Published volumes
1952-1968 Revista de la Unión Matemática Argentina y de la Asociación Física Argentina
1944-1951 Revista de la Unión Matemática Argentina; órgano de la Asociación Física Argentina
1936-1944
|
Blow-up of positive-initial-energy solutions for nonlinearly damped semilinear wave equations
Mohamed Amine Kerker
Volume 63, no. 2
(2022),
pp. 293–303
https://doi.org/10.33044/revuma.2099
Download PDF
Abstract
We consider a class of semilinear wave equations with both strongly and
nonlinear weakly damped terms,
\[
u_{tt}-\Delta u-\omega\Delta u_t+\mu\vert u_t\vert^{m-2}u_t=\vert u\vert^{p-2}u,
\]
associated with initial and Dirichlet boundary conditions. Under certain
conditions, we show that any solution with arbitrarily high positive initial
energy blows up in finite time if $m < p$. Furthermore, we obtain a lower bound
for the blow-up time.
References
-
K. Baghaei, Lower bounds for the blow-up time in a superlinear hyperbolic equation with linear damping term, Comput. Math. Appl. 73 (2017), no. 4, 560–564. MR 3606353.
-
Y. Boukhatem and B. Benabderrahmane, Blow up of solutions for a semilinear hyperbolic equation, Electron. J. Qual. Theory Differ. Equ. 2012, no. 40, 12 pp. MR 2920963.
-
F. Gazzola and M. Squassina, Global solutions and finite time blow up for damped semilinear wave equations, Ann. Inst. H. Poincaré C Anal. Non Linéaire 23 (2006), no. 2, 185–207. MR 2201151.
-
V. Georgiev and G. Todorova, Existence of a solution of the wave equation with nonlinear damping and source terms, J. Differential Equations 109 (1994), no. 2, 295–308. MR 1273304.
-
S. Gerbi and B. Said-Houari, Local existence and exponential growth for a semilinear damped wave equation with dynamic boundary conditions, Adv. Differential Equations 13 (2008), no. 11-12, 1051–1074. MR 2483130.
-
B. Guo and F. Liu, A lower bound for the blow-up time to a viscoelastic hyperbolic equation with nonlinear sources, Appl. Math. Lett. 60 (2016), 115–119. MR 3505862.
-
M. Kafini and S. A. Messaoudi, A blow-up result in a nonlinear viscoelastic problem with arbitrary positive initial energy, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 20 (2013), no. 6, 657–665. MR 3134526.
-
H. A. Levine, Some additional remarks on the nonexistence of global solutions to nonlinear wave equations, SIAM J. Math. Anal. 5 (1974), 138–146. MR 0399682.
-
H. A. Levine and G. Todorova, Blow up of solutions of the Cauchy problem for a wave equation with nonlinear damping and source terms and positive initial energy, Proc. Amer. Math. Soc. 129 (2001), no. 3, 793–805. MR 1792187.
-
S. A. Messaoudi, Blow up in a nonlinearly damped wave equation, Math. Nachr. 231 (2001), no. 1, 105–111. MR 1866197.
-
S. A. Messaoudi, Blow-up of positive-initial-energy solutions of a nonlinear viscoelastic hyperbolic equation, J. Math. Anal. Appl. 320 (2006), no. 2, 902–915. MR 2226003.
-
G. A. Philippin, Lower bounds for blow-up time in a class of nonlinear wave equations, Z. Angew. Math. Phys. 66 (2015), no. 1, 129–134. MR 3304710.
-
H. Song, Blow up of arbitrarily positive initial energy solutions for a viscoelastic wave equation, Nonlinear Anal. Real World Appl. 26 (2015), 306–314. MR 3384338.
-
G. Todorova and E. Vitillaro, Blow-up for nonlinear dissipative wave equations in $R^n$, J. Math. Anal. Appl. 303 (2005), no. 1, 242–257. MR 2113879.
-
E. Vitillaro, Global nonexistence theorems for a class of evolution equations with dissipation, Arch. Ration. Mech. Anal. 149 (1999), no. 2, 155–182. MR 1719145.
-
Y. Yang and R. Xu, Nonlinear wave equation with both strongly and weakly damped terms: supercritical initial energy finite time blow up, Commun. Pure Appl. Anal. 18 (2019), no. 3, 1351–1358. MR 3917710.
-
S. Yu, On the strongly damped wave equation with nonlinear damping and source terms, Electron. J. Qual. Theory Differ. Equ. 2009, no. 39, 18 pp. MR 2511292.
-
J. Zhou, Lower bounds for blow-up time of two nonlinear wave equations, Appl. Math. Lett. 45 (2015), 64–68. MR 3316963.
|