Current volume
Past volumes
1952-1968 Revista de la Unión Matemática Argentina y de la Asociación Física Argentina
1944-1951 Revista de la Unión Matemática Argentina; órgano de la Asociación Física Argentina
1936-1944
|
On certain regular nicely distance-balanced graphs
Blas Fernández, Štefko Miklavič, and Safet Penjić
Volume 65, no. 1
(2023),
pp. 165–185
https://doi.org/10.33044/revuma.2709
Download PDF
Abstract
A connected graph $\Gamma$ is called nicely distance-balanced, whenever
there exists a positive integer $\gamma=\gamma(\Gamma)$ such that, for any two
adjacent vertices $u,v$ of $\Gamma$, there are exactly $\gamma$ vertices of $\Gamma$
which are closer to $u$ than to $v$, and exactly $\gamma$ vertices of $\Gamma$
which are closer to $v$ than to $u$. Let $d$ denote the diameter of $\Gamma$.
It is known that $d \le \gamma$, and that nicely distance-balanced graphs
with $\gamma = d$ are precisely complete graphs and cycles of length $2d$
or $2d+1$. In this paper we classify regular nicely distance-balanced
graphs with $\gamma=d+1$.
References
-
A. Abedi, M. Alaeiyan, A. Hujdurović, and K. Kutnar, Quasi-$\lambda$-distance-balanced graphs, Discrete Appl. Math. 227 (2017), 21–28. MR 3661412.
-
K. Balakrishnan, B. Brešar, M. Changat, S. Klavžar, A. Vesel, and P. Žigert Pleteršek, Equal opportunity networks, distance-balanced graphs, and Wiener game, Discrete Optim. 12 (2014), 150–154. MR 3189033.
-
K. Balakrishnan, M. Changat, I. Peterin, S. Špacapan, P. Šparl, and A. Subhamathi, Strongly distance-balanced graphs and graph products, European J. Combin. 30 (2009), no. 5, 1048–1053. MR 2513907.
-
A. E. Brouwer, A. M. Cohen, and A. Neumaier, Distance-Regular Graphs, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 18, Springer, Berlin, 1989. MR 1002568.
-
F. C. Bussemaker, S. Čobeljić, D. M. Cvetković, and J. J. Seidel, Computer Investigation of Cubic Graphs, T. H. Report 76-WSK-01, Department of Mathematics, Technological University Eindhoven, The Netherlands, 1976.
-
S. Cabello and P. Lukšič, The complexity of obtaining a distance-balanced graph, Electron. J. Combin. 18 (2011), no. 1, Paper 49, 10 pp. MR 2776825.
-
M. Cavaleri and A. Donno, Distance-balanced graphs and travelling salesman problems, Ars Math. Contemp. 19 (2020), no. 2, 311–324. MR 4183154.
-
B. Frelih and Š. Miklavič, On 2-distance-balanced graphs, Ars Math. Contemp. 15 (2018), no. 1, 81–95. MR 3862079.
-
K. B. Guest, J. M. Hammer, P. D. Johnson, and K. J. Roblee, Regular clique assemblies, configurations, and friendship in edge-regular graphs, Tamkang J. Math. 48 (2017), no. 4, 301–320. MR 3734623.
-
K. Handa, Bipartite graphs with balanced $(a,b)$-partitions, Ars Combin. 51 (1999), 113–119. MR 1675124.
-
A. Hujdurović, On some properties of quasi-distance-balanced graphs, Bull. Aust. Math. Soc. 97 (2018), no. 2, 177–184. MR 3772645.
-
A. Ilić, S. Klavžar, and M. Milanović, On distance-balanced graphs, European J. Combin. 31 (2010), no. 3, 733–737. MR 2587025.
-
J. Jerebic, S. Klavžar, and D. F. Rall, Distance-balanced graphs, Ann. Comb. 12 (2008), no. 1, 71–79. MR 2401137.
-
J. Jerebic, S. Klavžar, and G. Rus, On $\ell$-distance-balanced product graphs, Graphs Combin. 37 (2021), no. 1, 369–379. MR 4197386.
-
K. Kutnar, A. Malnič, D. Marušič, and Š. Miklavič, Distance-balanced graphs: symmetry conditions, Discrete Math. 306 (2006), no. 16, 1881–1894. MR 2251569.
-
K. Kutnar and Š. Miklavič, Nicely distance-balanced graphs, European J. Combin. 39 (2014), 57–67. MR 3168514.
-
Š. Miklavič and P. Šparl, On the connectivity of bipartite distance-balanced graphs, European J. Combin. 33 (2012), no. 2, 237–247. MR 2854645.
-
Š. Miklavič and P. Šparl, $\ell$-distance-balanced graphs, Discrete Appl. Math. 244 (2018), 143–154. MR 3802543.
-
M. Tavakoli, F. Rahbarnia, and A. R. Ashrafi, Further results on distance-balanced graphs, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 75 (2013), no. 1, 77–84. MR 3032544.
|