Published volumes
1952-1968 Revista de la Unión Matemática Argentina y de la Asociación Física Argentina
1944-1951 Revista de la Unión Matemática Argentina; órgano de la Asociación Física Argentina
1936-1944
|
Bilinear differential operators and $\mathfrak{osp}(1|2)$-relative cohomology on $\mathbb{R}^{1|1}$
Abderraouf Ghallabi and Meher Abdaoui
Volume 63, no. 2
(2022),
pp. 505–522
https://doi.org/10.33044/revuma.2100
Download PDF
Abstract
We consider the $1|1$-dimensional real superspace $\mathbb{R}^{1|1}$
endowed with its standard contact structure defined by the
1-form $\alpha$. The conformal Lie superalgebra $\mathcal{K}(1)$
acts on $\mathbb{R}^{1|1}$ as the Lie superalgebra of contact vector
fields; it contains the Möbius superalgebra
$\mathfrak{osp}(1|2)$. We classify $\mathfrak{osp}(1|2)$-invariant
superskew-symmetric binary differential operators from
$\mathcal{K}(1)\wedge\mathcal{K}(1)$ to $\mathfrak{D}_{\lambda,\mu;\nu}$
vanishing on $\mathfrak{osp}(1|2)$, where
$\mathfrak{D}_{\lambda,\mu;\nu}$ is the superspace of bilinear
differential operators between the superspaces of weighted
densities. This result allows us to compute the second differential
$\mathfrak{osp}(1|2)$-relative cohomology of $\mathcal{K}(1)$ with
coefficients in $\mathfrak{D}_{\lambda,\mu;\nu}$.
References
-
M. Ben Ammar and M. Boujelbene, $\mathfrak{sl}(2)$-trivial deformations of $\mathrm{Vect}_\mathrm{Pol}(\mathbb{R})$-modules of symbols, SIGMA Symmetry Integrability Geom. Methods Appl. 4 (2008), Paper 065, 19 pp. MR 2470531.
-
M. Ben Ammar, A. Jabeur, and I. Safi, Cohomology of ${\mathfrak{osp}}(1|2)$ acting on the space of bilinear differential operators on the superspace $\mathbb{R}^{1|1}$, Int. J. Geom. Methods Mod. Phys. 9 (2012), no. 4, 1250033, 15 pp. MR 2917312.
-
N. Ben Fraj, M. Abdaoui, and H. Raouafi, On $\mathfrak{osp}(1|2)$-relative cohomology of the Lie superalgebra of contact vector fields on $\mathbb{R}^{1|1}$, Int. J. Geom. Methods Mod. Phys. 14 (2017), no. 2, 1750022, 29 pp. MR 3599017.
-
S. Bouarroudj, Cohomology of the vector fields Lie algebras on $\mathbb{R}\mathbb{P}^1$ acting on bilinear differential operators, Int. J. Geom. Methods Mod. Phys. 2 (2005), no. 1, 23–40. MR 2121353.
-
S. Bouarroudj, Projective and conformal Schwarzian derivatives and cohomology of Lie algebras vector fields related to differential operators, Int. J. Geom. Methods Mod. Phys. 3 (2006), no. 4, 667–696. MR 2237900.
-
S. Bouarroudj, On $\mathfrak{sl}(2)$-relative cohomology of the Lie algebra of vector fields and differential operators, J. Nonlinear Math. Phys. 14 (2007), no. 1, 112–127. MR 2287837.
-
S. Bouarroudj and V. Yu. Ovsienko, Three cocycles on $\mathrm{Diff}(S^1)$ generalizing the Schwarzian derivative, Internat. Math. Res. Notices 1998, no. 1, 25–39. MR 1601874.
-
C. H. Conley, Conformal symbols and the action of contact vector fields over the superline, J. Reine Angew. Math. 633 (2009), 115–163. MR 2561198.
-
D. B. Fuks, Cohomology of Infinite-Dimensional Lie Algebras, Contemporary Soviet Mathematics, Consultants Bureau, New York, 1986. MR 0874337.
-
C. Kassel, Quantum Groups, Graduate Texts in Mathematics, 155, Springer-Verlag, New York, 1995. MR 1321145.
-
P. B. A. Lecomte and V. Yu. Ovsienko, Cohomology of the vector fields Lie algebra and modules of differential operators on a smooth manifold, Compositio Math. 124 (2000), no. 1, 95–110. MR 1797655.
-
A. Nijenhuis and R. W. Richardson, Jr., Deformations of homomorphisms of Lie groups and Lie algebras, Bull. Amer. Math. Soc. 73 (1967), 175–179. MR 0204575.
-
V. Yu. Ovsienko and K. Rozhe, Extensions of the Virasoro group and the Virasoro algebra by means of modules of tensor densities on $S^1$, Funct. Anal. Appl. 30 (1996), no. 4, 290–291. MR 1444471.
-
V. Ovsienko and S. Tabachnikov, Projective Differential Geometry Old and New, Cambridge Tracts in Mathematics, 165, Cambridge University Press, Cambridge, 2005. MR 2177471.
|