Revista de la
Unión Matemática Argentina
Prime-generating quadratic polynomials
Víctor Julio Ramírez Viñas
Volume 65, no. 1 (2023), pp. 187–196    

https://doi.org/10.33044/revuma.2571

Download PDF

Abstract

Let $a,b,c$ be integers. We provide a necessary condition for the function $|ax^2 + bx + c|$ to generate only primes for consecutive integers. We then apply this criterion to give sufficient conditions for the real quadratic field $\mathcal{K}=\mathbb{Q}(\sqrt{d})$, $d\in\mathbb{N}$, to have class number one, in terms of prime-producing quadratic polynomials.

References

  1. Ş. Alaca and K. S. Williams, Introductory Algebraic Number Theory, Cambridge Univ. Press, Cambridge, 2004. MR 2031707.
  2. D. Byeon and J. Lee, A complete determination of Rabinowitsch polynomials, J. Number Theory 131 (2011), no. 8, 1513–1529. MR 2793892.
  3. R. A. Mollin, Quadratics, CRC Press series on discrete mathematics and its applications, CRC Press, Boca Raton, FL, 1996. MR 1383823.
  4. R. A. Mollin, Prime-producing quadratics, Amer. Math. Monthly 104 (1997), no. 6, 529–544. MR 1453656.
  5. R. A. Mollin, The Rabinowitsch–Mollin–Williams theorem revisited, Int. J. Math. Math. Sci. 2009, Art. ID 819068, 14 pp. MR 2539701.
  6. R. A. Mollin and H. C. Williams, Prime producing quadratic polynomials and real quadratic fields of class number one, in Théorie des nombres (Quebec, 1987), 654–663, De Gruyter, Berlin, 1989. MR 1024594.
  7. R. A. Mollin and H. C. Williams, Class number one for real quadratic fields, continued fractions and reduced ideals, in Number Theory and Applications (Banff, 1988), 481–496, NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., 265, Kluwer, Dordrecht, 1989. MR 1123091.
  8. V. J. Ramírez, A new proof of the unique factorization of $\mathbb{Z}\big[\frac{1+\sqrt{-d}}{2}\big]$ for $d=3,7,11,19,43,67,163$, Rev. Colombiana Mat. 50 (2016), no. 2, 139–143. MR 3605643.
  9. V. J. Ramírez, A simple criterion for the class number of a quadratic number field to be one, Int. J. Number Theory 15 (2019), no. 9, 1857–1862. MR 4015517.
  10. P. Ribenboim, The Little Book of Bigger Primes, second edition, Springer, New York, 2004. MR 2028675.
  11. P. G. Walsh, A note on class number one criteria of Širola for real quadratic fields, Glas. Mat. Ser. III 40(60) (2005), no. 1, 21–27. MR 2195857.