|
|||
Current volumePast volumes
1952-1968
1944-1951
1936-1944 |
Hyponormality of Toeplitz operators on the Bergman space of an annulus
Volume 61, no. 2
(2020),
pp. 303–313
https://doi.org/10.33044/revuma.v61n2a08
Abstract
A bounded operator $S$ on a Hilbert space is hyponormal if
$S^{\ast}S-SS^{\ast}$ is positive. In this work we find necessary conditions
for the hyponormality of the Toeplitz operator $T_{f+\overline{g}}$ on the
Bergman space of the annulus $\{1/2<|z|<1\}$, where $f$ and $g$ are analytic
and $f$ satisfies a smoothness condition.
|
||
Published by the Unión Matemática Argentina |