Published volumes
1952-1968 Revista de la Unión Matemática Argentina y de la Asociación Física Argentina
1944-1951 Revista de la Unión Matemática Argentina; órgano de la Asociación Física Argentina
1936-1944
|
Monster graphs are determined by their Laplacian spectra
Ali Zeydi Abdian, Ali Reza Ashrafi, Lowell W. Beineke, Mohammad Reza Oboudi, and Gholam Hossein Fath-Tabar
Volume 63, no. 2
(2022),
pp. 413–424
https://doi.org/10.33044/revuma.1769
Download PDF
Abstract
A graph $G$ is determined by its Laplacian spectrum (DLS) if every graph with
the same Laplacian spectrum is isomorphic to $G$. A multi-fan graph is a
graph of the form $(P_{n_1}\cup P_{n_2}\cup \cdots \cup
P_{n_k})\bigtriangledown K_1$, where $K_1$ denotes the complete graph of
size 1, $P_{n_1}\cup P_{n_2}\cup \cdots \cup P_{n_k}$ is the disjoint union
of paths $P_{n_i}$, $n_i\geq 1$ and $1 \leq i \leq k$; and a starlike tree
is a tree with exactly one vertex of degree greater than 2. If a
multi-fan graph and a starlike tree are joined by identifying their
vertices of degree more than 2, then the resulting graph is called a
monster graph. In some earlier works, it was shown that all multi-fan and
path-friendship graphs are DLS. The aim of this paper is to generalize
these facts by proving that all monster graphs are DLS.
References
-
W. N. Anderson, Jr. and T. D. Morley, Eigenvalues of the Laplacian of a graph, Linear and Multilinear Algebra 18 (1985), no. 2, 141–145. MR 0817657.
-
D. Cvetković, P. Rowlinson and S. Simić, An Introduction to the Theory of Graph Spectra, London Mathematical Society Student Texts, 75, Cambridge University Press, Cambridge, 2010. MR 2571608.
-
K. Ch. Das, The Laplacian spectrum of a graph, Comput. Math. Appl. 48 (2004), no. 5-6, 715–724. MR 2105246.
-
K. Ch. Das, Proof of conjectures on adjacency eigenvalues of graphs, Discrete Math. 313 (2013), no. 1, 19–25. MR 3016969.
-
L. Feng and G. Yu, No starlike trees are Laplacian cospectral, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. 18 (2007), 46–51. MR 2311791.
-
R. Grone and R. Merris, The Laplacian spectrum of a graph. II, SIAM J. Discrete Math. 7 (1994), no. 2, 221–229. MR 1271994.
-
J.-M. Guo, The effect on the Laplacian spectral radius of a graph by adding or grafting edges, Linear Algebra Appl. 413 (2006), no. 1, 59–71. MR 2202092.
-
F. Liu and Q. Huang, Laplacian spectral characterization of 3-rose graphs, Linear Algebra Appl. 439 (2013), no. 10, 2914–2920. MR 3116401.
-
X. Liu, Y. Zhang and X. Gui, The multi-fan graphs are determined by their Laplacian spectra, Discrete Math. 308 (2008), no. 18, 4267–4271. MR 2427757.
-
M. Liu, Y. Zhu, H. Shan and K. Ch. Das, The spectral characterization of butterfly-like graphs, Linear Algebra Appl. 513 (2017), 55–68. MR 3573788.
-
Z. Lotker, Note on deleting a vertex and weak interlacing of the Laplacian spectrum, Electron. J. Linear Algebra 16 (2007), 68–72. MR 2285833.
-
R. Merris, A note on Laplacian graph eigenvalues, Linear Algebra Appl. 285 (1998), no. 1-3, 33–35. MR 1653479.
-
M. R. Oboudi, A. Z. Abdian, A. R. Ashrafi and L. W. Beineke, Laplacian spectral determination of path-friendship graphs, AKCE Int. J. Graphs Comb. 18 (2021), no. 1, 33–38. MR 4277577.
-
C. S. Oliveira, N. M. Maia de Abreu and S. Jurkiewicz, The characteristic polynomial of the Laplacian of graphs in $(a,b)$-linear classes, Linear Algebra Appl. 356 (2002), 113–121. MR 1944681.
-
G. R. Omidi, On a signless Laplacian spectral characterization of $T$-shape trees, Linear Algebra Appl. 431 (2009), no. 9, 1607–1615. MR 2555062.
-
E. R. van Dam and W. H. Haemers, Which graphs are determined by their spectrum?, Linear Algebra Appl. 373 (2003), 241–272. MR 2022290.
-
F. Wen, Q. Huang, X. Huang and F. Liu, The spectral characterization of wind-wheel graphs, Indian J. Pure Appl. Math. 46 (2015), no. 5, 613–631. MR 3407192.
|