Current volume
Past volumes
1952-1968 Revista de la Unión Matemática Argentina y de la Asociación Física Argentina
1944-1951 Revista de la Unión Matemática Argentina; órgano de la Asociación Física Argentina
1936-1944
|
On power integral bases of certain pure number fields defined by $x^{84}-m$
Lhoussain El Fadil and Mohamed Faris
Volume 65, no. 1
(2023),
pp. 197–211
https://doi.org/10.33044/revuma.2836
Download PDF
Abstract
Let $K=\mathbb{Q}(\alpha)$ be a pure number field generated by a complex root
$\alpha$ of a monic irreducible polynomial $F(x) = x^{84}-m$, with
$m\neq\pm 1$ a square-free integer. In this paper, we study the monogeneity
of $K$. We prove that if $m \not\equiv 1\pmod{4}$, $m \not\equiv \pm 1\pmod{9}$,
and $\overline{m} \not\in \{\pm \overline{1},\pm \overline{18}, \pm
\overline{19}\} \pmod{49}$, then
$K$ is monogenic. But if $m \equiv 1\pmod{4}$ or $m \equiv\pm 1\pmod{9}$ or $m
\equiv 1 \pmod{49}$, then $K$ is not monogenic. Some illustrating examples
are given.
References
-
S. Ahmad, T. Nakahara, and A. Hameed, On certain pure sextic fields related to a problem of Hasse, Internat. J. Algebra Comput. 26 (2016), no. 3, 577–583. MR 3506350.
-
S. Ahmad, T. Nakahara, and S. M. Husnine, Power integral bases for certain pure sextic fields, Int. J. Number Theory 10 (2014), no. 8, 2257–2265. MR 3273484.
-
M. Bauer, Über die auß erwesentlichen Diskriminantenteiler einer Gattung, Math. Ann. 64 (1907), no. 4, 573–576. MR 1511458.
-
A. Bérczes, J.-H. Evertse, and K. Győry, Multiply monogenic orders, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 12 (2013), no. 2, 467–497. MR 3114010.
-
H. Cohen, A Course in Computational Algebraic Number Theory, Graduate Texts in Mathematics, 138, Springer, Berlin, 1993. MR 1228206.
-
R. Dedekind, Über den Zusammenhang zwischen der Theorie der Ideale und der Theorie der höheren Kongruenzen, Göttingen Abh. 23 (1878), 1–23.
-
L. El Fadil, Computation of a power integral basis of a pure cubic number field, Int. J. Contemp. Math. Sci. 2 (2007), no. 13-16, 601–606. MR 2355834.
-
L. El Fadil, On Newton polygons techniques and factorization of polynomials over Henselian fields, J. Algebra Appl. 19 (2020), no. 10, 2050188, 9 pp. MR 4140128.
-
L. El Fadil, On power integral bases for certain pure number fields defined by $x^{24} -m$, Studia Sci. Math. Hungar. 57 (2020), no. 3, 397–407. MR 4188148.
-
L. El Fadil, On power integral bases for certain pure number fields defined by $x^{36}-m$, Studia Sci. Math. Hungar. 58 (2021), no. 3, 371–380. https://doi.org/10.1556/012.2021.58.3.1506.
-
L. El Fadil, On power integral bases for certain pure sextic fields, Bol. Soc. Parana. Mat. (3) 40 (2022), 7 pp. MR 4416656.
-
L. El Fadil, On power integral bases for certain pure number fields, Publ. Math. Debrecen 100 (2022), no. 1-2, 219–231. MR 4389255.
-
L. El Fadil, On power integral bases for certain pure number fields defined by $x^{18}-m$, Comment. Math. Univ. Carolin. 63 (2022), no. 1, 11–19. MR 4445734.
-
L. El Fadil, On monogenity of certain pure number fields defined by $x^{20}-m$, São Paulo J. Math. Sci. 16 (2022), no. 2, 1063–1071. MR4515947.
-
L. El Fadil, On power integral bases of certain pure number fields defined by $x^{3^r\cdot 7^s}-m$, Colloq. Math. 169 (2022), no. 2, 307–317. MR 4443656.
-
L. El Fadil, J. Montes, and E. Nart, Newton polygons and $p$-integral bases of quartic number fields, J. Algebra Appl. 11 (2012), no. 4, 1250073, 33 pp. MR 2959422.
-
T. Funakura, On integral bases of pure quartic fields, Math. J. Okayama Univ. 26 (1984), 27–41. MR 0779772.
-
I. Gaál, Power integer bases in algebraic number fields, Ann. Univ. Sci. Budapest. Sect. Comput. 18 (1999), 61–87. MR 2118246.
-
I. Gaál, Diophantine Equations and Power Integral Bases, second edition, Birkhäuser, Cham, 2019. MR 3970246.
-
I. Gaál, P. Olajos, and M. E. Pohst, Power integral bases in orders of composite fields, Experiment. Math. 11 (2002), no. 1, 87–90. MR 1960303.
-
I. Gaál and L. Remete, Binomial Thue equations and power integral bases in pure quartic fields, JP J. Algebra Number Theory Appl. 32 (2014), no. 1, 49–61.
-
I. Gaál and L. Remete, Integral bases and monogenity of pure fields, J. Number Theory 173 (2017), 129–146. MR 3581912.
-
T. A. Gassert, A note on the monogeneity of power maps, Albanian J. Math. 11 (2017), no. 1, 3–12. MR 3659215.
-
J. Guàrdia, J. Montes, and E. Nart, Newton polygons of higher order in algebraic number theory, Trans. Amer. Math. Soc. 364 (2012), no. 1, 361–416. MR 2833586.
-
A. Hameed and T. Nakahara, Integral bases and relative monogenity of pure octic fields, Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 58(106) (2015), no. 4, 419–433. MR 3443598.
-
H. Hasse, Zahlentheorie, zweite erweiterte Auflage, Akademie-Verlag, Berlin, 1963. MR 0153659.
-
K. Hensel, Theorie der algebraischen Zahlen, B. G. Teubner, Leipzig, Berlin, 1908.
-
J. Montes and E. Nart, On a theorem of Ore, J. Algebra 146 (1992), no. 2, 318–334. MR 1152908.
-
Y. Motoda, T. Nakahara, and S. I. A. Shah, On a problem of Hasse for certain imaginary abelian fields, J. Number Theory 96 (2002), no. 2, 326–334. MR 1932459.
-
W. Narkiewicz, Elementary and Analytic Theory of Algebraic Numbers, third edition, Springer Monographs in Mathematics, Springer, Berlin, 2004. MR 2078267.
-
J. Neukirch, Algebraic Number Theory, Grundlehren der mathematischen Wissenschaften, 322, Springer, Berlin, 1999. MR 1697859.
-
O. Ore, Newtonsche Polygone in der Theorie der algebraischen Körper, Math. Ann. 99 (1928), no. 1, 84–117. MR 1512440.
-
A. Pethő and M. E. Pohst, On the indices of multiquadratic number fields, Acta Arith. 153 (2012), no. 4, 393–414. MR 2925379.
-
H. Smith, The monogeneity of radical extensions, Acta Arith. 198 (2021), no. 3, 313–327. MR 4232416.
|