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WEIGHT DISTRIBUTION OF CYCLIC CODES DEFINED
BY QUADRATIC FORMS AND RELATED CURVES

RICARDO A. PODESTA AND DENIS E. VIDELA

ABSTRACT. We consider cyclic codes C associated to quadratic trace forms in
m variables Qg (z) = Trym /q(zR(z)) determined by a family £ of g-linearized
polynomials R over Fym, and three related codes Cz g, Cz,1, and Cra. We
describe the spectra for all these codes when L is an even rank family, in terms
of the distribution of ranks of the forms Qg in the family £, and we also com-
pute the complete weight enumerator for C,. In particular, considering the
family £ = (xqe), with £ fixed in N, we give the weight distribution of four
parametrized families of cyclic codes Cy, Cp o, Cy,1, and Cp o over Fy with zeros
{a*(‘?[*l)}, {1,0F(th1>}7 {ofl,()F(qurl)}7 and {1,04’1,01’(‘1@*1)} respec-
tively, where ¢ = p% with p prime, « is a generator of IF:;,,L, and m/(m,¥)
is even. Finally, we give simple necessary and sufficient conditions for Artin—
Schreier curves y? —y = xR(z)+ Bz, p prime, associated to polynomials R € £
to be optimal. We then obtain several maximal and minimal such curves in
the case £ = <£Ep£> and £ = (xpe,mpgz).

1. INTRODUCTION

Let ¢ = p®, with p prime. A linear code C of length n over F, is a subspace
of IFy of dimension k. If C has minimal distance d = min{d(c, ') : ¢,¢’ € C, ¢ # '},
where d(-, ) is the Hamming distance in Fy, then C is called an [n, k, d]-code. One
of the most important families of codes are the cyclic ones. A code is cyclic if given
a codeword ¢ = (c1,...,¢y) € C the cyclic shift s(c) = (cn,c1,...,cn-1) is also
in C. The weight of ¢ € C is w(c) = #{0 < i < n: ¢; # 0}; that is, the number of
non-zero coordinates of ¢. For 0 < i < n the numbers A; = #{c € C : w(c) =i} are
called the frequencies and the sequence Spec(C) = (Ao, A1,...,A,) is called the
wetght distribution or the spectrum of C. A very good reference for general coding
theory is the book [7].

Fix a a generator of F},.. Consider h(z) = hy(z)---hi(z) € Fylz], where the

hj(x)’s are different irreducible polynomials over F,. For each j = 1,...,t, let
g; = a~% be a root of h;(x), n; be the order of g;, and m; be the minimum

positive integer such that ¢ = 1 (mod n;). Then, deg(h;(z)) = m; for all j.
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Put n = qmé_l, d = ged(g™ — 1,81,...,8¢). Then, by Delsarte’s theorem of
trace and duals ([2]), the g-ary code C = {c(a1,...,a;) : a; € Fym; } with
t
claty...,a¢) = (Z’I‘rqm7/q a;) ZTrq " 14(a395), ZTr mjrq(aig;” 1))7 (1.1)
J=1
where Trym; , is the trace funct1on from Fm; to Fq, is an [n, k]-cyclic code with
check polynomial h(z) and dimension k = mj + -+ - + my.

The computation of the spectra of cyclic codes is in general a difficult task. The
recent survey [3] by Dinh, Li, and Yue shows the progress made on this problem
in the last 20 years using different techniques: exponential sums, special nonlinear
functions over finite fields, quadratic forms, Hermitian forms graphs, Cayley graphs,
Gauss and Kloosterman sums. In [5], Feng and Luo computed the weight distribu-
tion of the cyclic code of length n = p™ — 1 with zeros {a ™!, a_(p£+1)}, where a is a
generator of Fr,., £ > 0 and m/(m, £) odd, by using a perfect nonlinear function. In
another work ([4]), they used quadratic forms to calculate the weight distribution of
the cyclic codes with zeros {a =2, a—(p‘+1)} and {a~ !, 072 a_(p“’l)}, respectively,
when p is an odd prime and (m, £) = 1. These methods were used by other authors
to calculate the spectra of other cyclic codes over F,, when p is an odd prime. All
these results are summarized in Theorem 2.4 in [3].

In this paper, we will explicitly compute the weight distributions of some general
families of cyclic codes over F,. In particular, we will compute the spectra of cyclic
codes with zeros {a~ (D} {1,a=@+D}, {a~1, o=@ *+D} and {1,a"!, o=@ +1)}
in all characteristics, where « is a generator of F;.. and m/(m,¥) is even (i.e. new
cases not covered in [5] and more general ones), by using quadratic forms and
related exponential sums.

We now give a brief summary of the results in the paper. In Section 2 we recall
quadratic forms @ in m variables over finite fields and their absolute invariants: the
rank and the type. We define certain exponential sums S¢ (8) and compute their
values and distributions (Lemma . We then consider the particular quadratic
form @ (z) = Trqm/q(’y:nq“rl), with v € Fy, £ € N. We recall the distribution
of ranks and types given by Klapper in [8] and [9]. These facts will be later used
(Sections 3-5) to compute the spectra of some families of cyclic codes.

In the next section, we consider cyclic codes defined by general quadratic forms
determined by g¢-linearized polynomials and compute their spectra in some cases.
More precisely, we consider £ = (qul , xq£2, ... ,xq£5> C Fym[z], the associated code

Ce= {(Trqm/q(xR(x)))IeFflm tReL}

and three related codes Cz o, Cg,1, and Cg o (see ) If £ is an even rank family
(see Definition [3.1)) we give the weight distributions of C¢, Cr 0, Cr,1, and Cr 2 (see
Theorems and and Tables 1-4). In Propositionwe also give the complete
weight enumerator of C.

In the next sections we consider two particular even rank families: £ = <xqz>
and L = <qu7mq3[>, with £ € N. In Section 4, we compute the spectrum of the
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code C; defined by the family of quadratic forms Q. , = ’qu/q(vxqz‘“), v € Fym,
and the spectra of the related codes Cy, C¢1, and Cy 2 (see Theorems and
and Tables 5-8). As a consequence, Cy turns out to be a 2-weight code. The
complete weight enumerator of Cy is given in Corollary [£:2} In Section 5 we obtain
similar results for the codes Cp 3s, Cr 30,0, Co,3¢,1, and Cp 3.2 (see Theorem and
Tables 9-10).

In the last section, we consider Artin—Schreier curves of the form

Crp " —y = oR(z) + Ba

where p is prime, f € Fpm, and R is a p-linearized polynomial over Fpm. In
Proposition [6.1] we give simple necessary and sufficient conditions for these curves
to be optimal, that is, curves attaining the equality in the Hasse—Weil bound, in
terms of the degree of R and the rank r of the associated quadratic form Qg(x) =
Trpm /(v R(x)). We then show in Theorem [6.3| that there are several maximal and
minimal curves in the family

Yy —y=y2" 4 Bz, y E€Fm, B EFym.
In the binary case p = 2, Van der Geer and Van der Vlugt have found the same

curves for £ = 1 and 8 = 0 (see [I2]). Thus, we extend their result for any p, ¢,
and 8. We also show the existence of optimal curves of the form

2P —y = 2P 4 a4 o

with v1,73 € Fym, 8 € Fpm.

2. QUADRATIC FORMS OVER FINITE FIELDS AND EXPONENTIAL SUMS

A quadratic form in Fym is an homogeneous polynomial g(z) in Fym[z] of de-
gree 2. We want to consider more general functions. Any function

Q : ]qu — Fq

can be identified with a polynomial of m variables over F, via an isomorphism
Fym ~ " of Fy-vector spaces. Such @ is said to be a quadratic form if the corre-
sponding polynomial is homogeneous of degree 2. The rank of @ is the minimum
number 7 of variables needed to represent () as a polynomial in several variables.
Alternatively, the rank of () can be computed as the codimension of the F4-vector
space V={y € Fm : Q(y) =0, Q(z+y) = Q(z), Vo € Fym}. That is, |V| = ¢™".
Two quadratic forms @1, Q2 are equivalent if there is an invertible F,-linear function
S : Fym — Fym such that Q1(z) = Q2(S(x)).

Fix @ a quadratic form from Fym to F,. It will be convenient to consider, for
each f € Fym and £ € F,, the number

Nop(§) = #{x € Fgm : Q) + Trgm /q(Bx) = £}

We will abbreviate Ng(§) = Ng,0(§), Nog,s = Ng,5(0), and Ng = Ng(0) = #ker Q.
It is a classic result that quadratic forms over finite fields are classified in three
different equivalent classes. This classification depends on the parity of the char-
acteristic (see for instance [I0]). But in both characteristics (even or odd), there
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are 2 classes with even rank (usually called type 1 and 3) and one of odd rank. For
even rank, we will use the notation

+1 if @ is of type 1,
£ =
@ —1 if Q is of type 3,

and call this sign the type of (). The number Ng(§) does not depend on the
characteristic and it is given by

No(&) =q™ ' +equ(&) g™ 27t

where v(0) = ¢ — 1 and v(z) = 1 if z € F} (see [10]). From the works [8, 9] of
Klapper we also know the distribution of these numbers Ng 5(&), which are given
as follows.

Lemma 2.1. Let QQ be a quadratic form of m variables over Fy of even rank r.
Then, for all & € Fy, there are ¢™ — q" elements § € Fgm such that Ng g(&) =
g™t and ¢ + equ(c) gz elements B € Fym such that Ng (&) = ¢™ ' +
equ(€ + ¢)g™ 271, where ¢ runs on F,,.

Given a quadratic form @, we can consider the exponential sums
Try/p a(Q(Z)+T‘rqm' q(ﬁz)‘i'b)
CHOED DD SR ), (21)
CLE]F; IE]qu

27mi

where ¢, = e » , and put Sg(8) = Sq,0(8). We now give the values of Sg (5) as
well as their distributions.

Lemma 2.2. Let Q(z) be a quadratic form over F, of even rank r. Then,

0 q™ — q" times,
So(B)=<elg—1)g™ % ¢ ' +elg—1)gz" times,
—eq™ 2 ("t —eqz V) (g — 1) times;
0 q™ — q" times,
Sou(B) = qelqg— 1)qm_% gt —eqz! times,
—eq™ % q" —q "t +eqE ! times.

Proof. Notice that
} : } : Trq)p(a(Q(x)+Trgm /q (B)))
SQ(ﬂ) = Cp ! !

IIE]F; z€F;m

Trq/p(a(Q(x)+Trgm ,q(8
_ Z ZCP /p(a(Q(x) /(z)))_qm.

z€F,m a€lF,
Hence, So(8) = ¢Ng,5(0) — ¢™. Similarly, we get Sg (8) = ¢Ng,3(—b) —¢™. The
result now follows from Lemma 211 O
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The quadratic form Trgm /q(w:qz“). A whole family of quadratic forms over F, in
m variables are given by

Qr(z) = Trgm g (xzR(2)),
where R(z) is a ¢-linearized polynomial over F,. We are interested in the simplest
case, when R(z) is the monomial R, ¢(x) = vzt with € €N, y € Fom, ie.

4
erl(l‘) = Trqnl/q('qu +1)
The next theorems, due to Klapper, give the distribution of ranks and types of the
family of quadratic forms {Q~ ¢(z) = Trqm/q('qu[“) iy €Fgm, £ € N}

For integers m, ¢ we will use the notations

and = (71)%””

M= .0
and denote the set of (¢* + 1)-th powers in F,m by
£ *
Sgm(0) ={z? T 1z € Fium}. (2.2)

Theorem 2.3 (Even characteristic, [§]). Let g be a power of 2 and m,¢ € N such
that my is even. Then Q. ¢ is of even rank and we have:

(a) Ifeg =21 and v € Sqm(€) then Q. ¢ is of type F1 and has rank m — 2(m,{).
(b) Ifeq ==£1 and v & Sqm(l) then Q- ¢ is of type £1 and has rank m.

For g odd, consider the sets of integers
Xgm(l) ={0<t<N:t=0(L)} and

Yzl,m(z) = {O <t<N:t= é (L)}’ (23)

where N =¢™ —1and L = q(m,é) +1.

Theorem 2.4 (Odd characteristic, [9]). Let g be a power of an odd prime p and

let m, £ be non-negative integers. Put v = o' with o a primitive element in Fgm.

Then, we have:

(a) Ifeg =1 andt € Xy, (L) then Q¢ is of type —1 and has rank m — 2(m, {).

(b) Ifes =1 and t ¢ Xg.m (L) then Q¢ is of type 1 and has rank m.

(c) If me is even, ep = —1, and t € Y, (£) then Q¢ is of type 1 and has rank
m —2(m,?).

(d) If my is even, ep = —1, and t ¢ Yg ,,,(¢) then Q. ¢ is of type —1 and has rank m.

We will need the following result whose proof is elementary.

Lemma 2.5. Let q be a prime power and m, £ integers. If my is even then we have

(@ =1L +1) =¢"™" + 1.

Lemma 2.6. Let M = #S5,.,(0), M1 = #Xqm(£), and My = #Y, ,({); put

M =¢q"—1-M, M{ =q™—1— M, and M5 = q™ —1— M,. If my is even then
m

M:Mlezzqi_l and M’:M’:M’:q(mve)&
q(m,€)+1 1 2 q(mxf)—i—l'
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Proof. Let o be a primitive element of Fym; then S ,,(¢) = (a4"t1), and this

implies that M = (qm(ﬁ;hl) = q(‘{:?g}rl, by Lemma [2.5] On the other hand, if &,

N, s1, and s are non-negative integers with k | N and 0 < s1,s9 < k — 1, then

#{ie{l,...,N}:i=s mod k} = #{i € {1,...,N} :i = sy mod k} = £.

Therefore, if g™ + 1 | ¢™ — 1, we have that M; = M, = q(‘ﬁigil. Clearly, we

obtain M’ = M| = M} = ¢(™* M as was to be shown. O

3. WEIGHT DISTRIBUTION OF CYCLIC CODES DEFINED BY TRACE FORMS

Let £ C Fym[z] be a finite dimensional Fym-subspace containing g-linearized
polynomials only, i.e.

L= <xq£1 L2l ,xqes) C Fym[z]

for some non-negative integers (1, ...,¢s with ¢; # £; for i # j. Define the g-ary
code

Cr = {CR = (Tegn/g(#R()),0pn RE z} C T (3.1)
with length n = ¢™ — 1 and the related codes
Cro= {CR,b = (Trqm/q (mR(m)) + b)zeF* tReLl, be Fq},
Cea= {CR(B) = (Trqm/q(:cR(:c) + ,Bx))zew tReL, pe qu}, (3.2)

Cro= {cR,b(ﬂ) = (Tegm/q(zR(x) + Bx) +b) "REL, BEFm, be IE‘q}.

zE]I";m
Notice that crp = cr + b and crp(8) = cr(B) + b; moreover, we have that
¢r,0 = cr(0) = cr, crp(0) = crp, and cro(8) = cr(B). Then, we have

Cr CCro, CriCCppo.

All of these codes are cyclic since one can check that their codewords have the
form (|L.1)). In our case, this can be seen directly. If « is a primitive element of Fym
then

¢ = (Trgm (2 R(@))ser, = (Trgm g Rla) L.
The cyclic shift of cg is
s(cr) = (Trgmq(a’R(a"))iZg? = cs

with S(x) = a *R(a"'z) € L, hence s(cg) is in Cz and the code is cyclic. Similarly
for the other codes.

Definition 3.1. A family £ C Fym[z] of ¢g-linearized polynomials has the even rank
property or is an even rank family if the quadratic form Qr(z) = Trgm /q(zR(x))
has even rank for any R € L.
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Let £ be an even rank family of ¢-linearized polynomials. Then, the quadratic
form Qr(z) = Try/p(xR(x)) has constant type in the family; that is, Qr(x) is
either of type 1 or of type —1 for every R € L. Therefore, given r a non-negative
integer, we can define

K, ={R € L: Qg has rank r},
K,.1 ={R e £\ {0} : Qg has rank r of type 1}, (3.3)
K2 ={R € L\ {0} : Qg has rank r of type 3}.

We have Ky = {0} and K, = K, UK, for r > 0, and we denote their cardinalities
by
M’r‘,l = #Kr,lu M’I‘,2 = #KT,Q; Mr = #Kr (34)

Note that My =1 and M, = M, ; + M, for r > 0. Finally, we denote the set of
ranks in £ by

Rp = {r € Z>¢ : there exists R € £ with Qg of rank r}. (3.5)

For any positive integer r, we define the set
[r]q := {"+1:0<l<r}={g+1,*+1,....¢ 1 +1}.

We now restate Lemma 2.1 in [I4] in more generality and give a proof for com-
pleteness. We will need the lemma to calculate the dimensions of the four families
of codes considered in this section.

Lemma 3.2. Let m be a positive even integer and let M = {1} U[F],. If o is a
primitive element of Fym then we have:

(a) @™ and a™? are not conjugated for all distinct elements u,v € M.
(b) The minimum m, € {1,...,m} such that ¢™u = u (mod ¢™ — 1) is m, for
allue M.

Proof. For (a) it is enough to show that ¢°(¢* + 1) # ¢ + 1 (mod ¢ — 1) and
that ¢° #Z ¢ +1 (mod ¢™ — 1) for 1 < s <m — 1 and £, 0,0y < 5 with &1 # £s.
We will show the first statement. Suppose that there is some s € {1,...,m} such
that ¢*(¢" +1) = ¢’ +1 (mod ¢™ — 1). Then,

¢+ =¢"+1 (mod g™ —1).

If s+ ¢; < m then ¢*t% + ¢° = ¢*> + 1 as integers. The uniqueness of the g-ary
expansion of integers implies that s + 1 = 5 and s = 0, which cannot happen.
Now, if s+¢1 > m then s > 2 since by hypothesis /1 < %, and hence there exists a
positive integer ¢ < % such that s = m —t. Notice that £; >tand 0 < /f; -t < F,
thus ¢*7% + ¢ = ¢t + ¢ (mod ¢™ — 1) and hence

Gt =g +1 (mod ¢™ —1).

Since all the powers are less than m, we obtain ¢“=% + ¢° = ¢> + 1. By the
uniqueness of the g-ary expansion of integers, and since s > 0, we obtain s = /5
and ¢; —t = 0, which cannot occur. Therefore, ™" and o~ are not conjugated

—Uu
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for all u # v in [%],. In a similar way, it can be shown that a~! and a~* are not

conjugated for all u € [%F],.
Item (b) can be proved by an argument similar to that given in (a). O

We are now in a position to give the weight distribution of the four codes con-
sidered. We will do this in two different theorems.

Theorem 3.3. Let q be a prime power, m a non-negative integer, and consider an
ideal L = <xqel,zqez,...,zqes> in Fgm[x] such that 1 <€y < ly < --- <Lty <. If
L is an even rank family then the dimensions of the cyclic codes Cr and Cr o are
ms and ms + 1, respectively, and their spectra are given by Tables 1 and 2 below.

weight frequency

Wy = 0 1
wy; =q" —q¢"t + (=1)(q - 1)gm—2-1 M, ;

TABLE 1. Weight distribution of Cz (r € R, i =1,2).

weight frequency
wo = 0 1
wy = qm -1 q— 1

wy; =qm —qmt + (=1)(q — L)gm—5-1 M,
w3 =q" — ¢t (=1)FgmTET - M, (qg—1)

TABLE 2. Weight distribution of Cz o (r € Rz, i =1,2).

Proof. By definition, w(cgr) = #{z € F;m : Qr(z) # 0}; then
w(cgr) = q¢" — 1 —#{z € Fjm : Qr(z) = 0}.
Analogously, w(crp) = ¢™ — 1 — #{x € F.. : Qr(v) = —b}. Then we have that
@™ — N, (0) if b =0,
w(crp) =
¢ — Non(—b) —1 if b #0.
If Qg has rank r and type e then
¢"—q" " —er(g—1)gm"E ifb=0,
w(crp) = .
qm =g repgmaT -1 if b # 0.

From these facts, using the numbers M,., M,, and the set R, we obtain the weights
and frequencies given in Tables 1 and 2, and the result thus follows.
Let us consider the polynomial

h(zx) = he, () - - he, (2),
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where hy,(x) is the minimal polynomial of a—@"+1) oyer F, with o a primitive
element of Fym for each j = 1,...,s. By Delsarte’s theorem, if n = qmgl with
§=ged(g™ —1,¢4 +1,...,¢% +1), then h(z) is the check polynomial of the cyclic

code

C; = {c(al, ceyas) = (Z;Zl Trqm/q(ajgé))?:l ta; € qu} C Fy,

where g; = a7+ for 7 =1,...,s. Since the dimension of a cyclic code is given
by the degree of its check polynomial, we have

dim C} = degh(x).

By the general theory of finite fields, the degree of the minimal polynomial over F,
of an element u € Iy is given by the size of its cyclotomic coset, and this size
coincides with the minimum 1 < m, < m such that

¢™u=u (mod ¢™ —1).
By Lemma [3.2] all of the elements in £ are not conjugated to each other and
deghy, () =m for j =1,...,s. Hence degh(x) = sm and thus dimC} = sm.
On the other hand, if R(z) = 129" +---+a,x?" € L, by linearity of the trace

function we have that

CR = ( Trqﬁb/q(xR(x)))Iernz

S i(qzj+1) q
= Z Trgm /q(a;a )
j=1

m_q ¢m—1

i=1 i=1

= < Z Trqm/q(ajg;-))
j=1
m_q

Notice that if n = 45— as before, by modularity we get

s n s tn
(ZTrqm/q(ajg;)> = (ZTrqm/q(ajg;O (3.6)
j=1 i=1 j=1 i=(t—1)n+1
for every 1 <t < §. Thus, denoting ¢ = ¢(ay,...,as) € Cz, by (3.6) we have that
cr=(c|--]c).
S-ti

Hence, all the words in C are obtained by d-concatenation of the words of the
cyclic code C;, and hence the dimensions of these codes are the same. Therefore
dimC; = dimC} = sm. The same argument shows that dimCz g = sm + 1. O

Theorem 3.4. Let q be a prime power, m a non-negative integer, and consider
an ideal L = <xq£1,xqé2,...,xqzs> in Fym[z] such that 1 <01 <y < --- <Ly < .
If L is an even rank family, then the dimensions of the cyclic codes Cz 1 and Cr 2
are m(s+1) and m(s+1) + 1, respectively, and their spectra are given by Tables 3
and 4 below.
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weight frequency

wo =0 1

wy;=q" — ¢! ZreRE M, ("™ —q")

wa; =¢" —q" "+ (=D (g—1Dg"E My(¢ 4+ (-1) (g - 1)g2 )
ws; =q" —q" " (=1 g Myi(q"" + (=1)'¢2 ") (g - 1)

TABLE 3. Weight distribution of Cz 1 (r € Rz, i =1,2).

weight frequency

wy =0 1

wy =q" —q"} Srere Mi(g™ = q")

wai =q" —q" "+ (=1 (g— )¢ ! Mg+ (=1)"* (g — 1)g5 )

wsi = qm"—q" "+ (1)t gt M, i(q" " + (=12 ")(g - 1)
wyg=q"—1 g—1

ws =qm —qm -1 (=12 er, Mr(d™ —q")
wei=q" —q" =14+ (1) (g—1Dgm "t Mo(g 4 (=1)ig2 (g - 1)
wr;=qm —q" Tt =14 (=1) gt M,i(q" — ¢+ (=1)"F g2 (g - 1)

TABLE 4. Weight distribution of Cz o (r € Re, i = 1,2).

Proof. The dimensions of C,; and C, 2 can be obtained in the same way as in
Theorem using Lemma [3.2

Now, let R € £ and suppose that the quadratic form @ g has rank r and type eg.
Let us compute the weights of the codewords of C ;:

w(cr(B)) = ¢" — 1 — 3z € Fym : Qr(x) + Trgm /(Br) = 0}
By the orthogonality property of the characters of Fy, we have that
R Try/p(a +Trgm /q(Ba
w(CR(6>) g™ —1 _% Z Z Cp /p(a(Qr(z) /q(BT)))

aclF, rE]F;,,,L

m Tr,/,(a x)+Tr,m x
— g _1_5{2 Z Cpq/p((QR() a /q(ﬁ)))_q}

a€lFy z€F m
_ qm 1 %{ Z Z CpTrq/:v(G(QR(QT)""Trq"”/q(ﬁx))) + qm _ q}
aEIFj; z€F m

Therefore
w(cr(B) = ¢™ —¢™ ' = 150, (8),
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where Sg,, is the exponential sum (2.1)), with b = 0. In the same way, when b # 0,
we get
w(crp(B)) =™ — ¢ = 1= 150,(B)-

Notice that if R = 0, then Qg = 0 and, for all 8 # 0, we have w(co(8)) = ¢™—q¢™ L.
If R and S are zeros, then w(cp,(0)) = ¢™ — 1 if b # 0. When b = 0 we will denote
cr(B) = cro(B) A

Now, let K, 1 and K, 2 be as in (3.3). Then, egp = (-1)""' if Re K, ;, i = 1,2.
By Lemma we have that
0 ifb=0, R=0,

ifb=0, R€ K,
for ¢™ —q" B,
ifb=0, R€ K,

m m—1 i m—+t—1
— + (-1 -1 2 ’ r
N (=1e— 1 for q"=1 4 (—1)i+1(g - 1)g3 1 B's,

ifb=0, R€ Ky,

m m—1 i+1 m—%—1
_ + (-1 pl o
N (=™ for (¢" 1+ (=1)’q2z " ")(g— 1) B's,

w(cr,b(B)) =
g —1 ifb#£0, R=0, 8=0,
qm_qm—l_l ifb7£0,}2€}‘(7"i7
for g™ — q" B's,
) r ifb#0, Re K, ;
qmiqm—1+(71)z(q71)qm7§7171 1 7571 € r.,zyl_l
for "= + (=1)'q2 7" f's,
qm_qm—l_‘_(_l)i-qumfgfl 1 if b # 0, ReKTai’ ] oy
for ¢" —¢" =1 + (=1)"Tq2 1 f's,
with ¢ = 1,2. From this, the result readily follows. U

Remark 3.5. (i) A code is t-divisible if the weight of every codeword is divisible
by t. Note that from Tables 1-4, the code C, is ¢™ 3~ 1(¢q — 1)-divisible, the code
Cro is (¢ — 1)-divisible if and only if M, » =0, and C; is ¢™~ 2~ !-divisible.

(ii) If one performs the sum of the frequencies in each of the Tables 1-4 one
checks that the dimensions of the codes are the ones given in Theorems [3.3

Complete weight enumerator. Suppose that the elements of F, are ordered, say
wo =0, wi,...,wg—1. The composition of the vector v = (vy,v1,...,Vn—1) € Fy is
defined by

Comp(v) = (t07 tlv ce 7tq—1)a
where each t; = t;(v) = #{0 < j < n—1:v; = w;}. Clearly, we have that
Z?;& t; = n. Let C be a linear code of length n over F, and let

A(to,t1,...,tq—1) = #{c € C : comp(c) = (to, t1,...,t9—1)}-

The complete weight enumerator of C is the polynomial

2 : to t tg—1
Wc(Zo, ARERE ,qul) = A(toﬂfl, PN 7tq,1) 200211 ce qu_l 5
(to,...stq—1)EBn
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where Bn = {(t07--~7tq—1) Zti Z O, to -+ +tq_1 = n}

Lemma 3.6. Let C be a linear code of length n over Fy such that t;(c) = t;(c) for
alli,j >0 and c € C. Then, if Ay = #{c € C:w(c) =L}, we have that

n ¢ ¢
E : n—~0 _q—1 —1
Wc(ZO,Zl,...,qul) = Ae ) Zlq ---Z;_l.
=0

Proof. Let ¢ = (cg,...,cn1) € C. Since t;(c) = tj(c) for i,j > 0 and %", t; = n,

we have that t; = 7:;20. On the other hand, since

we)=n—#{0<j<n-—-1:¢; =0} =n—to,

we have that tg = n — w(c), and thus t; = Z”ﬁcl) (note that C has to be necessarily

(g — 1)-divisible). Therefore, we have that A(to,...,tq—1) = Ay if to =n —w(c)
for some ¢ € C and t; = t; for all 4, j > 0, and A(to,...,tq—1) = 0 otherwise. O

As a direct consequence of the previous lemma, we obtain the complete weight
enumerator of C..

Proposition 3.7. Let q be a prime power, m a non-negative integer, and consider
an ideal L = (qul,xqu, . 7gcq’fs> in Fym[x] such that 1 <01 <y < --- <Ly < .
If L is an even rank family then the complete weight enumerator of C, is given by

2
We, (20,5 2¢-1) = 2 + Z Z M, ; zg(r’l)zf(r’z) e zs(_r’f),

i=1reR,
where M, ; and Ry are as in (3.4) and (3.5) and also
a(ri) = ¢™ M+ (=) g —1)gm 2 1,
blr.i) = " 4 (—1)'g" 5

4
4. THE CODES ASSOCIATED TO z¢ t1

Here, we consider the codes Cz, C o, Cr,1, and C o from the previous section but
in the particular case of £ = (29%), that we denote by Cy, Ce,0, Ce,1, and Cp 2. We will
compute the spectra of these codes using Theorems and and Tables 1-4, by
explicitly computing the rank distribution in £ and their associated numbers M, ;.

The codes Cp and Cp . Consider the irreducible cyclic code C; and the code Cy
over F,, with check polynomial h,(z) and he(z)(x — 1), respectively, where hy is

the minimal polynomial of a_(qé‘*‘l), with a a primitive element. By Delsarte’s
theorem these codes can be described by

£ invyn—1
C@ = {c(’y) = (Trqm/q(fya(q +1)7’))i:0 Ly c qu},
Coo = {en(3) = (Tegn g (08D +5) ) 1y € B b € T, ).

Now we give the parameters and the spectra of these codes.

(4.1)
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Theorem 4.1. Let q be a prime power and m, £ positive integers such that £ < 7

and my = ﬁ is even. Then, Cp is a [n,m,d],-code with n = qm51 and d

%q%il(q —1)d’, where D = ¢ +1 and

7 gz —1 if %mg s even,
q% — q(m,é) Zf %mg is odd.
On the other hand, Coq is a [n,m + 1,d],-code with d = L@ Yg—1)—d) and
i gz HmO-1 41 if my is even,
gz tmO=1 (g —1) if 2my is odd.
The weight distributions of C, and Cyo are given by Tables 5 and 6 below.

weight frequency
0 1

pla" — g+ (D)2 — DgEHmO

plam =+ (-1 (g - 1)gF ng(™

TABLE 5. Weight distribution of Cy.

weight frequency

0 1

(@™ —1) q—1

5{am — ¢ 4+ (—1)F™e (g - 1)gETmO-1L g

S{a™ =g+ (—1)Em (g - 1)gF ) ng(m?
S{q™ — g 4 (F)EmAlgEmOT 1) (g —1)
S{am =g+ (~1)EmegE - — 1) ng™(q —1)

TABLE 6. Weight distribution of Cy .

Proof. Let us begin by computing the length n of these codes. Since my is even, b
Lemma we have that n = % Thus ¢("™% +1 | ¢™ — 1 and by Lemma
we have n = M or n = My = M5 in even or odd characteristic respectively, where
M, My, and M, are the cardinalities of the sets Sy, (), Xqm(€), and Yy, (¢)
defined in and . Notice that in this case ¢™ — 1 — M = ng™? in even
characteristic and ¢™ — 1 — My = ¢™ — 1 — My = ng™*% in odd characteristic.
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Let £y = <$q2>; then
Rel, & R(z)= ch[ = R, (z) for some 7y € Fgm.

£
Thus Qr(z) = Trq’"/q(’yl'q +1) = Qye(7).
Notice that the codes Cr, and Cr, o as in (3.1 are obtained from (¢™ —1, q“+1)-
copies of the codes C; and Cy o in (4.1)), respectively. In terms of weights, this means
that

w(cRmb)
w(cy(7)) = m

By Theorems and L, is an even rank family. Furthermore, Rz, =
{0,m, m —2(m,£)}. If q is even, by Theoremwe have that

N _ el . .
M2 =My _2(m,e,1 =0, Mpy1= ng™H, My _2(m,ey,2 = n, if 3my is even;

Mm,l = Mm—2(m,€),2 =0, Mm—2(m,€),1 =n, Mm,2 = nq(m,f), if %mf is odd.
Similarly, if ¢ is odd, Theorem [2:4] implies that

M2 = My _2(m,0n,1 =0, Mpy1= ng™, My _o(me,2 =n, if 2my is even;
Mm,l = Mm—2(m,2),2 = 07 Mm—2(m,€),1 =n, Mm,2 = qu(m’é); if %ml is odd.

Now, by Theorem [3.3] we obtain the weights and frequencies given in Tables 5
and 6. Finally, by studying the values in the tables, we get the minimal distances
for both codes. O

Under the hypothesis of Theorem we have the following result.
Corollary 4.2. The complete weight enumerator of Cy is given by

’ ’
_.n ao a1 ay (m,¢) % %1
We, (20, 2g-1) = 20 +nzg°21" - 20 +ng 20°21" 2k,

where

ap=mn — %(1 + (_1)%mz q(ml)—%% ay = 1 (1 + (_1)%m[ q(m,l)—%),

ap=n— U (14 (DI g E) e = S (L4 () ),

with D = ¢(m9 4 1.

Example 4.3. Let ¢ = 2, m = 8, and ¢ = 1. By Theorems and the
codes Cp and Cy ¢ have parameters [85,8,40] and [85, 9, 37] respectively, with weight
enumerators given by

We, (x) = 14 170220 + 852144
We,o(x) =1+ 8527 + 1702 + 1702 + 852 + 2®°.
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The codes Cy1 and Cp . Consider now the codes Cp; and Cy o over F,, with check
polynomials hy(x)hi(x) and he(z)hy (z)(x—1), respectively. Here, hy and hq(z) are
the minimal polynomials of a~—(@+1) and a1 respectively, where « is a primitive
element of Fym. By Delsarte’s theorem, these codes are given by

Coa = {er.8) = (Trym g0 4 82)) e 27,8 € Fr |,

¢
C€,2 = {Cb(’Yaﬂ) = (Trq’"/q('ﬂ:q +1ﬂx) + b)xeF*m 1y, B € qu,b S Fq}

m_q

As before, for positive integers m, ¢ such that m/(m, ¢) is even we put n = W.

We now give the parameters and the spectra of these codes.
Theorem 4.4. Let q be a prime power and m,{ positive integers such that my is
even. Then, Cy1 is a [N,2m,d)4-code with N = ¢™ —1 andd = ¢™ (¢ —1) - d',
with N

7 {q2+(m’z)_1 if my is even,

(q—1)gz+mO=1 4f %mg is odd,
and Cg2 is a [N,2m+1,d—1],-code. The weight distributions of the codes C¢1 and

Co2 are given by Tables 7 and 8 below.

weight frequency

0 1

qm, _ qul n(q'm _ qm72(m,l)) + qm, -1

q" =" 4 (St (g - 1)gF ! ng™ A (gm ! 4 (=1)2™ (¢ — 1)g% )

q" =g (DR (g g EEOTL (g RO o (—1)amet (g — gm0
qm qul + (*1)%"”(]%71 nq(m,f) (qul + (71)%me+lq%71)(q _ 1)

qm _ qm—l + (71)%771{-%—1(1%-%—(771,,5)—1 n(qm—1—2(m,€) + (*1)%77”61%_(7”’[')_1)((] _ 1)

TABLE 7. Weight distribution of Cy ;.

Proof. Note that Cy1 = Cg,1 and Cpo = Cp, 2 with £, = (wqe), where Cz,.1,Cr, 2
are the codes defined in . Then, by Theorem [3.4f it is enough to compute
the numbers M, 1, M, and the set R;,. They were calculated in the proof of
Theorem Therefore, Tables 7 and 8 give the spectra of the codes C; 1 and Cy 2
as was to be shown. O

Example 4.5. Let ¢ =2, m = 8, and £ = 1 as in Example By Theorem
the codes Cp 1 and C; 2 have parameters [255, 16, 112] and [255, 17, 111], respectively.
Also, we have

We, ,(z) = 1+ 306022 + 23120 220 + 16575 2'*® + 20400 2'*° 4 2380 244,
We, ,(z) =1+ 23802 +30602' + 20400 2 + 23120 20 + 16575 27
4 16575 2128 4 23120 2135 + 20400 2136 + 3060 143 4 2380 2144 + 2255,
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weight frequency

0 1

- g -1 n(g™ =g 2N (g - 1)+ (¢" - 1)(g— 1)

¢" =" (-)Em (g = 1)gE T -1 ng™ 0 (g + (<1)2meHgE (g - 1)

- qm—l + (71)%711,5([1 _ 1)(]%-%—(171‘[)—1 1 n(qm—l—Q(m.Z) + (71)%"1,[(]%—(777,,[)—1)((] -1)
- qm—l + (71)%771,5[1%—1 -1 nq(m.[)<qm _ qm—l + (71>§m5q%—1)<q —-1)

¢ — g™+ (71)%771,[‘#1(1%‘#(771.[)—1 _1 n(qm—Q(m.Z) _ qm—l—Q(m,tz) + (71)%m[+1q%—(m,,k)—l)(q -1
qT—1 q—1

i qm—l n(qm _ qm—Z(m,Z)) +qgm—1

¢" — "+ (1) (g - 1) ng™0(gm !+ (~1)Fm (g~ 1)gF )

g — qm—l + (_1)%771,5((1 _ l)q%ﬂm,/z)—l n(qm—l—z(m.l) + (_1)%mg+1 (q— 1)(1%—(771,5)—1)
qm qul + (—1)%"”(1%*‘ nq(m.k)(qm—l + (—1)%7’”“(1%’1)@ _ 1)

" qm—l + (_1)%mg+lq%+(m.é‘)—l n(qm—l—Z(m.l) 4 (_1)%n11q%—(m,l)—l)(q _ 1)

TABLE 8. Weight distribution of Cy ».

Remark 4.6. (i) From Tables 5-8 we see that Cy is a 2-weight code, C;o and
Ce1 are 5-weight codes, and Cypo is an 11-weight code. Also, one checks that C,
is ¢ ~!(q — 1)-divisible and Cep is ¢ % ~l-divisible. These facts are in accordance
with Klapper’s Theorems and and Remark

(ii) In the binary case (g = 2), the codes C ¢ and C 2 have symmetric spectrum,
that is, A; = A,,—; for every i, since the codeword (1,1,...,1,1) belongs to these
codes.

Remark 4.7. It can be shown, via Pless power moments, that if ¢ = 2 and
(m, ) = 1 the dual code of Cp 1 is optimal in the sense that its minimal distance
is maximum in the class of cyclic codes with generator polynomial mg, (x)mg: ()
over Fo. This condition of optimality is equivalent to the function f(z) = z*
defined over Fam being an APN function (see [1]). In our case, fo(z) = 22+, with
(m,?) =1, is a well-known APN function, namely the Kasami—-Gold function.

5. CODES ASSOCIATED TO Ly 3¢

In this section we consider the codes C., Cr,0, Cz,1, and Cr 2 associated to the
family of p-linearized polynomials

L= £€,3€ = <xpe7xpse> - F;Dm [IL‘],

where p is an odd prime and my = m/(m, ¢) is even. The next theorem summarizes,
in our notation, the results proved in [I3].

Theorem 5.1 ([13]). Let p be an odd prime and let m, ¢ be non-negative integers
such that my = m/(m, £) is even with m > 6¢ and denote 6 = (m, ). Then, L3¢ is
an even rank family with R, ,, = {m, m—24,m—46,m—65} (see ) Moreover,
the numbers M, ;, as defined in , have the following expressions:
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(a) If imy is odd, then My, 1 = Myy_o52 = My—s51 = My_gs2 = 0 and

3m 3m m m
P » 9 2 458 2T 446 +546 45
2m+65 _ 2m+45 _2m+§ pm+‘45 pHe 65,5 4p 2 4p3 _p2t

pi)é p59 p45+p2‘5—p571 )

My =2

3m
p2m—28 (T8 26 1y m—26 (58 684 526 4y 3826 15 41y 1 ("B

m
—p2)Sp(9)
)

My, — =
m—26,1 PBO 4 pBd —pAd {28 58
_ _ 3m _9s m._3;5
M _ PP 30 (pP04pd —1)—p™ 3 (pOO4p*0 4 p? —1) 40 (p?° —p° +1)—(p 2 —-p2 )Sp(9)
m—46,2 P68 450 _pdd 4 525 _pd ] ’
p2m=36_m_ om-35 4, 3g-s  IgL-2s -5, B-25
Min—651 =

P05 50 —pA8 1 p20 —pd —1 )
where Sp(d) = Z?:O(—l)”‘lpi‘s.

(b) If %mg is even, then My, o = My,_951 = Mp—45,2 = My—651 = 0 and

3m 3m m m
+568 +46 +56 +44
2m+68 _2m 445 _ 2m+8 L mA4S  m+6 66 ) P2 P32 p2

M. _ P P —p " +p
m,2 P63 1 p58 _pAs | 525 55 1 ’
s e P N 3m m
p2M =28 (78 28 1) =28 (558 68 1,28 11y 36 (26 8 1) (p B _pT )5, (6)

Mm—26,2 =

P00 1 pB0 —pAd 1 p20 8 1 )

25

2 _p2 T2 5,(8)

3m
My _as1 = 230 (pP04p° —1)—p™ T30 (90 420 4 pd — 1) 4 (PP —pP + 1) +(p 2
m—45, P08 1 pB8 —pB0 428 _po 1

y

2m—35 __m_ m-35,,_  S—s5, Sm_25 m_5 m_25
Mm—6d,2 = S psaill,ssp_;45+pt§_2pa_l+p - L .
In [13], the distribution of ranks and types given in the previous theorem was
used to calculate the spectra of the codes C and C. ; with £ = L, 3,. Fortunately,

this information is also enough to calculate the spectra of C, o and C. o, which

follows directly from Theorems and

Theorem 5.2. Let p be an odd prime and let m,{ be positive integers such that
myg = m/(m,l) is even with m > 6. Then Cr,,, 0 is a [n,2m + 1,d|,-code with
n=p"—1andd=p" Y p—1)—d, where

pTH3mO-1 4 1 if 3my is even,

(p— 1)pZH3mO-1 ¢ %mz is odd,

d =

and Cg, 4,2 5 a [n,3m + 1,d],-code with d = d if imy is even and d=d—1if
imy is odd. The weight distributions of the codes Cr, ,, 0 and Cz, ,,2 are given by
Tables 9 and 10 below.

We set these notations for the next two tables:
N N 3m 3m m m
2m+65—p2m+45 7p2m+5+pm+45+pm+57p65+€€(p 5 +567p 5 +467p o] +55+p 5 +46)
POO 1 pB0 _pAo{ p20 _pd_1 ’

=12

IS 3m
P = P22 (T8 28 gy m—28 (58 68 426 4 gy 88,28 6 gy o (p D

m
—p 2 )Sp(d)
PO 1 p50 —pa0 p20 _po 1 )

(5.1)

_ _ 5 3m _o9s m_3;5
P2 39 (pP04p% —1)—p™ 739 (69 40 450 —1) 40 (p2° —pP +1)+ey(p 2 —-p2 )Sp ()
b)

pO3 4 B0 _pAd 4 p26 o 1

Fy =

3m 3m m s m
_ _ 3m_s5 3m_o5 m_s5 m_o5

p2m—38 _pym_,m—36 1—cy(p™2 _p'3 —p3 p2 )
PO 1 pB0 —pa0 1 p20 —po 1 )

Fy =
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weight frequency
0 1

P —p T (1) (p - 1)pE Fy

P = p Tl 4 (<) F (p— 1)pE O F

pm gl g (—1)%“(17 _ 1)p7+2(m,£)—1 F,

P =P 4 (—1)F (p— 1)pE IO F3
pm—1 p—1
pr—p Tl (<) pE et -1 (r—1F
P (1) F HpE Ol (p—1)F
P —pm Tl (-1 pE MmO (p—1)F>
P =Tl (—1) T HpE O (p—1)Fs

TABLE 9. Weight distribution of Cr, ,, 0-

Remark 5.3. The weight distributions of C¢,,, and Cg, ,, 1 are determined by
those of Cr, 4,0 and Cg, ,, 2, respectively. More precisely, the weight distribution
of Cz, ,, is given by the first 5 rows of Table 9, and the spectrum of C¢, ,, 1 is given
by the first 10 rows of Table 10. Therefore, Cy, ,, is a 4-weight code, Crys00 and
Cry 501 are 9-weight codes, and Cr, ,, 2 is a 19-weight code.

As a direct consequence of Proposition we obtain the following result.

Corollary 5.4. Under the same hypothesis of Theorem the complete weight
enumerator of Cr, ,, is given by

Weg, ,, (2055 2p-1) fzo +ZF 2igbi b (5.2)

where, for each 1 =0,...,3, the numbers F; are given in and

a; =p" "+ (=1)e(p - 1)19%“(’”’@_1 -1,

b; = pmfl + (71)i+1€ep%+i(m,f)fl.
Proof. By Remark the weight enumerator of C is We(x) = 1 + Zf:o R; x°,
where _ _

ci=(—=1E" 4 (=) Tl pT O, (5.3)
Thus, by Proposition we obtain (5.2]), where a; = p™ — 1 — ¢; and b; = p‘il.

From these identities and (5.3) we get the desired expressions for a; and b;, and
thus the result follows. O
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weight frequency

0 1

P —pn Tt p" — 1+Z?:0 Ri(p™ *Pm_l(m'o)

P () FH (p - 1)pE ! "+ (-)F (- DpE DR

P =T+ () (p - pE (pr 2Ol 4 () (p— 1pE IRy

P =T (2 1) F A (p - 1)pF A (prmt Ol 4 (1) 5 (p— 1)pEF 2O,

P =P 4 (-1)F (p - DA (SO 4 () (p — 1pE SO Fy

P () FpE ! (P () FHpE - DF

P pn T g () F O Y 1)”7 O - DR
pmipmfur(il)%pg 2(m,0)—1 (pm= A(m0)=1 +(- 1)’"71 Ip%—2(m,0)— 1)( —1)F

pm p771,—1+(71)¥+p2+$(m 0)—1 (pm= 6(m.0)—1 1 + (- 1)72177’—5(711 0)— 1)( —1)F;

p" -1 p—1

i (P =" =1+ 5500 Rilp™ —p™ "))

P - L4 () FH p - 1)p¥ ] P+ (C)FpE (- )

P — 1 1+<_1)’"T‘ p_1>p2+(7n.2) 1 (pm= 2(m 0)— 14 (= )Tl o (m,0)— Hp-1)F
pm,ipmflflJr(fl)%Jr( 71)p7+2(m,i)—1 (p™- A(m,0) =1 4 + (- )Tf 1p%- 2(m,0)— Hp—1)F
Pl -1 (C1)F (p - )pE AR (p =001 4 (—1) 5 p B 3Oy (p — 1)Fy

propm Tt o1 (-1 pE " =y () FpE (- DFo

pm—pml— 14 (— 1)7"7+1p";+(m1) 1 (pm— 2(m.6) _ pym—2(m.)-1 +(— 1) a p%f(m,z)q)(pfl)ﬂ
pm_anfl_1+<_1)mTlp'7+2("Lf) 1 (pm= 4m,6) _ pym—d(m,0)— 14 (= 1)% 2 —2(m, )~ Hp-1)F,
p7n,7pm—171+(71)"7i+ p2+5(m/) 1 (p™= 6(m,0) _ pm 6(m.0)—~1 4 + (- 1)71 Lf(m,i)—l)(p71>F3

TABLE 10. Weight distribution of Cr, ,, 2.

6. OPTIMAL CURVES

Fix ¢ = p" with p prime. In this section we will consider Artin—Schreier curves
of the form
Crp: 9y’ —y=2zR(z)+ bz, (6.1)
where R(z) is any p-linearized polynomial over F, and 5 € F,. A good treatment
of Artin-Schreier curves is given by Giineri and Ozbudak in [6]. They are asso-
ciated to the codes C. . studied in Sections 3-5, which are defined by quadratic
forms Qr(z) = Trpm /p(zR(x)), or similar ones, of Section 2. Given a family £ of
p-linearized polynomials, we define the family

I'y = {CR’[-} cReL,pe Fq} (6.2)
of curves Cr g as in (6.1)).

We begin by showing necessary and sufficient conditions for the family £ to
contain optimal curves (maximal or minimal); that is, curves attaining equality in
the Hasse-Weil bound (see [I1, Theorem 5.2.3])

[#C(Fy) — (¢ + DI < 29v/¢.

Proposition 6.1. Assume L is an even rank family of p-linearized polynomials
over Fpym. Let R € L, r be the rank of the quadratic form Qr(x) = Trpm /p(zR(z)),
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and v = vp(deg R) be the p-adic value of deg R. Then, the family Tz in (6.2)
contains optimal curves, both mazimal and minimal, if and only if there is some
R € L with

m-—r

2

v =

In this case we have:
(i) If p is odd, the curve Cr g € I'p is mazimal (resp. minimal) if and only if the
codeword cr(B) = (Trpm /p(xR(z) +ﬂ$))m€]}‘;m in Cr.1 has weight w(cr(B)) =
wa1 (resp. wo2) as in Table 3.
(ii) If p = 2, the curve Crp € I'p is mazimal (resp. minimal) if and only if
either w(cr(B)) = wa1 (resp. wa2) or else w(cr(f)) = ws2 (resp. w3 1) as
in Table 3.

Proof. Consider the cyclic code Cz1 = {cr(f) : R€ L, € Fpm} asin (3.2]), where
cr(B) = (Trym /p(zR(x) + Bz))zerz,, - The weight of the codeword cr(p) is related

to the number of F,~-rational points of the curve Cr g given in (6.1). In fact, by
Hilbert’s Theorem 90 we have
Trpm/p(xR(x) + fr) =0 & Yy’ —y=xR(x)+ Bz for some y € Fym.
Since Cr g is a p-covering of P!, considering the point at infinity, we get
#Crp(Fpm) =14+ p#{x € Fym : Trym /p(xR(zx) + Bx) = 0}
=p"" +1 - puw(cr(B)),
where the values of w(cg(8)) are given in Table 3 with ¢ = p.
On the other hand, as an application of the Riemann—Hurwitz formula, the curve
y? —y = f(z) with f(z) € Fy[z] has genus g = %(p — 1)(deg f), since the degree
of f is coprime with p (see [0, Example 2.4]). Hence, Cr g has genus
9(Crys) = 3(p — 1)(deg R) = 5(p — 1)p",
since for R # 0 we have
(degzR(z) + fz,p) = (p* +1,p) = L.
By the Hasse—Weil bound for curves we have that
P 1—(p—1)p"tE <HCOr([Fpm) <p™ +1+(p—1)p" 2. (64)

To find maximal or minimal curves we need to ensure equality in the above

inequalities; that is, by and we want that
P —puw(er(B)) =p" £ (p - )p*tE,

where the sign + (resp. —) corresponds to a maximal (resp. minimal) curve. By
looking at Table 3 with ¢ = p, we check that this could only happen if and only if
v = =L and the weight w(cr(f)) is wa,1 (resp. wa 2) for a maximal (resp. minimal)
curve. Because of the presence of the factors p—1 in the weights, additional curves
appear in the case p = 2. They correspond to w(cr(8)) = ws 2 (resp. wz 1) for a
maximal (resp. minimal) curve. Since the type of the quadratic form is fixed, only
one of the two kinds of maximal (or minimal) curves can appear if p = 2. O

(6.3)
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Next, as an application of the spectrum of cyclic codes, for a fixed number ¢ we
consider the Artin—Schreier curves

£
Cyp:yf —y =2 14 Ba, vy € Fpm, B € Fpym, .
e I CY
T2,B Y —Y=nNT +’Y2$ +Bxa V1,72 € pms B € Py

related to the codes Cyp1 and Cyy 3,1 of Sections 4 and 5, respectively, and we will
show that the families {C., g} and {C, 4, 3} contain several maximal and minimal
curves.

We begin by computing the Fy,=-rational points of the curves in the first family

{C%B}'

Proposition 6.2. Let m and £ be positive integers such that my is even and let p
be a prime number. Consider the curve C. g as in (6.5) with v € Fym and 8 € Fym

Fiz ~ = o and put g = (—1)2™. Then we have:

(a) If p > 2, with 3m, even and t =0 (mod p{™® + 1), then
pm +1 fOT pm _ pm72(m,€) ﬂ’S,

#Cyp(Fpm) = ¢ p™ + 1= p™9(p — forp —(p—1pT O g,
P+ 1+ pmOp for (pm 2O~ 4 p T (MO (p 1) Bs.

(b) If p > 2, with %mg even and t £ 0 (mod p(™® + 1), then

m—2(m,£)—1

ps

m
2

#C 5 (Fpm) = {P’” Fltl- Dp%  forp™ 4 (p - 1)p%mﬂ’s,
pr+1-p?% for (p=1)(p™ "' —p= ) Bs.
(c) If p > 2, with tmy odd and t = p 01 )'H (mod p(™*) 4 1), then
P+ for p™ —pm 2O g,
#Cq5([Fpm) = S p™ + 1+p™(p—1)p%  for pm 2O~ 4 (p—1)pT O g,
P 1—pmOpE for (p 2O~ — pF=(mO=1y(p 1) Bs.

(d) If p > 2, with my odd and t # p(%““ (mod p™® 4-1), then

P +1—(p—1pT forp™ ' —(p—1)p2 " B,

#Cmﬁ(Fpm) = {

pr+1l4p? for (" 4+p% ) (p—1) Bs.
(e) If p=2 and y € Som(l) = {x¥ ™' : 2 € Fin} then
2™ 41 for 2m — gm—2(m8) gog

#COy g(Fam) = ¢ 2m 41— g,2% 00 for gm=2(m.0)—=1 _ o o' —(m)—1 Bs,
om 414+ ) 2%"'(7‘/%2) fOT 2m—2(’m,4)—1 ey 2%—(717,,[)—1 /B}S.
(f) If p=2 and v & Sa,m({) then
2™ 4 14627 for2m 427 B,
2Mm +1—¢gy 2% for om—l _ g, 2% 1 B’s.

#Coy.(Fam) = {
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Proof. Consider the code gy = {cy 3 = (Trpm/p(’yxpzﬂ—i—ﬁx))we]p;m 1y, B €Fym}.
By the same argument as in the previous proof, we have that

#C%B(Fpm) = pm+1 +1 —pw(c%g).

Thus, the number of rational points of C., g is obtained from Tables 5-8, using
Theorems [2.3] and [2.4] by straightforward calculations. O

We now show the existence of optimal curves in the family {C, g}. We will use
Proposition to prove the existence of optimal curves and Proposition to
count them.

Theorem 6.3. Let p be a prime number. Let m and ¢ be non-negative integers
with £|m such that mg = % is even and v = o' € Fpm. Then we have:
(a) Letp be odd. Then the curve Cy g as in (6.5) is
1) minimal of 5my 1s even and t = mod p- + 1),
. o . l . ; . d O d é 1
for pm =21 — (p— 1)p%F =1 elements B;
(i) mazimal if 3my is odd and t = # (mod p* + 1),
for pm =21 4 (p— 1)pT 1 elements B.
(b) Letp=2 and v € Sy ;m(¥) = {221 2 € Fin}. Then,
(i) there are 2m=2¢=1 — 2% =1 clements B such that C., g is minimal;
ii) there are 2™~ ="t + 272 771 elements B such that is mazximal.
ii) th gm=2t=1 4 2% —0-1 ¢ B such that Cy g !

Proof. Consider the family £ = <xpe> of p-linearized polynomials over Fpm, with p
prime. By Klapper’s Theorems 2.3 and [2.4] £ is an even rank family. Thus, the

family of curves I'z in is in fact the family {C, g} in (6.5). Now, applying
Proposition by using Tables 3 and 7 and Theorems and we get the
existence part of the statement. Finally, invoking Proposition[6.2]we get the number
of such optimal curves. O

Example 6.4. Suppose that p =2, m =4, and £ = 1. Consider the curve
Cop:y*+y=na®+ Pz, €T, B €Fu,

which is in particular an elliptic curve. Suppose that v € Sz 4(1) = {23 : z € Fi4}.
Then, by Theorem Cy,p is minimal for only one element 8 and it is maximal
for 3 elements 3.

If v = 23 for some z € Fj4 then, by the affine change of variable u = zz, the
curve C, g turns out to be isomorphic to the curve

Cia: y2+y=u3—|—)\u,

where A = 327!, This curve is minimal (9 rational points) only for A = 0 and it is
maximal (25 rational points) for A = 1, a®, and o!°. That is,

v ry=u’
is a minimal elliptic curve and
Wty =1ud+tu, ¥ +y=ud +alu, 4y =1+ a

are maximal elliptic curves over Fyg.
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We now show that the family {C., -, s} contains optimal curves.

Proposition 6.5. Let p be an odd prime and let m, £ be non-negative integers
such that £|m, mgy = 7 is even, and m > 6(. If %mz is odd (resp. even), the
Artin-Schreier curve Cy, 4, 3 as in is maximal (resp. minimal) for some
Y1,7Y2 € F;n), and 8 € Fpm.

Proof. The family £ = (xpf, x3%) of p-linearized polynomials over F,m= has the even
rank property, by Theorem [5.1] By Table 10 and Theorem [5.2] we have that if
%mg is odd (resp. even) then there exists R € £ with deg R = p>* and Qg of rank
r=m — 6¢ and type 1 (resp. 3). Thus, we have that

v=mor — 3

where v = v,(deg R), and the result follows directly from Proposition O

Example 6.6. Take p an odd prime, £ = 1, and m > 6 even. Then, the Artin—
Schreier curve '
yP —y = fylzpsﬂ + Yo2P Tt + Bz
is maximal in F,.x and minimal in Fax+2 for any k > 2, for at least one v1,72 € Fym
and 8 € IFm, where Fym stands for Fpax or Fae+2 depending on the case.
For instance,
v’ —y=ma® + e’ + fr
is maximal in F3s = Fgs61 and minimal in F3i0 = F5g9049 for at least one 71,72, 8
in the corresponding field. Similarly,

125

v’ —y =712 + 72° + Bz

is maximal in Fgs = F399625 and minimal in Fsi0 = Fg7g5625 for some elements
Y1, Y2, B in the ground field.
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