Revista de la
Unión Matemática Argentina
Some relations between the skew spectrum of an oriented graph and the spectrum of certain closely associated signed graphs
Zoran Stanić
Volume 63, no. 1 (2022), pp. 41–50

Download PDF


Let $R_{G'}$ be the vertex-edge incidence matrix of an oriented graph $G'$. Let $\Lambda(\dot{F})$ be the signed graph whose vertices are identified as the edges of a signed graph $\dot{F}$, with a pair of vertices being adjacent by a positive (resp. negative) edge if and only if the corresponding edges of $\dot{G}$ are adjacent and have the same (resp. different) sign. In this paper, we prove that $G'$ is bipartite if and only if there exists a signed graph $\dot{F}$ such that $R_{G'}^\intercal R_{G'}-2I$ is the adjacency matrix of $\Lambda(\dot{F})$. It occurs that $\dot{F}$ is fully determined by $G'$. As an application, in some particular cases we express the skew eigenvalues of $G'$ in terms of the eigenvalues of $\dot{F}$. We also establish some upper bounds for the skew spectral radius of $G'$ in both the bipartite and the non-bipartite case.