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HAAR WAVELET CHARACTERIZATION
OF DYADIC LIPSCHITZ REGULARITY

HUGO AIMAR, CARLOS EXEQUIEL ARIAS, AND IVANA GOMEZ

To Pola Harboure and Roberto Macias

ABSTRACT. We obtain a necessary and sufficient condition on the Haar coef-
ficients of a real function f defined on Rt for the Lipschitz o regularity of f
with respect to the ultrametric §(z,y) = inf{|I| : z,y € I; I € D}, where
D is the family of all dyadic intervals in RT and « is positive. Precisely,
f € Lips(a) if and only if \{fhfc)| < 02~ (@+1/2)7 for some constant C, every
j € Z and every k = 0,1,2,... Here, as usual, hi(x) = 2j/2h(2jx — k) and
h(z) = X[0,1/2)($) - X[l/z,l)(iﬁ)-

Arde de abejas el aguaribay, arde.
Rien los ojos, los labios, hacia las islas azules
a través de la cortina
de los racimos
padlidos.
Juan L. Ortiz

1. INTRODUCTION

In [4] and [3] (see also [2]), M. Holschneider and Ph. Tchamitchian provide
characterizations of the Lipschitz a regularity of a function in L?(R) for 0 < o < 1
in terms of the behaviour of the continuous wavelet transform. The result is that a
given function is Lipschitz « if and only if its continuous wavelet transform satisfies
a power law in the absolute value of the scale parameter. Here Lipschitz o refers to
the classical definition with respect to the usual metric in R, i.e., |f(z) — f(y)| <
C'|z — y|* for some constant C' > 0 and every = and y in R. In [I] these results are
extended to more general moduli of regularity of functions when the basic wavelet
is the Haar wavelet. The method used in [I] provides the tool for the analysis of
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pointwise regularity through the discrete wavelet transform associated to dyadic

scaling and integer translations of the Haar wavelet. The natural Lipschitz « class,

in our setting, is defined through the dyadic distance instead of the usual one.
The result of this paper is contained in the next statement.

Theorem 1.1. Let f be a real valued function in Li (RT). Let hfc(x) = 20/2 x

loc

h(2/x — k), where h(z) = Xjo1/2)(x) — Xijo1)(x), j € Z, k = 0,1,2,..., and
(f,h) = [ f(@)h)(x) dz. Let o be any positive number. Then, the boundedness
of the sequence

{2(a+§)jy<f,hi>| jez, k—0,1,2,...}

is equivalent to the essential boundedness of the quotients

|f(x) = fy)l
6(x,y)

where §(x,y) = inf{|I| : x,y € I, 1 € D} with D the family of all dyadic intervals
in RT.

T £y,

In Section [2| we introduce the basic facts and notation, and Section [3is devoted
to the proof of Theorem [T.1]

2. DYADIC DISTANCE IN Rt AND THE HAAR SYSTEM

The set of nonnegative real numbers is denoted here by R*. The family of
all dyadic intervals in Rt is the disjoint union of the classes D7, j € Z, where
DI ={I] = [k279,(k+1)279) : k = 0,1,2,...} are the dyadic intervals of level j.
Notice that with this notation, when j grows, the partitions of R* get refined and
the intervals smaller. Since given two points x and y of Rf there exists some jy € Z
such that 0 < max{z,y} < 2770, we have that x,y € I}°. Hence, the class of all
dyadic intervals I € D such that both x and y belong to I is non-empty. Therefore,
if |E| denotes the Lebesgue length of the measurable set E, we have that

O(z,y) =inf {|I| : z,y € ;I € D}

is a well-defined nonnegative real number. Even more, § is an ultrametric in RT.
In other words,

(i) d(z,y) = 0 if and only if z = y;
(ii) &(x,y) = d(y, ) for every x,y in RT;
(iii) d(z, z) < max{d(z,y),d(y, =)} for every z,y, 2 in RT.

The triangle inequality follows from the properties of the family D. In fact,
given z,y and z in RY, let I(z,y) and I(y,z) denote the smallest dyadic inter-
vals containing z,y and vy, z, respectively; then, one of these intervals contains
the other because y € I(z,y) N I(y,z) # 0. Assume I(z,y) 2 I(y,z); then
0(z,z) < |I(z,y)] = max{|I(y,2)|,|I(z,y)|} = max{o(y, z),d(z,y)}. In particu-

)

lar, ¢ is a metric in RT. Notice that |z —y| < §(=x,y), but % is unbounded.
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Hence every Lipschitz o function f in the usual sense (|f(z) — f(y)| < Clz —y|¥)
is also a Lips(«) function, i.e.,

[f(x) = f(y)] < Co%(z,y)
for some constant C' and every z and y in RT. On the other hand, there are Lips(c)
functions which are not Lipschitz « in the classical sense. In fact, X7, I € D, is in
the class Lips(1). We also observe that in contrast with the class Lipschitz o for
every « > 1, which is trivial, there exist nonconstant Lips;(«) functions for every
a > 0.

Let us now review the basic properties of the Haar system. Set h)(z) =
Xio,1/2)(2) — Xp1j2,1)(z) and ki (z) = 2//2hQ(27z — k) for j € Z and k = 0,1,2,
The family 5 = {h], : j € Z, k = 0,1,2,...} is the Haar system in RT. Tt is
well known that . is an orthonormal basis for L?(R*). Since for each I € D
there is one and only one h € 7 supported in I, we write sometimes h; to denote
the h € 57 supported in I € D and sometimes [;, to denote the dyadic support of
h € 2. From the basic character of # in L?(R™) we have that, given f € L?(RT),

F="3"(f;hh,

hest

in the L?(R*)-sense, with (f,h) = [o, f x)dz. The sequence of coefficients
{{f,h) : h € '} is well defined even for functlons in L (RT), since the Haar
functions are bounded and have bounded support.

3. PROOF OF THEOREM [L.1]

The easy part of Theorem follows as usual from the vanishing of the mean
of the Haar functions. Let us state and prove it.

Proposition 3.1. Let f € Lips(a), a > 0. Set [fLip,(a) to denote the infimum
of the constants C > 0 such that |f(x) — f(y)| < C6*(z,y), z,y € RT. Then

1
[{f, h1)] < [f]Lipé(a) |I|O‘Jr2 for every I € D.
Proof. For I = [as,br) € D we have [, hi(x)dx = 0; hence

/]R+ f(@)h(x) dx
[ (@) = far)hate) ds
/ 50) ~ Fan)] s @)
< [flbipy @ / 5 an)[1]7F da
< fips@ |1|a—%/dz

1
= [flnips (o) [11*” 2+ = [FLipy (o) %72 . O

I(f, hr)| =
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In order to prove that the size of the coefficients guarantee the regularity of f,
we start by stating and proving a lemma. Given an interval I € D, we denote by
I~ and I7 its left and right halves, respectively. Notice that when I € D7, both
I~ and I'" belong to DI+, Given a locally integrable function f, we write mz(f)
to denote the mean value of f on I € D. In other words, m;(f) = ﬁ J; f(x)da.

Lemma 3.2. Let f € L. (RT). Then, for every I € D, we have

loc

1
Imy-(f) —mr ()l =212 [(f, hr)].
Proof. Let I € D be given. Then

(1) = mr (Dl =| 7 [ @) f(x)do

11 Jr+

1 1
=217 | [ 1172 (- (o) - 2+ (@) ) d

o2 (/IR+ hi (@) f(x) dx)

= 2172 |(f, ) 0

Proposition 3.3. Let f € L _(R") be such that, for some constant A > 0, we
have
oz+l
[(frhn)| < A[IITT2
Jor every I € D. Then f € Lips(a) and [f]Lip,(a) < CadA with Co = sup{2, 525}

Proof. Let x < y be two points in RT. Let I € D be the smallest dyadic interval
containing = and y. In other words, |I| = §(x,y). Since x < y, necessarily = € I~
and y € IT. Set If = I~ and IY = I't. Now let I be the half of IT to which
belongs, and I3 the half of I{ with y € IJ. In general, once I* and I} are defined,
we select I as the only half of I} with « € I, and I/, as the only half of I/
with y € Ilyﬂ. In this way, for a fixed positive integer k, we have

I;cly c---clyclyclI
and
crl ,c-.-cjcrcl.
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Then

+ |y () = f(@)
=I+II4+I1II+1IV+V.

Let us start by bounding the central term III. Notice that I¥ = I~ and I} = I,
with |I| = 6(z,y). Then by Lemma [3.2] we have

I = |mpe(f) —mps (f)]
= |m17(f) - m1+(f)|
1
=2[I|"2 |(f, h1)]
1 1
< 24172 1|2
= 2A|1|"
= 2A6a(x7y)7

which has the desired form. The terms II and IV can be handled in the same way;
let us deal with II. Take a generic term of the sum II, and use again Lemma [3.2

1 1
Vel f_F</ f+/ f)’
‘l‘ Iy | 171‘ L PRV A
1 1

11
2|17 Ir 2 |If—1 \Ilw{ I N\IP

|m1f (f) - mIffl(f)| =

f‘
1

= §’mlf (f) - m[lzil\jf (f)’
1 1

= 52\[;11] 2 |(fohay )

1 arl
AP |72 I
= AL, |°

L
— A 1”.
2al
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Then

The same estimate holds for IV. Let C,, = sup{2, zz<}. Then
[f(z) = FW)I < [f(2) = muz ()] + ACad* (2, y) + | f(y) — myp (f)]

k
=" |mp(f) = mze (f)]
=2

< A2 117 !

2al
1>2

A a

uniformly in k. Now, from the differentiation theorem, we have for almost all x
and almost all y that mre(f) — f(z) as k — oo and mIg(f) — fly) as k — oo.

Hence, for those values of  and y in R* we get the result

|f(@) = f(y)] < ACu6% (2, y).

Propositions [3.1] and [3.3] prove Theorem [T.1
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