Revista de la
Unión Matemática Argentina
A characterization of Stone and linear Heyting algebras
Alejandro Petrovich and Carlos Scirica
Volume 63, no. 1 (2022), pp. 129–136    

https://doi.org/10.33044/revuma.2052

Download PDF

Abstract

An important problem in the variety of Heyting algebras $\mathcal{H}$ is to find new characterizations which allow us to determinate if a given $H\in \mathcal{H}$ is linear or Stone. In this work we present two Heyting algebras, $H^{ns}$ and $H^{snl}$, such that: (a) a Heyting algebra $H$ is a Stone–Heyting algebra if and only if $H^{ns}$ cannot be embedded in $H$, and (b) $H$ is a linear Heyting algebra if and only if neither $H^{ns}$ nor $H^{snl}$ can be embedded in $H$.