Published volumes
1952-1968 Revista de la Unión Matemática Argentina y de la Asociación Física Argentina
1944-1951 Revista de la Unión Matemática Argentina; órgano de la Asociación Física Argentina
1936-1944
|
The isolation of the first eigenvalue for a Dirichlet eigenvalue problem
involving the Finsler $p$-Laplacian and a nonlocal term
Andrei Grecu
Volume 63, no. 2
(2022),
pp. 443–453
https://doi.org/10.33044/revuma.2281
Download PDF
Abstract
We analyse the isolation of the first eigenvalue for an eigenvalue problem
involving the Finsler $p$-Laplace operator and a nonlocal term on a bounded
domain subject to the homogeneous Dirichlet boundary condition.
References
-
A. Anane, Simplicité et isolation de la première valeur propre du $p$-laplacien avec poids, C. R. Acad. Sci. Paris Sér. I Math. 305 (1987), no. 16, 725–728. MR 0920052.
-
G. Bellettini and M. Paolini, Anisotropic motion by mean curvature in the context of Finsler geometry, Hokkaido Math. J. 25 (1996), no. 3, 537–566. MR 1416006.
-
M. Belloni, V. Ferone, and B. Kawohl, Isoperimetric inequalities, Wulff shape and related questions for strongly nonlinear elliptic operators, Z. Angew. Math. Phys. 54 (2003), no. 5, 771–783. MR 2019179.
-
M. Belloni, B. Kawohl, and P. Juutinen, The $p$-Laplace eigenvalue problem as $p\to\infty$ in a Finsler metric, J. Eur. Math. Soc. (JEMS) 8 (2006), no. 1, 123–138. MR 2201278.
-
H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext, Springer, New York, 2011. MR 2759829.
-
J. I. Diaz and J. E. Saa, Uniqueness of nonnegative solutions for elliptic nonlinear diffusion equations with a general perturbation term, in Proceedings of the VIII CEDYA, Santander, 1985. http://www.mat.ucm.es/ jidiaz/Publicaciones/C_ActasPDF/C_015.pdf
-
D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, second edition, Springer, Berlin, 1998.
-
A. Grecu, The simplicity of the first eigenvalue for an eigenvalue problem involving the Finsler $p$-Laplace operator and a nonlocal term, Bull. Belg. Math. Soc. Simon Stevin 26 (2019), no. 3, 355–363. MR 4007603.
-
A. Grecu, The limiting behaviour of solutions to a family of eigenvalue problems, Complex Var. Elliptic Equ. 64 (2019), no. 12, 2063–2076. MR 4001212.
-
A. Lê, Eigenvalue problems for the $p$-Laplacian, Nonlinear Anal. 64 (2006), no. 5, 1057–1099. MR 2196811.
-
P. Lindqvist, On the equation $\operatorname{div}(|\nabla u|^{p-2}\nabla u)+\lambda|u|^{p-2}u=0$, Proc. Amer. Math. Soc. 109 (1990), no. 1, 157–164. MR 1007505. Addendum, Proc. Amer. Math. Soc. 116 (1992), 583–584. MR 1139483
-
P. Tolksdorf, Regularity for a more general class of quasilinear elliptic equations, J. Differential Equations 51 (1984), no. 1, 126–150. MR 0727034.
|