Current volume
Past volumes
1952-1968 Revista de la Unión Matemática Argentina y de la Asociación Física Argentina
1944-1951 Revista de la Unión Matemática Argentina; órgano de la Asociación Física Argentina
1936-1944
|
Prime-generating quadratic polynomials
Víctor Julio Ramírez Viñas
Volume 65, no. 1
(2023),
pp. 187–196
https://doi.org/10.33044/revuma.2571
Download PDF
Abstract
Let $a,b,c$ be integers. We provide a necessary condition for the function
$|ax^2 + bx + c|$ to generate only primes for consecutive integers.
We then apply this criterion to give sufficient conditions for the real
quadratic field $\mathcal{K}=\mathbb{Q}(\sqrt{d})$, $d\in\mathbb{N}$, to have
class number one, in terms of prime-producing quadratic polynomials.
References
-
Ş. Alaca and K. S. Williams, Introductory Algebraic Number Theory, Cambridge Univ. Press, Cambridge, 2004. MR 2031707.
-
D. Byeon and J. Lee, A complete determination of Rabinowitsch polynomials, J. Number Theory 131 (2011), no. 8, 1513–1529. MR 2793892.
-
R. A. Mollin, Quadratics, CRC Press series on discrete mathematics and its applications, CRC Press, Boca Raton, FL, 1996. MR 1383823.
-
R. A. Mollin, Prime-producing quadratics, Amer. Math. Monthly 104 (1997), no. 6, 529–544. MR 1453656.
-
R. A. Mollin, The Rabinowitsch–Mollin–Williams theorem revisited, Int. J. Math. Math. Sci. 2009, Art. ID 819068, 14 pp. MR 2539701.
-
R. A. Mollin and H. C. Williams, Prime producing quadratic polynomials and real quadratic fields of class number one, in Théorie des nombres (Quebec, 1987), 654–663, De Gruyter, Berlin, 1989. MR 1024594.
-
R. A. Mollin and H. C. Williams, Class number one for real quadratic fields, continued fractions and reduced ideals, in Number Theory and Applications (Banff, 1988), 481–496, NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., 265, Kluwer, Dordrecht, 1989. MR 1123091.
-
V. J. Ramírez, A new proof of the unique factorization of $\mathbb{Z}\big[\frac{1+\sqrt{-d}}{2}\big]$ for $d=3,7,11,19,43,67,163$, Rev. Colombiana Mat. 50 (2016), no. 2, 139–143. MR 3605643.
-
V. J. Ramírez, A simple criterion for the class number of a quadratic number field to be one, Int. J. Number Theory 15 (2019), no. 9, 1857–1862. MR 4015517.
-
P. Ribenboim, The Little Book of Bigger Primes, second edition, Springer, New York, 2004. MR 2028675.
-
P. G. Walsh, A note on class number one criteria of Širola for real quadratic fields, Glas. Mat. Ser. III 40(60) (2005), no. 1, 21–27. MR 2195857.
|