Current volume
Past volumes
1952-1968 Revista de la Unión Matemática Argentina y de la Asociación Física Argentina
1944-1951 Revista de la Unión Matemática Argentina; órgano de la Asociación Física Argentina
1936-1944
|
Homogeneous weight enumerators over integer residue rings and failures of the MacWilliams identities
Jay A. Wood
Volume 64, no. 2
(2023),
pp. 333–353
https://doi.org/10.33044/revuma.2807
Download PDF
Abstract
The MacWilliams identities for the homogeneous weight enumerator over
$\mathbb{Z}/m\mathbb{Z}$ do not hold for composite $m \geq 6$. For such
$m$, there exist two linear codes over $\mathbb{Z}/m\mathbb{Z}$ that have
the same homogeneous weight enumerator, yet whose dual codes have different
homogeneous weight enumerators.
References
-
N. Abdelghany and J. A. Wood, Failure of the MacWilliams identities for the Lee weight enumerator over $\mathbb{Z}_m$, $m\geqslant 5$, Discrete Math. 343 (2020), no. 11, 112036, 12 pp. MR 4119402.
-
K. Bogart, D. Goldberg, and J. Gordon, An elementary proof of the MacWilliams theorem on equivalence of codes, Inf. Control 37 (1978), no. 1, 19–22. MR 0479646.
-
I. Constantinescu and W. Heise, A metric for codes over residue class rings of integers, Problems Inform. Transmission 33 (1997), no. 3, 208–213. MR 1476368.
-
H. Gluesing-Luerssen, Partitions of Frobenius rings induced by the homogeneous weight, Adv. Math. Commun. 8 (2014), no. 2, 191–207. MR 3209298.
-
M. Greferath, Orthogonality matrices for modules over finite Frobenius rings and MacWilliams' equivalence theorem, Finite Fields Appl. 8 (2002), no. 3, 323–331. MR 1910395.
-
M. Greferath and S. E. Schmidt, Finite-ring combinatorics and MacWilliams' equivalence theorem, J. Combin. Theory Ser. A 92 (2000), no. 1, 17–28. MR 1783936.
-
A. R. Hammons, Jr., P. V. Kumar, A. R. Calderbank, N. J. A. Sloane, and P. Solé, The $Z_4$-linearity of Kerdock, Preparata, Goethals, and related codes, IEEE Trans. Inform. Theory 40 (1994), no. 2, 301–319. MR 1294046.
-
T. Honold and A. A. Nechaev, Weighted modules and representations of codes, Problems Inform. Transmission 35 (1999), no. 3, 205–223. MR 1730800.
-
J. MacWilliams, Error-correcting codes for multiple-level transmission, Bell System Tech. J. 40 (1961), 281–308. MR 0141541.
-
J. MacWilliams, Combinatorial Problems of Elementary Abelian Groups, Thesis (Ph.D.)–Radcliffe College, 1962. MR 2939359.
-
J. MacWilliams, A theorem on the distribution of weights in a systematic code, Bell System Tech. J. 42 (1963), 79–94. MR 0149978.
-
J. A. Wood, Duality for modules over finite rings and applications to coding theory, Amer. J. Math. 121 (1999), no. 3, 555–575. MR 1738408.
-
J. A. Wood, Foundations of linear codes defined over finite modules: the extension theorem and the MacWilliams identities, in Codes Over Rings, 124–190, Ser. Coding Theory Cryptol., 6, World Sci. Publ., Hackensack, NJ, 2009. MR 2850303.
-
J. A. Wood, Some applications of the Fourier transform in algebraic coding theory, in Algebra for Secure and Reliable Communication Modeling, 1–40, Contemp. Math., 642, Amer. Math. Soc., Providence, RI, 2015. MR 3380375.
|