Revista de la
Unión Matemática Argentina
Mathematical model for the aquatic stage of Aedes aegypti considering variable egg-hatching rate and inter-specific competition between larval stages
Tishbe Pilarh Herrera-Ramírez, Andrés Fraguela-Collar, Jorge Velázquez-Castro, and Carlos Antonio Abella-Medrano
Volume 64, no. 2 (2023), pp. 487–510    

https://doi.org/10.33044/revuma.3067

Download PDF

Abstract

Mosquito-borne diseases like dengue, Zika, and chikungunya, carried by Aedes aegypti mosquitoes, pose significant health threats. Controlling these diseases primarily involves reducing mosquito populations. Current approaches rely on simplistic measures to decide on actions like mosquito fogging or larval control. Adult mosquito numbers are often estimated from aquatic populations due to easier counting. While these methods have provided some assistance, there's a need for improvement. Existing risk and population models overlook the various developmental stages of Aedes aegypti and their complex interactions. In this work, several mathematical models for the life cycle of the Aedes aegypti in its aquatic phase are proposed. They consider the different aquatic developmental stages and differ in how the competition between the stages occurs. Then, all the models are discriminated against experimental data to select the one with the best predictive power. The chosen model will help estimate the adult mosquito population with a greater degree of precision as well as when they will emerge. It will also help design better control strategies and better risk indices.

References

  1. L. V. Ahlfors, Complex Analysis, International Series in Pure and Applied Mathematics, McGraw-Hill, New York, 1978. MR 0510197.
  2. L. Alcalá, J. Quintero, C. González-Uribe, and H. Brochero, Productividad de Aedes aegypti (L.) (Diptera: Culicidae) en viviendas y espacios públicos en una ciudad endémica para dengue en Colombia, Biomédica 35 (2015) no. 2, 258–268. https://doi.org/10.7705/biomedica.v35i2.2567.
  3. P. Barbosa, T. M. Peters, and N. C. Greenough, Overcrowding of mosquito populations: responses of larval Aedes aegypti to stress, Environ. Entomol. 1 (1972), no. 1, 89–93. https://doi.org/10.1093/ee/1.1.89.
  4. R. Barrera, Simplified pupal surveys of Aedes aegypti (L.) for entomologic surveillance and dengue control, Am. J. Trop. Med. Hyg. 81 (2009), no. 1, 100–107. https://doi.org/10.4269/ajtmh.2009.81.100.
  5. R. Barrera, Control de los mosquitos vectores del dengue y del chikunguña: ¿es necesario reexaminar las estrategias actuales? Biomédica 35 (2015), no. 3, 297–299. https://revistabiomedica.org/index.php/biomedica/article/view/3053.
  6. M. A. Barrera-Pérez et al., Control de criaderos de Aedes aegypti con el programa Recicla por tu bienestar en Mérida, México, Salud Pública México 57 (2015), no. 3, 201–210. https://www.saludpublica.mx/index.php/spm/article/view/7556.
  7. S. R. Christophers, Aëdes Aegypti (L.): The Yellow Fever Mosquito: Its Life History, Bionomics and Structure, Cambridge University Press, Cambridge, 1960.
  8. M. C. Domínguez, F. F. Ludueña Almeida, and W. R. Almirón, Population dynamics of Aedes aegypti (Diptera: Culicidae) in the city of Córdoba, Rev. Soc. Entomol. Arg. 59 (2000), no. 1-4, 41–50. https://www.biotaxa.org/RSEA/article/view/32372.
  9. Dengue Guidelines for Diagnosis, Treatment, Prevention and Control, New edition, WHO Press, Geneve, Switzerland, 2009. https://apps.who.int/iris/handle/10665/44188.
  10. Dengue vaccine: WHO position paper, July 2016 – recommendations, Vaccine 35 (2017), no. 9, 1200–1201. https://doi.org/10.1016/j.vaccine.2016.10.070.
  11. L. Esteva, G. Rivas, and H. M. Yang, Modelling parasitism and predation of mosquitoes by water mites, J. Math. Biol. 53 (2006), no. 4, 540–555. MR 2251788.
  12. I. Garcia da Silva, M. de Fátima Camargo, M. Elias, and C. N. Elias, Ciclo evolutivo de Aedes (Stegomyia) aegypti (Linnaeus, 1762) (Diptera, Culicidae), Rev. Pat. Trop. 22 (1993), no. 1, 43–48. https://revistas.ufg.br/iptsp/article/view/20069/.
  13. J. D. Gillett, E. A. Roman, and V. Phillips, Erratic hatching in aedes eggs: a new interpretation, Proc. R. Soc. Lond. B. 196 (1977), no. 1123, 223–232. https://doi.org/10.1098/rspb.1977.0038.
  14. T. P. Herrera-Ramírez, Modelación matemática de la dinámica de los estadios inmaduros del Aedes aegypti en un criadero, Tesis (Doctorado), Benémerita Universidad Autónoma de Puebla, Puebla, 2021. https://hdl.handle.net/20.500.12371/16447.
  15. S. Ibáñez-Bernal and H. Gómez-Dantés, Los vectores del dengue en México: una revisión crítica, Salud Públ. Méx. 37 (1995), suppl., S53–S63.
  16. T. P. Livdahl, R. K. Koenekoop, and S. G. Futterweit, The complex hatching response of Aedes eggs to larval density, Ecol. Entomol. 9 (1984) no. 4, 437–442. https://doi.org/10.1111/j.1365-2311.1984.tb00841.x.
  17. P. Manrique-Saide, H. Delfín-González, V. Parra-Tabla, and S. Ibáñez-Bernal, Desarrollo, mortalidad y sobrevivencia de las etapas inmaduras de Aedes aegypti (Diptera: Culicidae) en neumáticos, Rev. Biomed. 9 (1998), no. 2, 84–91. https://www.imbiomed.com.mx/articulo.php?id=20252.
  18. M. B. Nathan, D. A. Focks, and A. Kroeger, Pupal/demographic surveys to inform dengue-vector control, Ann. Trop. Med. & Parasitol. 100 (2006), suppl. no. 1, 1–3. https://doi.org/10.1179/136485906X105462.
  19. M. J. Nelson, Aedes Aegypti: Biology and Ecology, General Publications, PAHO, Washington, D.C., 1986. https://iris.paho.org/handle/10665.2/28514.
  20. Organisation for Economic Co-operation and Development (OECD), Safety Assessment of Transgenic Organisms in the Environment, Volume 8: OECD Consensus Document of the Biology of Mosquito Aedes Aegypti, Harmonisation of Regulatory Oversight in Biotechnology, OECD Publishing, Paris, 2018. https://doi.org/10.1787/9789264302235-en.
  21. Organización Panamericana de la Salud. Documento Técnico para la Implementación de Intervenciones Basado en Escenarios Operativos Genéricos para el Control del Aedes aegypti, OPS, Washington, D.C., 2019. https://iris.paho.org/handle/10665.2/51654.
  22. E. Pliego-Pliego, O. Vasilieva, J. Velázquez-Castro, and A. Fraguela Collar, Control strategies for a population dynamics model of Aedes aegypti with seasonal variability and their effects on dengue incidence, Appl. Math. Model. 81 (2020), 296–319. MR 4050781.
  23. J. R. Powell, Mosquito-borne human viral diseases: why Aedes aegypti? Am. J. Trop. Med. Hyg. 98 (2018), no. 6, 1563–1565. https://doi.org/10.4269/ajtmh.17-0866.
  24. J. A. Quesada Aguilera, E. Quesada Aguilera, and N. Rodríguez Socarras, Diferentes enfoques para la estratificación epidemiológica del dengue, Arch. Méd. Camagüey 16 (2012), no. 1, 109–123. http://scielo.sld.cu/scielo.php?script=sci_abstract&pid=S1025-02552012000100014.
  25. E. Quispe, A. Carbajal, J. Gozzer, and B. Moreno, Ciclo biológico y tabla de vida de Aedes aegypti, en laboratorio: Trujillo (Perú), 2014, Rebiolest 3 (2015), no. 1, 91–101.
  26. A. C. Ramos and R. A. Prado Castillo, Efecto que tienen las campañas de prevención y educación sobre el control de vector del dengue Aedes aegypti en la ciudad de León, Tesis (Licenciatura), Universidad Nacional Autónoma de Nicaragua, León, 2012. http://riul.unanleon.edu.ni:8080/jspui/handle/123456789/5719.
  27. M. R. Silva, P. H. G. Lugão, and G. Chapiro, Modeling and simulation of the spatial population dynamics of the Aedes aegypti mosquito with an insecticide application, Parasites Vectors 13 (2020), article no. 550. https://doi.org/10.1186/s13071-020-04426-2.
  28. V. C. Soares-Pinheiro, W. Dasso-Pinheiro, J. M. Trindade-Bezerra, and W. P. Tadei, Eggs viability of Aedes aegypti Linnaeus (Diptera, Culicidae) under different environmental and storage conditions in Manaus, Amazonas, Brazil, Braz. J. Biol. 77 (2017), no. 2, 396–401. https://doi.org/10.1590/1519-6984.19815.
  29. H. M. Yang, M. L. G. Macoris, K. C. Galvani, and M. T. Macoris Andrighetti, Follow up estimation of Aedes aegypti entomological parameters and mathematical modellings, Biosystems 103 (2011), no. 3, 360–371. https://doi.org/10.1016/j.biosystems.2010.11.002.