Current volume
Past volumes
1952-1968 Revista de la Unión Matemática Argentina y de la Asociación Física Argentina
1944-1951 Revista de la Unión Matemática Argentina; órgano de la Asociación Física Argentina
1936-1944
|
A note on Bernstein–Sato ideals
Josep Àlvarez Montaner
Volume 64, no. 2
(2022),
pp. 239–246
https://doi.org/10.33044/revuma.2795
Download PDF
Abstract
We define the Bernstein–Sato ideal associated to a tuple of ideals and we
relate it to the jumping points of the corresponding mixed multiplier ideals.
References
-
J. Àlvarez Montaner, J. Jeffries and L. Núñez-Betancourt, Bernstein–Sato polynomials in commutative algebra, in Commutative Algebra, 1–76, Springer, Cham, 2021. MR 4394404.
-
J. Briançon and P. Maisonobe, Bernstein–Sato ideals associated to polynomials I, Unpublished notes, 2002.
-
J. Briançon and H. Maynadier, Équations fonctionnelles généralisées: transversalité et principalité de l'idéal de Bernstein–Sato, J. Math. Kyoto Univ. 39 (1999), no. 2, 215–232. MR 1709290.
-
N. Budur, Bernstein–Sato polynomials, Lecture notes for the summer school Multiplier Ideals, Test Ideals, and Bernstein–Sato Polynomials, at UPC Barcelona, 2015. Available at https://perswww.kuleuven.be/ u0089821/Barcelona/BarcelonaNotes.pdf.
-
N. Budur, M. Mustaţă and M. Saito, Bernstein–Sato polynomials of arbitrary varieties, Compos. Math. 142 (2006), no. 3, 779–797. MR 2231202.
-
N. Budur and M. Saito, Multiplier ideals, $V$-filtration, and spectrum, J. Algebraic Geom. 14 (2005), no. 2, 269–282. MR 2123230.
-
P. Cassou-Noguès and A. Libgober, Multivariable Hodge theoretical invariants of germs of plane curves, J. Knot Theory Ramifications 20 (2011), no. 6, 787–805. MR 2812263.
-
L. Ein, R. Lazarsfeld, K. E. Smith and D. Varolin, Jumping coefficients of multiplier ideals, Duke Math. J. 123 (2004), no. 3, 469–506. MR 2068967.
-
M. Granger, Bernstein–Sato polynomials and functional equations, in Algebraic Approach to Differential Equations, 225–291, World Sci. Publ., Hackensack, NJ, 2010. MR 2766095.
-
R. Lazarsfeld, Positivity in Algebraic Geometry. II, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, 49, Springer-Verlag, Berlin, 2004. MR 2095472.
-
H. Maynadier, Polynômes de Bernstein–Sato associés à une intersection complète quasi-homogène à singularité isolée, Bull. Soc. Math. France 125 (1997), no. 4, 547–571. MR 1630902.
-
M. Mustaţă, Bernstein–Sato polynomials for general ideals vs. principal ideals, Proc. Amer. Math. Soc. 150 (2022), no. 9, 3655–3662. MR 4446219.
-
M. Mustaţă and M. Popa, Hodge ideals and minimal exponents of ideals, Rev. Roumaine Math. Pures Appl. 65 (2020), no. 3, 327–354. MR 4216533.
-
C. Sabbah, Proximité évanescente. II. Équations fonctionnelles pour plusieurs fonctions analytiques, Compositio Math. 64 (1987), no. 2, 213–241. MR 0916482.
|