Published volumes
1952-1968 Revista de la Unión Matemática Argentina y de la Asociación Física Argentina
1944-1951 Revista de la Unión Matemática Argentina; órgano de la Asociación Física Argentina
1936-1944
|
The isometry groups of Lorentzian three-dimensional unimodular simply
connected Lie groups
Mohamed Boucetta and Abdelmounaim Chakkar
Volume 63, no. 2
(2022),
pp. 353–378
https://doi.org/10.33044/revuma.2021
Download PDF
Abstract
We determine the isometry groups of all three-dimensional, connected, simply
connected and unimodular Lie groups endowed with a left-invariant
Lorentzian metric.
References
-
M. Boucetta and A. Chakkar, The moduli spaces of Lorentzian left-invariant metrics on three-dimensional unimodular simply connected Lie groups, J. Korean Math. Soc. 59 (2022), no. 4, 651–684. MR 4446209.
-
P. Bueken and M. Djorić, Three-dimensional Lorentz metrics and curvature homogeneity of order one, Ann. Global Anal. Geom. 18 (2000), no. 1, 85–103. MR 1739527.
-
G. Calvaruso, Einstein-like metrics on three-dimensional homogeneous Lorentzian manifolds, Geom. Dedicata 127 (2007), 99–119. MR 2338519.
-
L. A. Cordero and P. E. Parker, Isometry groups of pseudoriemannian 2-step nilpotent Lie groups, Houston J. Math. 35 (2009), no. 1, 49–72. MR 2491866.
-
V. del Barco and G. P. Ovando, Isometric actions on pseudo-Riemannian nilmanifolds, Ann. Global Anal. Geom. 45 (2014), no. 2, 95–110. MR 3165476.
-
S. Dumitrescu and A. Zeghib, Géométries lorentziennes de dimension 3: classification et complétude, Geom. Dedicata 149 (2010), 243–273. MR 2737692.
-
K. Y. Ha and J. B. Lee, Left invariant metrics and curvatures on simply connected three-dimensional Lie groups, Math. Nachr. 282 (2009), no. 6, 868–898. MR 2530885.
-
K. Y. Ha and J. B. Lee, The isometry groups of simply connected 3-dimensional unimodular Lie groups, J. Geom. Phys. 62 (2012), no. 2, 189–203. MR 2864471.
-
A. Krasiński, C. G. Behr, E. Schücking, F. B. Estabrook, H. D. Wahlquist, G. F. R. Ellis, R. Jantzen and W. Kundt, The Bianchi classification in the Schücking-Behr approach, Gen. Relativity Gravitation 35 (2003), no. 3, 475–489. MR 1964375.
-
J. Milnor, Curvatures of left invariant metrics on Lie groups, Advances in Math. 21 (1976), no. 3, 293–329. MR 0425012.
-
D. Müller, Isometries of bi-invariant pseudo-Riemannian metrics on Lie groups, Geom. Dedicata 29 (1989), no. 1, 65–96. MR 0989188.
-
B. O'Neill, Semi-Riemannian Geometry, Pure and Applied Mathematics, 103, Academic Press, New York, 1983. MR 0719023.
-
T. Šukilović, Geometric properties of neutral signature metrics on 4-dimensional nilpotent Lie groups, Rev. Un. Mat. Argentina 57 (2016), no. 1, 23–47. MR 3519282.
-
F. W. Warner, Foundations of Differentiable Manifolds and Lie Groups, corrected reprint of the 1971 edition, Graduate Texts in Mathematics, 94, Springer-Verlag, New York, 1983. MR 0722297.
|