < 1/3.

Note that Z(ψ(x)) = P (h(ψ(x))). To get the contradiction we will show that
h(ψ(1)) = a1. By (2.8)

P (h(ψ(x))) = P (a(x)).
In view of (2.7) we have that P (z) is a one-to-one function in a sufficiently small
neighborhood of any a(x), x ∈ [0, 1). Then h(ψ(0)) = a(0) leads to the equality
h(ψ(x)) = a(x) for x ∈ [0, 1). Continuity gives h(ψ(1)) = a(1) = a1 and thus
z = ψ(1) is a multiple zero of Z(z) − Z(ψ(1)). This contradicts Proposition 1.5
and proves Lemma 1.3. �

Rev. Un. Mat. Argentina, Vol. 62, No. 1 (2021)



218 RAMŪNAS GARUNKŠTIS
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