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GENUS AND BOOK THICKNESS OF REDUCED

COZERO-DIVISOR GRAPHS OF COMMUTATIVE RINGS

EDWARD JESILI, KRISHNAN SELVAKUMAR, AND THIRUGNANAM TAMIZH CHELVAM

Abstract. For a commutative ring R with identity, let 〈a〉 be the principal
ideal generated by a ∈ R. Let Ω(R)∗ be the set of all nonzero proper principal
ideals of R. The reduced cozero-divisor graph Γr(R) of R is the simple undi-
rected graph whose vertex set is Ω(R)∗ and such that two distinct vertices 〈a〉

and 〈b〉 in Ω(R)∗ are adjacent if and only if 〈a〉 * 〈b〉 and 〈b〉 * 〈a〉. In this ar-
ticle, we study certain properties of embeddings of the reduced cozero-divisor
graph of commutative rings. More specifically, we characterize all Artinian
nonlocal rings whose reduced cozero-divisor graph has genus two. Also we
find the book thickness of the reduced cozero-divisor graphs which have genus
at most one.

1. Introduction

Throughout this paper R is a commutative Artinian nonlocal ring with identity.
The study of algebraic graph theory deepens our understanding of the connections
between algebra and graph theory. In 1988, Beck [6] took the first step by intro-
ducing the idea of linking a commutative ring to its associated graph. Afterwards,
Anderson and Livingston [3] modified the definition given by Beck [6] and stud-
ied the graph as the zero-divisor graph of commutative rings. Motivated by their
works, many researchers introduced and studied several other graphs related to
commutative rings with identity. One can refer to [2] for the entire literature on
graphs from rings. The most significant topological property of a graph is its genus.
Many researchers have been working on the problem of finding genera of graphs
linked with rings such as zero-divisor graphs, total graphs, essential graphs and
others. In this regard, one can refer to [15, 17, 18, 20] for details.

In ring theory, ideals play a vital role in the structure of rings. Therefore one
common question arose of whether it is possible to define a graph by considering the
ideals of a ring R as vertices rather than its elements. As a result of this thinking,
Behboodi and Rakeei [7] introduced the notion of annihilating-ideal graphs of rings.
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Over time, a number of graphs have been defined with proper ideals of R as vertices
and edges through different ideal theoretic conditions [10, 22, 16]. In 2011, Afkhami
and Khashyarmanesh [1] introduced a new graph and called it the cozero-divisor
graph of commutative rings. Let W ∗(R) be the set of all nonzero nonunits in R,
and for z ∈ R, Rz is the ideal generated by z. The cozero-divisor graph Γ′(R)
of R is the undirected simple graph with W ∗(R) as vertex set and such that two
distinct vertices x and y in W ∗(R) are adjacent if and only if x /∈ Ry and y /∈ Rx.
Inspired by their work, Wilkens et al. [21] modified the definition of the cozero-
divisor graph by considering nonzero proper principal ideals as vertices and named
it the reduced cozero-divisor graph. For a given R, let Ω(R)∗ be the set of all
nonzero proper principal ideals of R. The reduced cozero-divisor graph Γr(R) of R
is the simple undirected graph with Ω(R)∗ as vertex set and such that two distinct
vertices 〈a〉 and 〈b〉 in Ω(R)∗ are adjacent if and only if 〈a〉 * 〈b〉 and 〈b〉 * 〈a〉.
In [21], Amanda Wilkens et al. introduced the reduced cozero-divisor graph Γr(R)
of a ring R (not necessarily commutative). Jesili et al. [12] investigated the toroidal
reduced cozero-divisor graph of commutative rings. In this paper, we characterize
all Artinian nonlocal rings for which the reduced cozero-divisor is of genus two.

By a graph G we mean a simple finite undirected graph. For any nonempty
subset H of vertices of G, the induced subgraph generated by H , denoted by 〈H〉,
is the subgraph of G whose vertex set is H and whose edge set is the set of all
edges of G that has both ends in H . A graph G is said to be complete if every
pair of distinct vertices in G are adjacent. A graph G is called complete bipartite if
the vertex set V (G) can be partitioned into two nonempty disjoint subsets A and
B such that every edge in G has one end in A and the other end in B. Kn and
Km,n denote the complete graph on n vertices and complete bipartite graph with
|A| = m and |B| = n, respectively. The neighborhood of a vertex v in G is the set
of vertices in G which are adjacent with v, and it is denoted by NG(v) or N(v).
The girth of G is the length of a shortest cycle in G and is denoted by gr(G). If G
has no cycles, we assume gr(G) to be infinite. A graph G is said to be planar if it
can be drawn in the plane so that its edges intersect only at vertices of G. A graph
is said to be an outerplanar graph if it can be drawn in the plane without crossings
such that all vertices are in the unbounded face of that embedding in the plane.

For any non-negative integer n, let Sn be the orientable surface with n handles.
The genus of the graph G, denoted by g(G), is the smallest n such that G embeds
into Sn. A subdivision of G is a graph obtained from G by replacing edges with
pairwise internally-disjoint paths. An n-book embedding consists of a set of n-half
planes called pages whose boundaries are bound together on a single line called
spine. If one can embed the vertices of a graph in the spine of a book, and then
place edges in k-pages so that every edge lies in exactly one page, and no two
edges cross in a given page, then the embedding is called a k-book embedding.
The book thickness of a graph G is the smallest integer n for which G has n-book
embedding. For details on the notion of embedding of graphs in a surface and book
embedding, one can see [19, 8]. For details on graph theory, we refer to [9]. For a
basic definition on rings, one may refer to [5].
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Now, we present results which will be used in our proofs of this paper. The
following is a famous characterization for planar graphs.

Theorem 1.1 (Kuratowski’s Theorem [9, p. 153]). A graph G is planar if and

only if it contains no subdivision of K5 or K3,3.

We have the following characterization for outerplanar graphs.

Theorem 1.2 ([11, Proposition 7.3.1]). A graph is outerplanar if and only if it

does not contain a subdivision of K4 or K2,3.

Theorem 1.3 ([19, Euler Formula]). If G is a finite connected graph with n ver-

tices, m edges and genus g, then n − m + f = 2 − 2g, where f is the number of

faces created when G is minimally embedded on a surface of genus g.

Lemma 1.4 ([19, Theorem 6.37]). If k, ℓ ≥ 2 are integers, then

g(Kk,ℓ) =
⌈

(k−2)(ℓ−2)
4

⌉

.

Theorem 1.5 ([8, Theorem 2.5]). Let G be a connected graph. Then the following

are true:

(a) the book thickness of G is zero if and only if G is a path;

(b) the book thickness of G is less than or equal to 1 if and only if G is outer-

planar.

Lemma 1.6 ([4, Lemma 2.1]). If G is a graph with n vertices, m edges, girth gr(G)

and genus g, then
m(gr(G)−2)

2 gr(G) − n
2 + 1 ≤ g(G).

Lemma 1.7 ([19, Corollary 6.15]). Suppose a simple graph G is connected with n ≥
3 vertices, m edges and genus g. If G has no triangles, then g(G) ≥

⌈

m
4 − n

2 + 1
⌉

.

Theorem 1.8 ([14, Proposition 4.4.4]). Let G be a connected graph with n ≥ 3
vertices, m edges and genus g. Then g(G) ≥

⌈

m
6 − n

2 + 1
⌉

.

Theorem 1.9 ([13, Theorem 3.1]). Let n ≥ 2 be an integer, Fj be a field for

1 ≤ j ≤ n, and let R = F1 × · · · × Fn. Then Γr(R) is planar if and only if R is

isomorphic to either F1 × F2 × F3 or F1 × F2.

Theorem 1.10 ([13, Theorem 3.2]). Let n ≥ 2 be an integer, (Ri,mi) be a local

ring with unique maximal ideal mi 6= 0 for 1 ≤ i ≤ n, and let R = R1 × · · · × Rn.

Then Γr(R) is planar if and only if R is isomorphic to R1 × R2 such that mi is the

only nonzero principal ideal in Ri for 1 ≤ i ≤ 2.

Theorem 1.11 ([12, Theorem 6]). Let (Ri,mi) be a local ring with unique maximal

ideal mi 6= {0} for 1 ≤ i ≤ n and let Fj be a field for 1 ≤ j ≤ m and m, n ≥ 1. Let

R = R1 × · · · × Rn × F1 × · · · × Fm. Then Γr(R) is planar if and only if R satisfies

the following conditions:

(1) n = m = 1;

(2) m1 = 〈a1〉 is a principal ideal with nilpotency index k ≤ 4 in general. In

particular,
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(i) if k = 2, then m1 = 〈a1〉 is the only nonzero proper principal ideal in

R1;

(ii) if k = 3, then m1 and m
2
1 are the nonzero principal ideals in R1;

(iii) if k = 4, then m1, m2
1 and m

3
1 are the nonzero principal ideals in R1.

Theorem 1.12 ([12, Theorem 8]). Let n ≥ 2 be an integer, (Ri,mi) be a local ring

with unique maximal ideal mi 6= 0 for 1 ≤ i ≤ n and let R = R1 × · · · × Rn. Let

ηi be the nilpotent index of mi for 1 ≤ i ≤ n. Then g(Γr(R)) = 1 if and only if R
satisfies the following conditions:

(1) n = 2;

(2) m1 = 〈a1〉 and m2 = 〈b1〉 for some a1 ∈ R1, b1 ∈ R2 and 2 ≤ η1, η2 ≤ 3;

(i) if η1 = 3 and η2 = 2, then m1 and m
2
1 are the only non-trivial principal

ideals in R1, and m2 is the only non-trivial principal ideal in R2;

(ii) if η1 = 2 and η2 = 3, then m1 is the only non-trivial principal ideal in

R1, and m2 and m
2
2 are the only non-trivial principal ideals in R2.

Theorem 1.13 ([12, Theorem 9]). Let m, n ≥ 1 be integers. Let (Ri,mi) be a local

ring with unique maximal ideal mi 6= {0} for 1 ≤ i ≤ n, and let Fj be a field for

1 ≤ j ≤ m. Let R = R1 × · · · × Rn × F1 × · · · × Fm. Then g(Γr(R)) = 1 if and

only if R satisfies one of the following conditions:

(1) R ∼= R1 × F1 × F2 and m1 is the only non-trivial principal ideal in R1;

(2) R ∼= R1 × F1 and

(i) if m1 = 〈b1, b2〉, then 〈b1〉, 〈b2〉, 〈b1b2〉 and 〈b1 + b2〉 are the only non-

trivial principal ideals of R1;

(ii) m1 = 〈b1〉 is a principal ideal in R1 with nilpotency η = 5 or 6;

(a) if η = 5, then m, m2, m3 and m
4 are the only non-trivial prin-

cipal ideals of R1;

(b) if η = 6, then m, m
2, m

3, m
4 and m

5 are the only non-trivial

principal ideals of R1.

2. Outerplanarity and genus two characterizations

By following results proved in [12, 13], in this section we aim to characterize all
Artinian nonlocal rings whose reduced cozero-divisor graph is outerplanar. Also
we characterize all Artinian nonlocal rings whose reduced cozero-divisor graph is
of genus two. After these characterizations, we attempt characterizations for the
class of Artinian rings. In this regard, we make use of the structure theorem for
Artinian rings [5, Theorem 8.7]. An Artinian ring R is isomorphic to the product
R ∼= R1 × R2 × · · · × Rn of local Artinian rings (Ri,mi).

First, we determine all rings whose reduced cozero-divisor graph is outerplanar.
Now we observe the following.

Remark 2.1. Let R be a reduced Artinian nonlocal ring. Here R ∼= R1 × · · · × Rk

for some k ≥ 2 and each (Ri,mi) is a local ring for 1 ≤ i ≤ k. If mi 6= 0 for some
i, then R shall contain a nonzero nilpotent element, which is a contradiction to R
being reduced. Hence mi = 0 for every i and thus every reduced Artinian nonlocal
ring is a direct product of fields.
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Theorem 2.2. Let R be a nonlocal finite ring. Then Γr(R) is outerplanar if and

only if R is isomorphic to either F1 × F2 or R1 × F1, where F1 and F2 are fields

and R1 is a local ring with nonzero maximal ideal m1 which is also a principal ideal

with nilpotency at most 3.

Proof. Since R is a nonlocal finite ring, R ∼= R1 × · · · × Rk for some k ≥ 2 and
each Ri(1 ≤ i ≤ k) is a local ring. Assume that Γr(R) is outerplanar. Since every
outerplanar graph is planar, Γr(R) is planar.

Case 1. R is reduced.
By Remark 2.1, each Ri is a field. By Theorem 1.9, we have either R = F1 ×

F2 × F3 or R = F1 × F2. Consider the case R = F1 × F2 × F3. One can easily find
Γr(F1 × F2 × F3) contains a subdivision of K2,3 as a subgraph corresponding to
vertex partitions {〈0〉×F2 ×〈0〉 , 〈0〉×F2 ×F3}, {F1 ×〈0〉×〈0〉 , F1 ×〈0〉×F3, 〈0〉×
〈0〉×F3} and a subdivision of the edge joining 〈0〉×F2×F3 and 〈0〉×〈0〉×F3 through
the vertex F1 × F2 × 〈0〉. By Theorem 1.2, Γr(F1 × F2 × F3) is not outerplanar,
which is a contradiction. Hence R = F1 × F2, where each Fi is a field.

Case 2. R is non-reduced.
By Theorems 1.10 and 1.11, one needs to check only for the rings: R1 × R2 and

R1 ×F1, where each Ri is a local ring with non-zero maximal principal ideal mi and
F1 is a field. Note that Γr(R1 × R2) contains a subdivision of K2,3 as a subgraph
corresponding to vertex partitions {〈0〉×R2, R1×〈0〉}, {m1×〈0〉 ,m1×m2, R1×m2}
and a subdivision of edges joining R1×〈0〉 and m1×〈0〉, R1×〈0〉 and R1×m2 through
the vertices 〈0〉 × m2, m1 × R2, respectively. Here we arrive at a contradiction by
Theorem 1.2.

Consider the ring R = R1 ×F1. Let η1 be the nilpotent index m1 in R1. Suppose
that η1 = 4. Then Γr(R) contains K2,3 as a subgraph with vertex partitions
{〈0〉 × F1,m3

1 × F1} and {m2
1 × 〈0〉 , R1 × 〈0〉 ,m1 × 〈0〉}, a contradiction. Thus the

nilpotent index η1 ≤ 3.
The converse follows from Figure 2.1. �

b b b bb b

b

bb

bb

b

F1 × 〈0〉 〈0〉 × F2
m1 × 〈0〉 〈0〉 × F1 R1 × 〈0〉 m1 × F1

m1 × 〈0〉 〈0〉 × F1 m
2

1
× 〈0〉

m1 × F1R1 × 〈0〉m
2

1
× F1(a) Γr(F1 × F2) (b) Γr(R1 × F1) and η1 = 2

(c) Γr(R1 × F1) and η1 = 3

Figure 2.1.

Now, let us find out the classes of reduced rings whose reduced cozero-divisor
graphs can be embedded in S2.
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Lemma 2.3. Let R be a reduced Artinian ring with at least four maximal ideals.

Then g(Γr(R)) ≥ 3.

Proof. Since R is a reduced Artinian ring, R is a direct product of fields. Since
R contains at least four maximal ideals, R = F1 × · · · × Fn and n ≥ 4. Consider
the set A = {J1 = F1 × 〈0〉 × 〈0〉 × 〈0〉 × 〈0〉 × · · · × 〈0〉 , J2 = 〈0〉 × F2 × 〈0〉 ×
〈0〉 × 〈0〉 × · · · × 〈0〉 , J3 = 〈0〉 × 〈0〉 × F3 × 〈0〉 × 〈0〉 × · · · × 〈0〉 , J4 = 〈0〉 ×
〈0〉 × 〈0〉 × F4 × 〈0〉 × · · · × 〈0〉 , J5 = F1 × F2 × 〈0〉 × 〈0〉 × 〈0〉 × · · · × 〈0〉 , J6 =
F1 × 〈0〉 × F3 × 〈0〉 × 〈0〉 × · · ·× 〈0〉 , J7 = F1 × 〈0〉 × 〈0〉 × F4 × 〈0〉 × · · ·× 〈0〉 , J8 =
〈0〉×F2 ×F3 ×〈0〉×〈0〉× · · ·×〈0〉 , J9 = 〈0〉×F2 ×〈0〉×F4 ×〈0〉× · · ·×〈0〉 , J10 =
〈0〉×〈0〉×F3 ×F4 ×〈0〉×· · ·×〈0〉 , J11 = F1 ×F2 ×F3 ×〈0〉×〈0〉×· · ·×〈0〉 , J12 =
F1 ×〈0〉×F3 ×F4 ×〈0〉× · · ·×〈0〉 , J13 = F1 ×F2 ×〈0〉×F4 ×〈0〉× · · ·×〈0〉 , J14 =
〈0〉 × F2 × F3 × F4 × 〈0〉 × · · · × 〈0〉} of Γr(R) and the induced subgraph 〈A〉.

Note that N〈A〉(J1) = {J2, J3, J4, J8, J9, J10, J14}, N〈A〉(J2) = {J1, J3, J4,
J6, J7, J10, J12}, N〈A〉(J3) = {J1, J2, J4, J5, J7, J9, J13}, N〈A〉(J4) = {J1, J2, J3,
J5, J6, J8, J11}, N〈A〉(J5) = {J3, J4, J6, J7, J8, J9, J10, J12, J14}, N〈A〉(J6) = {J2,
J4, J5, J7, J8, J9, J10, J13, J14}, N〈A〉(J7) = {J2, J3, J5, J6, J8, J9, J10, J11, J14},
N〈A〉(J8) = {J1, J4, J5, J6, J7, J9, J10, J12, J13}, N〈A〉(J9) = {J1, J3, J5, J6, J7, J8,
J10, J11, J12}, N〈A〉(J10) = {J1, J2, J5, J6, J7, J8, J9, J11, J13}, N〈A〉(J11) = {J4,
J7, J9, J10, J12, J13, J14}, N〈A〉(J12) = {J2, J5, J8, J9, J11, J13, J14}, N〈A〉(J13) =
{J3, J6, J8, J10, J11, J12, J14}, N〈A〉(J14) = {J1, J5, J6, J7, J11, J12, J13}. Thus we
have an induced subgraph 〈A〉 of Γr(R) with n = 14 vertices and m = 55 edges.
By Theorem 1.8, we get g(Γr(R)) ≥ 3. �

Clearly, Γr(F1 ×F2 ×F3 ×F4) is a subgraph of Γr(R1 ×R2 ×R3 ×R4), where each
Ri is a local ring and each Fj is a field. By Lemma 2.3, g(Γr(R1×R2×R3×R4)) ≥ 3.
Therefore, to characterize the genus two reduced cozero-divisor graphs, it is enough
to look into the cases R1 × R2 × R3 and R1 × R2. By Theorem 1.9, we cannot take
all Ri’s to be fields, so we consider the non-reduced case only.

Theorem 2.4. Let (R1,m1) be a local ring with m1 6= 0 and η1 be the nilpotent

index of m1. Let R = R1 × F1 × F2, where F1and F2 are fields. Then the following

are true:

(1) if m1 = 〈a1〉 is a principal ideal with nilpotency η1 ≥ 3, then g(Γr(R)) ≥ 3;

(2) if m1 = 〈a1, a2, . . . , aℓ〉, ai ∈ R1 and ℓ ≥ 2, then g(Γr(R)) ≥ 3.

Proof. Let R = R1 × F1 × F2. To prove (1), assume that m1 is principal with
nilpotency η1 ≥ 3. Consider the subgraph induced by {I1 = m1 × 〈0〉 × R3, I2 =
m

2
1 × 〈0〉 × R3, I3 = R1 × 〈0〉 × R3, I4 = 〈0〉 × 〈0〉 × R3, I5 = R1 × 〈0〉 × 〈0〉 , I6 =

〈0〉 × R2 × 〈0〉 , I7 = m1 × R2 × 〈0〉 , I8 = m
2
1 × R2 × 〈0〉 , I9 = 〈0〉 × R2 × R3, I10 =

R1 × R2 × 〈0〉 , I11 = m1 × 〈0〉 × 〈0〉 , I12 = m
2
1 × R1 × R3}. It contains a subdivision

of K5,5 with vertex partitions {I1, I2, I3, I4, I5}, {I6, I7, I8, I9, I10} and the edges
joining I4 and I9, I5 and I10 through the vertices I11 and I12, respectively. By
using the Lemma 1.4, we get that g(Γr(R)) ≥ 3.

To prove (2), we assume that m1 = 〈a1, a2, . . . , aℓ〉, ai ∈ R1 and ℓ ≥ 2. Then
the subgraph induced by {H1 = 〈a2〉 × 〈0〉 × 〈0〉 , H2 = 〈a2〉 × R2 × 〈0〉 , H3 =
〈a2〉×〈0〉×R3, H4 = R1 ×〈0〉×〈0〉 , H5 = R1 ×R2 ×〈0〉 , H6 = 〈0〉×R2 ×R3, H7 =
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〈a1〉×〈0〉×R3, H8 = 〈a1〉×R2×R3, H9 = 〈0〉×〈0〉×R3, H10 = 〈a1〉×R2×〈0〉 , H11 =
〈0〉 × R2 × 〈0〉 , H12 = 〈a2〉 × R2 × R3} contains a subdivision of K5,5 with vertex
partitions {H1, H2, H3, H4, H5}, {H6, H7, H8, H9, H10} and a subdivision of edges
joining H3 and H9, H5 and H10 through the vertices H11 and H12, respectively.
By Lemma 1.4, we get that g(Γr(R)) ≥ 3. �

Theorem 2.5. Let (Ri,mi) be a local ring for 1 ≤ i ≤ 3, and let R = R1 ×R2 ×R3.

If mi = 0 for at most one i ∈ {1, 2, 3}, then g(Γr(R)) ≥ 3.

Proof. Let mi = 0 for at most one i. Without loss of generality, assume that
m3 = 0 and hence R3 is a field. Let Y1 = 〈0〉 × U2 × 〈0〉, Y2 = 〈0〉 × R2 × 〈0〉,
Y3 = 〈0〉 × U2 × R3, Y4 = 〈0〉 × R2 × R3, Y5 = U1 × U2 × 〈0〉, Y6 = U1 × R2 × 〈0〉,
Y7 = R1 × U2 × 〈0〉, Y8 = R1 × 〈0〉 × 〈0〉, Y9 = U1 × 〈0〉 × R3, Y10 = 〈0〉 ×
〈0〉 × R3, Y11 = R1 × 〈0〉 × R3, Y12 = R1 × R2 × 〈0〉, Y13 = U1 × U2 × R3,
where U1 and U2 are nonzero proper principal ideals in R1 and R2, respectively.
Let B = {Y1, Y2, Y3, Y4, Y5, Y6, Y7, Y8, Y9, Y10, Y11, Y12, Y13}. Then the subgraph
〈B〉 contains a subdivision of K7,4 with vertex partitions {Y1, Y2, Y3, Y4, Y5, Y6, Y7},
{Y8, Y9, Y10, Y11} and the edges joining Y3 and Y10, Y7 and Y8 through the vertices
Y12 and Y13, respectively. By applying Lemma 1.4, we observe that g(〈B〉) ≥ 3.
Since 〈B〉 is the subgraph of Γr(R), g(Γr(R)) ≥ 3. �

Now we end this section with the following main theorem.

Theorem 2.6. Let (R1,m1) and (R2,m2) be two local rings, and let R = R1 × R2.

Let ηi be the nilpotent index of mi for i = 1, 2. Then g(Γr(R)) = 2 if and only if

any of the following are true:

(1) R2 is a field and m1 is a principal ideal in R1 with nilpotency η1 ≤ 7;

(2) m1 = 〈x1〉 is a principal ideal in R1 and m2 = 〈y1〉 is a principal ideal in

R2;

(a) if η1 = 2 and η2 = 4, then m1 is the only non-trivial principal ideal in

R1, and m2,m2
2,m3

2 are the only non-trivial principal ideals in R2;

(b) if η1 = 4 and η2 = 2, then m1,m2
1,m3

1 are the only non-trivial principal

ideals in R1, and m2 is the only non-trivial principal ideal in R2.

Proof. Assume that g(Γr(R)) = 2. Suppose that mi = 0 for all i. Then both R1

and R2 are fields, and hence g(Γr(R)) is planar as proved in Theorem 1.9. This
is a contradiction to the assumption that g(Γr(R)) = 2. So, now we look into the
cases where either m1 = 0 or m2 = 0 but not both.

Case 1. Assume that m1 6= 0 and m2 = 0.
Here R2 is a field. Since R1 is Artinian, every ideal in R1 is finitely generated.

Let ϕ = {c1, c2, . . . , cs : cj ∈ R1 for 1 ≤ j ≤ s} be a minimal generating set for
m1 in R1. Then 〈cr〉 * 〈ct〉 for all r 6= t, 1 ≤ r, t ≤ s. Suppose s ≥ 3. Let
W1 = R1 × 〈0〉 , W2 = 〈c1 + c2 + c3〉 × 〈0〉 , W3 = 〈c2 + c3〉 × 〈0〉 , W4 = 〈c1 + c3〉 ×
〈0〉 , W5 = 〈c1 + c2〉 × 〈0〉 , W6 = 〈c3〉 × 〈0〉 , W7 = 〈c2〉 × 〈0〉 , W8 = 〈0〉 × F1, W9 =
〈c1〉×F1, W10 = 〈c2〉×F1, W11 = 〈c3〉×F1, W12 = 〈c1+c2〉×F1, W13 = 〈c1〉×(0) and
A = {W1, W2, W3, W4, W5, W6, W7, W8, W9, W10, W11, W12, W13} ⊂ Ω(R)∗. Then
the subgraph induced by A contains a subdivision of K7,4 with partition subsets
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{W1, W2, W3, W4, W5, W6, W7} and {W8, W9, W10, W11} and a subdivision of edges
joining the vertices W6 and W11, W7 and W10 through W12 and W13, respectively.
Using Theorem 1.4, we get that g(Γr(R)) ≥ 3, which is a contradiction. This gives
that either s = 2 or s = 1.

Suppose that s = 2. If m
2
1 = 0, by Theorem 1.11, Γr(R) is planar, which is a

contradiction to g(Γr(R)) = 2. Thus we have m1 = 〈c1, c2〉 and m
2
1 6= 0. Suppose

c2
i 6= 0 for some i. Without loss of generality, let us assume that c2

1 6= 0. Consider
the principal ideals I1 = 〈0〉 × F1, I2 = 〈c1c2〉 × F1, I3 =

〈

c2
1

〉

× F1, I4 = 〈c1〉 × F1,

I5 = 〈c2〉×F1, I6 = 〈c1 + c2〉×〈0〉, I7 =
〈

c2
1 + c2

〉

×〈0〉, I8 = R1×〈0〉, I9 = 〈c1〉×〈0〉,

I10 = 〈c2〉×〈0〉, I11 =
〈

c2
1 + c2

〉

×F1, I12 =
〈

c2
1

〉

×〈0〉. Then the subgraph induced
by B = {I1, I2, I3, I4, I5, I6, I7, I8, I9, I10, I11, I12} ⊂ Ω(R)∗ contains a subdivision
of K5,5 with vertex partitions {I1, I2, I3, I4, I5}, {I6, I7, I8, I9, I10} and subdivision
of edges joining the vertices I4 and I9, I5 and I10 through I11 and I12, respectively.
By Theorem 1.4, we get that g(Γr(R)) = 3, which is a contradiction. Hence, c2

i = 0
for i = 1, 2, and so m

2
1 = 〈c1c2〉. Note that m3

1 is generated by c2
1c2, c1c2

2, c3
1 and c3

2.
Since c2

i = 0 for i = 1, 2, we get that m3
1 = 0. This implies that 〈c1〉, 〈c2〉, 〈c1c2〉 and

〈c1 + c2〉 are the only non-trivial principal ideals in R1. By Theorem 1.13 (2)(i),
we get that g(Γr(R)) = 1, which is a contradiction. Hence s = 1 and m1 = 〈c1〉 is
the principal ideal in R1.

Since R1 is Artinian, mη1

1 = (0), mη1−1
1 6= (0) for some η1 ≥ 2. Now we claim

that η1 ≤ 7. Suppose that η1 ≥ 8. Let H be the subgraph of Γr(R) induced by the
vertex set {〈0〉 × F1,m7

1 × F1,m6
1 × F1,m5

1 × F1,m4
1 × F1,m3

1 × F1,m1 × 〈0〉 ,m2
1 ×

〈0〉 , R1 × 〈0〉 ,m3
1 × 〈0〉 ,m4

1 × 〈0〉 ,m5
1 × 〈0〉}. Then the graph H is as shown in

Figure 2.2 with v = 12 vertices and e = 30 edges.

b b b b b b

b b b b b b

〈0〉 × F1 m
6

1
× F1m

7

1
× F1

m
5

1
× F1 m

4

1
× F1m

3

1
× F1

m1 × 〈0〉
m

2

1
× 〈0〉R1 × 〈0〉

m
3

1
× 〈0〉m

4

1
× 〈0〉

m
5

1
× 〈0〉

Figure 2.2. The graph H

Clearly, the graph H has no triangles. By Theorem 1.7 on the graph H , we get
g(H) ≥ 3, which in turn gives that g(Γr(R)) ≥ 3, which is a contradiction to the
assumption. Therefore η1 ≤ 7.
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Case 2. Assume that m1 6= 0 and m2 6= 0.
In this case both R1 and R2 are not fields. Since Ri is Artinian, every ideal in

Ri is finitely generated. Let ϕ1 = {x1, x2, . . . , xt : xj ∈ R1 for 1 ≤ j ≤ t} and
ϕ2 = {y1, y2, . . . , yk : yi ∈ R2 for 1 ≤ i ≤ k} be minimal generating sets of m1 and
m2, respectively. Then 〈xi〉 * 〈xj〉 for all i 6= j and 〈yi〉 * 〈yj〉 for all i 6= j.

Suppose t ≥ 2 and k ≥ 2. Let B = {〈x1〉 × 〈0〉 , 〈x1〉 × 〈y1〉 , 〈x2〉 × 〈y1〉 ,
〈x1 + x2〉×〈0〉 , 〈x1 + x2〉×〈y1〉 , R1×〈0〉 , R1 ×〈y1〉 , 〈0〉×〈y2〉 , 〈0〉×〈y1 + y2〉 , 〈0〉×
R2, 〈x2〉 × 〈y2〉} ⊂ Ω(R)∗. Then the subgraph induced by B contains K7,4 as a
subgraph with vertex partitions {〈x1〉 × 〈0〉 , 〈x1〉 × 〈y1〉 , 〈x2〉 × 〈y1〉 , 〈x1 + x2〉 ×
〈0〉 , 〈x1 + x2〉 × 〈y1〉 , R1 × 〈0〉 , R1 × 〈y1〉} and {〈0〉 × 〈y2〉 , 〈0〉 × 〈y1 + y2〉 , 〈0〉 ×
R2, 〈x2〉×〈y2〉}. By Lemma 1.4, we get that g(Γr(R)) ≥ 3, which is a contradiction.
This gives that t = 1 or k = 1. Without loss of generality, let us assume that t = 1.

Suppose that k ≥ 2. Let X = {J1 = 〈0〉 × 〈y1 + y2〉, J2 = 〈0〉 × R2, J3 =
m1 × 〈y1 + y2〉, J4 = m1 × R2, I1 = R1 × 〈0〉, I2 = R1 × 〈y1〉, I3 = R1 × 〈y2〉 , Q1 =
〈0〉 × 〈y1〉 , Q2 = 〈0〉 × 〈y2〉 , Q3 = m1 × 〈0〉 , Q4 = m1 × 〈y2〉 , Q5 = m1 × 〈y1〉} ⊂
Ω(R)∗. Let H = {J1, J2, J3, J4, I1, I2, I3} and H ′ = 〈H〉 − {J2J3, I2I3}. Since
JiIj ∈ E(Γr(R)) for all i, j and H ′ ∼= K4,3. Note that the vertex Q1 is adjacent
to Q2, Q3, Q4, and the vertex Q2 is adjacent to Q5. This indicates that we must
insert the vertices Q1, Q2, Q3, Q4 and Q5 in a same face. Also observe that Q1 is
adjacent to {I1, I3}, Q2 is adjacent to {Q3, I1, I2}, Q3 is adjacent to {J1, J2}, Q4

is adjacent to {Q5, J1, J2, I1, I2} and Q5 is adjacent to {J1, J2, I1, I3}.
If we try to embed the graph H ′ in S1, then the possible length of the faces will

be 4, 6 or 8. Since we have to insert the vertices Q1, Q2, Q3, Q4, Q5 to obtain the
subgraph 〈X〉 of Γr(R), it is not possible to consider the embedding of the graph
〈X〉 in S1 without edge crossings.

Therefore, we consider the embedding of K4,3 in S2. Also we must have a face
of length greater than 8. However, there is no such embedding in S2. Hence, we
cannot insert Q1, Q2, Q3, Q4 and Q5 in the same face without edge crossings. Thus,
g(Γr(R)) ≥ 3, which is a contradiction. Therefore, k = 1.

Since each Rj is Artinian, m
ηj

j = (0), m
ηj−1
j 6= (0) for some ηj ≥ 2. Suppose

ηj ≥ 3 for all j. Let S = {U1, U2, U3, U4, V1, V2, V3, V4, W1, W2, Y1, Y2, X1, X2} ⊂
Ω(R)∗, where U1 = 〈0〉 × m2, U2 = 〈0〉 × R2, U3 = m

2
1 × m2, U4 = m

2
1 × R2,

V1 = m1 × 〈0〉, V2 = m1 × m
2
2, V3 = R1 × 〈0〉, V4 = R1 × m

2
2, W1 = 〈0〉 × m

2
2,

W2 = m
2
1 × 〈0〉, Y1 = m1 × R2, Y2 = R1 × m2, X1 = m1 × m2, X2 = m

2
1 × m

2
2. Let

S′ = {U1, U2, U3, U4, V1, V2, V3, V4} and G = 〈S′〉 − {U2U3, V2V3}. One can observe
that UiVj ∈ E(Γr(R)) for all i, j, and so G is isomorphic to K4,4. Note that the
vertex W1 is adjacent to W2, V1, V3, and the vertex W2 is adjacent to U1, U2. Due
to this, we must insert the vertices W1, W2 in the same face of length at least 8 to
avoid crossings. Similarly, the vertex Y1 is adjacent to Y2, V3, V4, and the vertex Y2

is adjacent to U2, U4. With this information, we must insert vertices Y1, Y2 in the
same face of length at least 8. Since we need at least two faces of length at least 8,
we take into account the embedding of K4,4 in S2. Also note that the vertex X1

is adjacent to U2, U4, V3, V4, and the vertex X2 is adjacent to U1, U2, V1, V3. It is
clear that we cannot insert either of the sets {Y1, Y2, X1} or {W1, W2, X2} without
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edge crossings. This means that no such embedding exists in the embedding of
K4,4 in S2, which yields g(Γr(S)) ≥ 3. This in turn gives g(Γr(R)) ≥ 3, which is a
contradiction. Hence ηj = 2 for some j. Let us take η1 = 2.

Suppose that η2 ≥ 5. Let G = {X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11,
X12, X13, X14, X15, X16} ⊂ Ω(R)∗ and G′ = 〈G〉 − {X1X8, X5X7, X5X8, X9X12,
X9X16, X10X12}, where X1 = 〈0〉 × m2, X2 = 〈0〉 × m

2
2, X3 = 〈0〉 × m

3
2, X4 =

〈0〉×m
4
2, X5 = 〈0〉×R2, X6 = m1×〈0〉, X7 = m1×m2, X8 = m1×m

2
2, X9 = m1×m

3
2,

X10 = m1 × m
4
2, X11 = m1 × R2, X12 = R1 × 〈0〉, X13 = R1 × m2, X14 = R1 × m

2
2,

X15 = R1 ×m
3
2, X16 = R1×m

4
2. Then the induced subgraph G′ of Γr(R) has n = 16

vertices, m = 39 edges, and its girth is 4. Using the Lemma 1.8 to the graph G′,
we obtain g(G′) ≥ 3. Since G′ is the subgraph of Γr(R), we get g(Γr(R)) ≥ 3. This
contradicts our assumption. Thus, we have η2 ≤ 4. Because of Theorem 1.10, we
conclude that η2 = 4. Therefore, m2, m2

2, m3
2, and m

4
2 are the only nonzero proper

principal ideals in R2. In an analogous manner, we can prove that if η2 = 2, then
R1 contains precisely m1, m

2
1, m

3
1, and m

4
1 as the only nonzero proper principal

ideals.
The converse follows from the embeddings given in Figures 2.3, 2.4 and 2.5. �
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Figure 2.3. Embedding of Γr(R1 × F1) and η1 = 7 on S2
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Figure 2.4. Embedding of Γr(R1 × R2) with η1 = 2 and η2 = 4 on S2
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Figure 2.5. Embedding of Γr(R1 × R2) with η1 = 4 and η2 = 2 on S2
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3. Book thickness of reduced cozero-divisor graph

In this section, we determine the book thickness of the reduced cozero-divisor
graph whose genus is at most one. First of all, we find out the book thickness of
planar reduced cozero-divisor graphs arising from rings listed in Theorems 1.9, 1.10
and 1.11. In the next theorem, we prove that all planar reduced cozero-divisor
graphs have book thickness at most two.

Theorem 3.1. Let R be a commutative Artinian nonlocal ring with identity whose

reduced cozero-divisor graph is planar. Then the following are true:

(1) the book thickness of Γr(R) is 0 if and only if R is isomorphic to either

F1 × F2 or R1 × F1, where F1 and F2 are fields and R1 is a local ring with

nonzero maximal principal ideal of nilpotent index 2;

(2) the book thickness of Γr(R) is 1 if and only if R is isomorphic to R1 × F1,

where F1 is a field and R1 is a local ring with nonzero maximal principal

ideal of nilpotent index 3;

(3) the book thickness of Γr(R) is 2 if and only if R is isomorphic to one of

the following rings:

(a) F1 × F2 × F3, where each Fj is a field for 1 ≤ j ≤ 3;

(b) R1 ×R2, where each Ri is a local ring with mi 6= 0 as the only nonzero

proper principal ideal in Ri for i = 1, 2;

(c) R1 × F1, where F1 is a field and R1 is a local ring and m1, m2
1, m3

1 are

the only proper principal ideals in R1.

Proof. Parts (1) and (2) follow from Figure 2.1 and Theorems 1.5 and 2.2.
To prove (3), we need to consider the remaining commutative Artinian nonlocal

rings whose reduced cozero-divisor graph is planar as given in Theorems 1.9, 1.10
and 1.11. Note that all remaining rings are considered in (3) (a), (b) and (c). Since
they are not outerplanar, they should have book thickness greater than or equal
to 2. However, Figures 3.1, 3.2, and 3.3 give 2-book embeddings for these rings
and hence the proof is complete. �

b b b b b b

〈0〉 × F2 × F3

F1 × 〈0〉 × 〈0〉

〈0〉 × F2 × 〈0〉

F1 × 〈0〉 × F3

〈0〉 × 〈0〉 × F3

F1 × F2 × 〈0〉

Figure 3.1. Two-page book embedding of Γr(F1 × F2 × F3)
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b b b b b b

〈0〉 × m2 R1 × m2m1 × 〈0〉m1 × R2〈0〉 × R2 m1 × m2R1 × 〈0〉

b

Figure 3.2. Two-page embedding of Γr(R1 × R2)

b
b b b b b b b

m
2
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m
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1
× 〈0〉

〈0〉 × F1

m
2

1
× F1

m1 × 〈0〉

Figure 3.3. Two-page embedding of Γr(R1 × F1) with η1 = 4
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For the class of toroidal reduced cozero-divisor graphs, the book thickness is
obtained in the following theorem.

Theorem 3.2. Let R be a commutative Artinian nonlocal ring with identity whose

reduced cozero-divisor graph is toroidal.

(1) The book thickness of Γr(R) is 3 if and only if R satisfies one of the fol-

lowing:

(a) R ∼= R1 × R2 and mi is principal in Ri:

(i) if η1 = 3 and η2 = 2, then m1 and m
2
1 are the only non-trivial

principal ideals in R1 and m2 is the only non-trivial principal

ideal in R2;

(ii) if η1 = 2 and η2 = 3, then m1 is the only non-trivial principal

ideal in R1 and m2 and m
2
2 are the only non-trivial principal

ideals in R2.

(b) R ∼= R1 × F1:

(i) if m1 = 〈b1, b2〉, then R1 contains 〈b1〉, 〈b2〉, 〈b1b2〉, 〈b1 + b2〉 as

the only non-trivial principal ideals;

(ii) if m1 = 〈b1〉 is a principal ideal in R1 with nilpotency η = 5,

then m, m2, m3 and m
4 are the only non-trivial principal ideals

of R1.

(2) The book thickness of Γr(R) is 4 if and only if R is isomorphic to R1 × F1

and m1 is principal ideal in R1 with nilpotency 6.

(3) The book thickness of Γr(R) is 5 if and only if R is isomorphic to R1 ×
F1 × F2 and m1 is the only nonzero proper principal ideal in R1.

Proof. Since planar reduced cozero-divisor graphs are two-page embeddable, we
require at least three pages to embed toroidal reduced cozero-divisor graphs. Note
that toroidal reduced cozero-divisor graphs are given in Theorems 1.12 and 1.13.
Figures 3.4, 3.5, 3.6, and 3.7 exhibit a 3-book embedding of the respective rings.
In the case of ring R1 × F1 with nilpotency six, a 4-book embedding is given in
Figure 3.8. For one more remaining case, a 5-book embedding is given in Figure 3.9.

�

Rev. Un. Mat. Argentina, Vol. 67, No. 2 (2024)



EMBEDDINGS OF REDUCED COZERO-DIVISOR GRAPHS 469

b b b b b b b b b b
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〈0〉 × m2

R1 × 〈0〉

m1 × m2

m
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1
× R2

R1 × m2

m1 × R2

Figure 3.4. Three-page book embedding of Γr(R1 × R2) with
η1 = 3 and η2 = 2
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m1 × 〈0〉

〈0〉 × R2
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m1 × R2

m1 × m2

Figure 3.5. Three-page book embedding of Γr(R1 × R2) with
η1 = 2 and η2 = 3
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b b b b bb b bb b b

〈b2〉 × F1

〈b1〉 × F1

〈b1 + b2〉 × F1

R1 × 〈0〉
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〈b2〉 × 〈0〉

〈b1b2〉 × F1

〈b1 + b2〉 × 〈0〉

〈b1〉 × 〈0〉

Figure 3.6. Three-page book embedding of Γr(R1 × F1) and t = 2
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Figure 3.7. Three-page book embedding of Γr(R1 × F1) and t =
1, η1 = 5

Rev. Un. Mat. Argentina, Vol. 67, No. 2 (2024)



EMBEDDINGS OF REDUCED COZERO-DIVISOR GRAPHS 471

b b b b b b b b b b b b

m
3

1
× F1

m
2

1
× F1

m1 × 〈0〉

m
4

1
× 〈0〉

m
5

1
× 〈0〉

〈0〉 × F1

R1 × 〈0〉

m1 × F1

m
5

1
× F1

m
4

1
× F1

m
3

1
× 〈0〉

m
2

1
× 〈0〉

Figure 3.8. Four-page book embedding of Γr(R1 × F1) with η1 = 6
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Figure 3.9. Five-page book embedding of Γr(R1 × F1 × F2)
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