Current volume
Past volumes
1952-1968 Revista de la Unión Matemática Argentina y de la Asociación Física Argentina
1944-1951 Revista de la Unión Matemática Argentina; órgano de la Asociación Física Argentina
1936-1944
|
On the zeros of univariate E-polynomials
María Laura Barbagallo, Gabriela Jeronimo, and Juan Sabia
Volume 65, no. 1
(2023),
pp. 33–46
https://doi.org/10.33044/revuma.2305
Download PDF
Abstract
We consider two problems concerning real zeros of univariate E-polynomials.
First, we prove an explicit upper bound for the absolute values of the
zeroes of an E-polynomial defined by polynomials with integer coefficients
that improves the bounds known up to now. On the other hand, we extend the
classical Budan–Fourier theorem for real polynomials to E-polynomials.
This result gives, in particular, an upper bound for the number of real
zeroes of an E-polynomial. We show this bound is sharp for particular
families of these functions, which proves that a conjecture by D. Richardson is
false.
References
-
M. Barbagallo, G. Jeronimo, and J. Sabia, Zero counting for a class of univariate Pfaffian functions, J. Algebra 452 (2016), 549–573. MR 3461080.
-
M. Barbagallo, G. Jeronimo, and J. Sabia, Decision problem for a class of univariate Pfaffian functions, Appl. Algebra Engrg. Comm. Comput. (2022). https://doi.org/10.1007/s00200-022-00545-8.
-
S. Basu, R. M. Pollack, and M.-F. Roy, Algorithms in Real Algebraic Geometry, second edition, Algorithms and Computation in Mathematics, 10, Springer, Berlin, 2006. MR 2248869. Online version available at http://perso.univ-rennes1.fr/marie-francoise.roy/bpr-ed2-posted3.html.
-
F. D. Budan de Boislaurent, Nouvelle méthode pour la résolution des équations numériques d'un degré quelconque, [second edition], Paris, 1822. Digitized version available at https://gallica.bnf.fr/ark:/12148/bpt6k1108332.
-
M. Coste, T. Lajous-Loaeza, H. Lombardi, and M.-F. Roy, Generalized Budan-Fourier theorem and virtual roots, J. Complexity 21 (2005), no. 4, 479–486. MR 2152717.
-
J.-B. J. Fourier, Analyse des équations déterminées, Firmin Didot frères, Paris, 1831. Digitized version available at http://gallica.bnf.fr/ark:/12148/bpt6k1057816b.
-
A. G. Khovanskii, A class of systems of transcendental equations, Dokl. Akad. Nauk SSSR 255 (1980), no. 4, 804–807. MR 0600749. English translation: Soviet Math. Dokl. 22 (1980), 762–765.
-
A. G. Khovanskii, Fewnomials, Translations of Mathematical Monographs, 88, Amer. Math. Soc., Providence, RI, 1991. MR 1108621.
-
A. Maignan, Solving one and two-dimensional exponential polynomial systems, in Proc. ISSAC'98, 215–221, Association for Computing Machinery, New York, 1998. https://doi.org/10.1145/281508.281616.
-
S. McCallum and V. Weispfenning, Deciding polynomial-transcendental problems, J. Symbolic Comput. 47 (2012), no. 1, 16–31. MR 2854845.
-
M. Mignotte and D. Ştefănescu, Polynomials. An Algorithmic Approach. Springer Series in Discrete Mathematics and Theoretical Computer Science, Springer, Singapore, 1999. MR 1690362.
-
D. Richardson, Towards computing non algebraic cylindrical decompositions, in Proc. ISSAC '91, 247–255, Association for Computing Machinery, New York, 1991. https://doi.org/10.1145/120694.120732.
-
A. Tarski, A Decision Method for Elementary Algebra and Geometry, The Rand Corporation, Santa Monica, CA, 1948. MR 0028796.
-
L. van den Dries, Exponential rings, exponential polynomials and exponential functions, Pacific J. Math. 113 (1984), no. 1, 51–66. MR 0745594.
-
H. Wolter, On the “problem of the last root” for exponential terms, Z. Math. Logik Grundlag. Math. 31 (1985), no. 2, 163–168. MR 0786292.
|