Current volume
Past volumes
1952-1968 Revista de la Unión Matemática Argentina y de la Asociación Física Argentina
1944-1951 Revista de la Unión Matemática Argentina; órgano de la Asociación Física Argentina
1936-1944
|
A generalization of the annihilating ideal graph for modules
Soraya Barzegar, Saeed Safaeeyan, and Ehsan Momtahan
Volume 65, no. 1
(2023),
pp. 47–65
https://doi.org/10.33044/revuma.2158
Download PDF
Abstract
We show that an $R$-module $M$ is noetherian (resp., artinian) if and only if
its annihilating submodule graph, $\mathbb{G}(M)$, is a non-empty graph and it
has ascending chain condition (resp., descending chain condition) on vertices.
Moreover, we show that if $\mathbb{G}(M)$ is a locally finite graph, then $M$
is a module of finite length with finitely many maximal submodules. We also
derive necessary and sufficient conditions for the annihilating submodule graph
of a reduced module to be bipartite (resp., complete bipartite). Finally, we
present an algorithm for deriving both $\Gamma (\mathbb{Z}_n)$ and
$\mathbb{G}(\mathbb{Z}_n)$ by Maple, simultaneously.
References
-
G. Aalipour, S. Akbari, M. Behboodi, R. Nikandish, M. J. Nikmehr, and F. Shaveisi, The classification of the annihilating-ideal graphs of commutative rings, Algebra Colloq. 21 (2014), no. 2, 249–256. MR 3192344.
-
G. Aalipour, S. Akbari, R. Nikandish, M. J. Nikmehr, and F. Shaveisi, Minimal prime ideals and cycles in annihilating-ideal graphs, Rocky Mountain J. Math. 43 (2013), no. 5, 1415–1425. MR 3127828.
-
S. Akbari and A. Mohammadian, On zero-divisor graphs of finite rings, J. Algebra 314 (2007), no. 1, 168–184. MR 2331757.
-
B. Allen, E. Martin, E. New, and D. Skabelund, Diameter, girth and cut vertices of the graph of equivalence classes of zero-divisors, Involve 5 (2012), no. 1, 51–60. MR 2924313.
-
D. F. Anderson, M. C. Axtell, and J. A. Stickles, Jr., Zero-divisor graphs in commutative rings, in Commutative Algebra—Noetherian and Non-Noetherian Perspectives, 23–45, Springer, New York, 2011. MR 2762487.
-
D. F. Anderson, A. Frazier, A. Lauve, and P. S. Livingston, The zero-divisor graph of a commutative ring. II, in Ideal Theoretic Methods in Commutative Algebra (Columbia, MO, 1999), 61–72, Lecture Notes in Pure and Appl. Math., 220, Dekker, New York, 2001. MR 1836591.
-
F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, second edition, Graduate Texts in Mathematics, 13, Springer, New York, 1992. MR 1245487.
-
D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217 (1999), no. 2, 434–447. MR 1700509.
-
D. F. Anderson and S. B. Mulay, On the diameter and girth of a zero-divisor graph, J. Pure Appl. Algebra 210 (2007), no. 2, 543–550. MR 2320017.
-
M. F. Atiyah and I. G. Macdonald, Introduction to Commutative Algebra, Addison-Wesley, Reading, MA, 1969. MR 0242802.
-
M. Baziar, E. Momtahan, and S. Safaeeyan, A zero-divisor graph for modules with respect to their (first) dual, J. Algebra Appl. 12 (2013), no. 2, 1250151, 11 pp. MR 3005602.
-
M. Baziar, E. Momtahan, S. Safaeeyan, and N. Ranjbar, Zero-divisor graph of abelian groups, J. Algebra Appl. 13 (2014), no. 6, 1450007, 13 pp. MR 3195164.
-
I. Beck, Coloring of commutative rings, J. Algebra 116 (1988), no. 1, 208–226. MR 0944156.
-
M. Behboodi, Zero divisor graphs for modules over commutative rings, J. Commut. Algebra 4 (2012), no. 2, 175–197. MR 2959014.
-
M. Behboodi and Z. Rakeei, The annihilating-ideal graph of commutative rings I, J. Algebra Appl. 10 (2011), no. 4, 727–739. MR 2834112.
-
M. Behboodi and Z. Rakeei, The annihilating-ideal graph of commutative rings II, J. Algebra Appl. 10 (2011), no. 4, 741–753. MR 2834113.
-
J. Dauns and Y. Zhou, Classes of Modules, Pure and Applied Mathematics, 281, Chapman & Hall/CRC, Boca Raton, FL, 2006. MR 2263467.
-
J. Krone, Algorithms for constructing zero-divisor graphs of commutative rings, Available at http://personal.denison.edu/ krone/docs/Zero-Divisor.pdf.
-
T. Y. Lam, A First Course in Noncommutative Rings, Graduate Texts in Mathematics, 131, Springer, New York, 1991. MR 1125071.
-
T. Y. Lam, Lectures on Modules and Rings, Graduate Texts in Mathematics, 189, Springer, New York, 1999. MR 1653294.
-
D. Lu and T. S. Wu, On bipartite zero-divisor graphs, Discrete Math. 309 (2009), no. 4, 755–762. MR 2502185.
-
S. B. Mulay, Cycles and symmetries of zero-divisors, Comm. Algebra 30 (2002), no. 7, 3533–3558. MR 1915011.
-
S. Safaeeyan, Annihilating submodule graph for modules, Trans. Comb. 7 (2018), no. 1, 1–12. MR 3745195.
-
S. Safaeeyan, M. Baziar, and E. Momtahan, A generalization of the zero-divisor graph for modules, J. Korean Math. Soc. 51 (2014), no. 1, 87–98. MR 3159318.
-
M. Shirali, E. Momtahan, and S. Safaeeyan, Perpendicular graph of modules, Hokkaido Math. J. 49 (2020), no. 3, 463–479. MR 4187118.
-
S. M. Spiroff and C. Wickham, A zero divisor graph determined by equivalence classes of zero divisors, Comm. Algebra 39 (2011), no. 7, 2338–2348. MR 2821714.
-
D. B. West, Introduction to Graph Theory, second edition, Prentice Hall, Upper Saddle River, NJ, 2001.
|