Current volume
Past volumes
1952-1968 Revista de la Unión Matemática Argentina y de la Asociación Física Argentina
1944-1951 Revista de la Unión Matemática Argentina; órgano de la Asociación Física Argentina
1936-1944
|
Positivities in Hall–Littlewood expansions and related plethystic operators
Marino Romero
Volume 64, no. 2
(2023),
pp. 309–331
https://doi.org/10.33044/revuma.2899
Download PDF
Abstract
The Hall–Littlewood polynomials $\mathbf{H}_\lambda = Q'_\lambda[X;q]$ are an
important symmetric function basis that appears in many contexts. In this
work, we give an accessible combinatorial formula for expanding the related
symmetric functions $\mathbf{H}_\alpha$ for any composition $\alpha$, in terms of
the complete homogeneous basis. We do this by analyzing Jing's operators,
which extend to give nice expansions for the related symmetric functions
$\mathbf{C}_\alpha$ and $\mathbf{B}_\alpha$ which appear in the formulation of the
Compositional Shuffle Theorem. We end with some consequences related to
eigenoperators of the modified Macdonald basis.
References
-
P. Alexandersson, LLT polynomials, elementary symmetric functions and melting lollipops, J. Algebraic Combin. 53 (2021), no. 2, 299–325. MR 4238181.
-
P. Alexandersson and R. Sulzgruber, A combinatorial expansion of vertical-strip LLT polynomials in the basis of elementary symmetric functions, Adv. Math. 400 (2022), Paper No. 108256, 58 pp. MR 4385139.
-
F. Bergeron, Open questions for operators related to rectangular Catalan combinatorics, J. Comb. 8 (2017), no. 4, 673–703. MR 3682396.
-
F. Bergeron and A. M. Garsia, Science fiction and Macdonald's polynomials, in Algebraic Methods and $q$-special Functions (Montréal, QC, 1996), 1–52, CRM Proc. Lecture Notes, 22, Amer. Math. Soc., Providence, RI, 1999. MR 1726826.
-
F. Bergeron, A. M. Garsia, M. Haiman, and G. Tesler, Identities and positivity conjectures for some remarkable operators in the theory of symmetric functions, Methods Appl. Anal. 6 (1999), no. 3, 363–420. MR 1803316.
-
J. Blasiak, M. Haiman, J. Morse, A. Pun, and G. Seelinger, A proof of the Extended Delta Conjecture, Forum Math. Pi 11 (2023), Paper No. e6, 28 pp. MR 4553915.
-
L. M. Butler, Subgroup lattices and symmetric functions, Mem. Amer. Math. Soc. 112 (1994), no. 539. MR 1223236.
-
E. Carlsson and A. Mellit, A proof of the shuffle conjecture, J. Amer. Math. Soc. 31 (2018), no. 3, 661–697. MR 3787405.
-
M. D'Adderio, $e$-positivity of vertical strip LLT polynomials, J. Combin. Theory Ser. A 172 (2020), 105212, 15 pp. MR 4054520.
-
M. D'Adderio, A. Iraci, and A. Vanden Wyngaerd, Theta operators, refined delta conjectures, and coinvariants, Adv. Math. 376 (2021), Paper No. 107447, 59 pp. MR 4178919.
-
M. D'Adderio and A. Mellit, A proof of the compositional delta conjecture, Adv. Math. 402 (2022), Paper No. 108342, 17 pp. MR 4401822.
-
C. de Concini and C. Procesi, Symmetric functions, conjugacy classes and the flag variety, Invent. Math. 64 (1981), no. 2, 203–219. MR 0629470.
-
A. M. Garsia, J. Haglund, D. Qiu, and M. Romero, $e$-Positivity Results and Conjectures, arXiv:1904.07912 [math.CO], 2019.
-
A. M. Garsia, J. Haglund, J. B. Remmel, and M. Yoo, A proof of the delta conjecture when $q=0$, Ann. Comb. 23 (2019), no. 2, 317–333. MR 3962860.
-
A. M. Garsia and M. Haiman, Some natural bigraded $S_n$-modules and $q,t$-Kostka coefficients, Electron. J. Combin. 3 (1996), no. 2 (The Foata Festschrift), Research Paper 24, 60 pp. MR 1392509.
-
A. M. Garsia and M. Haiman, Orbit Harmonics and Graded Representations, UCSD lecture notes 1991–92, Preprint.
-
A. M. Garsia and M. Haiman, A graded representation model for Macdonald's polynomials, Proc. Nat. Acad. Sci. U.S.A. 90 (1993), no. 8, 3607–3610. MR 1214091.
-
A. M. Garsia, M. Haiman, and G. Tesler, Explicit plethystic formulas for Macdonald $q,t$-Kostka coefficients, Sém. Lothar. Combin. 42 (1999), Art. B42m, 45 pp. MR 1701592.
-
A. M. Garsia and C. Procesi, On certain graded $S_n$-modules and the $q$-Kostka polynomials, Adv. Math. 94 (1992), no. 1, 82–138. MR 1168926.
-
E. Gorsky, A. Neguţ, and J. Rasmussen, Flag Hilbert schemes, colored projectors and Khovanov-Rozansky homology, Adv. Math. 378 (2021), Paper No. 107542, 115 pp. MR 4192994.
-
I. Grojnowski and M. Haiman, Affine Hecke algebras and positivity of LLT and Macdonald polynomials, Preprint, 2009. Available at https://math.berkeley.edu/ mhaiman/ftp/llt-positivity/new-version.pdf.
-
J. Haglund, The $q$,$t$-Catalan Numbers and the Space of Diagonal Harmonics, University Lecture Series, 41, American Mathematical Society, Providence, RI, 2008. MR 2371044.
-
J. Haglund, M. Haiman, N. Loehr, J. B. Remmel, and A. Ulyanov, A combinatorial formula for the character of the diagonal coinvariants, Duke Math. J. 126 (2005), no. 2, 195–232. MR 2115257.
-
J. Haglund, J. Morse, and M. Zabrocki, A compositional shuffle conjecture specifying touch points of the Dyck path, Canad. J. Math. 64 (2012), no. 4, 822–844. MR 2957232.
-
J. Haglund, J. B. Remmel, and A. T. Wilson, The delta conjecture, Trans. Amer. Math. Soc. 370 (2018), no. 6, 4029–4057. MR 3811519.
-
J. Haglund, B. Rhoades, and M. Shimozono, Ordered set partitions, generalized coinvariant algebras, and the delta conjecture, Adv. Math. 329 (2018), 851–915. MR 3783430.
-
J. Haglund, B. Rhoades, and M. Shimozono, Hall-Littlewood expansions of Schur delta operators at $t=0$, Sém. Lothar. Combin. B79c (2019), 20 pp. MR 3932967
-
M. Haiman, Hilbert schemes, polygraphs and the Macdonald positivity conjecture, J. Amer. Math. Soc. 14 (2001), no. 4, 941–1006. MR 1839919.
-
M. Haiman, Vanishing theorems and character formulas for the Hilbert scheme of points in the plane, Invent. Math. 149 (2002), no. 2, 371–407. MR 1918676.
-
M. Haiman, Combinatorics, symmetric functions, and Hilbert schemes, in Current Developments in Mathematics, 2002, 39–111, Int. Press, Somerville, MA, 2003. MR 2051783.
-
M. Hogancamp, Khovanov-Rozansky homology and higher Catalan sequences, arXiv:1704.01562 [math.GT], 2017.
-
R. Hotta and T. A. Springer, A specialization theorem for certain Weyl group representations and an application to the Green polynomials of unitary groups, Invent. Math. 41 (1977), no. 2, 113–127. MR 0486164.
-
N. H. Jing, Vertex operators and Hall-Littlewood symmetric functions, Adv. Math. 87 (1991), no. 2, 226–248. MR 1112626.
-
H. Kraft, Conjugacy classes and Weyl group representations, in Young Tableaux and Schur Functors in Algebra and Geometry (Toruń, 1980), 191–205, Astérisque, 87–88, Soc. Math. France, Paris, 1981. MR 0646820.
-
A. Lascoux, B. Leclerc, and J.-Y. Thibon, Ribbon tableaux, Hall-Littlewood functions, quantum affine algebras, and unipotent varieties, J. Math. Phys. 38 (1997), no. 2, 1041–1068. MR 1434225.
-
A. Lascoux and M.-P. Schützenberger, Sur une conjecture de H. O. Foulkes, C. R. Acad. Sci. Paris Sér. A-B 286 (1978), no. 7, A323–A324. MR 0472993.
-
I. G. Macdonald, Symmetric Functions and Hall Polynomials, second edition, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1995. MR 1354144.
-
A. S. Mellit, Homology of torus knots, Geom. Topol. 26 (2022), no. 1, 47–70. MR 4404874.
-
A. Mellit, Poincaré polynomials of character varieties, Macdonald polynomials and affine Springer fibers, Ann. of Math. (2) 192 (2020), no. 1, 165–228. MR 4125451.
-
A. Mellit, Toric braids and $(m,n)$-parking functions, Duke Math. J. 170 (2021), no. 18, 4123–4169. MR 4348234.
-
B. Pawlowski and B. Rhoades, A flag variety for the delta conjecture, Trans. Amer. Math. Soc. 372 (2019), no. 11, 8195–8248. MR 4029695.
-
M. Romero, Delta Eigenoperators and e-Positivities in the Theory of Macdonald Polynomials, Ph.D. thesis, University of California, San Diego, 2019. Available at https://escholarship.org/uc/item/8kn1w37n.
-
R. Steinberg, On the desingularization of the unipotent variety, Invent. Math. 36 (1976), 209–224. MR 0430094.
-
T. Tanisaki, Defining ideals of the closures of the conjugacy classes and representations of the Weyl groups, Tohoku Math. J. (2) 34 (1982), no. 4, 575–585. MR 0685425.
-
A. Young, On quantitative substitutional analysis, in The Collected Papers of Alfred Young, 434–435, Univ. of Toronto Press, Toronto, 1977.
-
M. Zabrocki, A module for the Delta conjecture, arXiv:1902.08966 [math.CO], 2019.
|