Current volume
Past volumes
1952-1968 Revista de la Unión Matemática Argentina y de la Asociación Física Argentina
1944-1951 Revista de la Unión Matemática Argentina; órgano de la Asociación Física Argentina
1936-1944
|
The full group of isometries of some compact Lie groups endowed with a bi-invariant metric
Alberto Dolcetti and Donato Pertici
Volume 65, no. 2
(2023),
pp. 245–262
Published online: October 23, 2023
https://doi.org/10.33044/revuma.2737
Download PDF
Abstract
We describe the full group of isometries of absolutely simple, compact, connected real Lie
groups, of $S\mathcal{O}(4)$, and of $U(n)$, endowed with suitable bi-invariant Riemannian
metrics.
References
-
Killing form, in Encyclopedia of Mathematics. Available at http://encyclopediaofmath.org/index.php?title=Killing_form&oldid=12372.
-
Lie algebra, semi-simple, in Encyclopedia of Mathematics. Available at http://encyclopediaofmath.org/index.php?title=Lie_algebra,_semi-simple&oldid=44225.
-
T. Abe, S. Akiyama, and O. Hatori, Isometries of the special orthogonal group, Linear Algebra Appl. 439 no. 1 (2013), 174–188. DOI MR Zbl
-
M. M. Alexandrino and R. G. Bettiol, Lie Groups and Geometric Aspects of Isometric Actions, Springer, Cham, 2015. DOI MR Zbl
-
A. Dolcetti and D. Pertici, Some differential properties of $GL_n(\mathbb{R})$ with the trace metric, Riv. Mat. Univ. Parma (N.S.) 6 no. 2 (2015), 267–286. MR Zbl
-
A. Dolcetti and D. Pertici, Skew symmetric logarithms and geodesics on ${\mathrm{O}}_n(\mathbb{R})$, Adv. Geom. 18 no. 4 (2018), 495–507. DOI MR Zbl
-
A. Dolcetti and D. Pertici, Differential properties of spaces of symmetric real matrices, Rend. Semin. Mat. Univ. Politec. Torino 77 no. 1 (2019), 25–43. MR Zbl
-
A. Dolcetti and D. Pertici, Real square roots of matrices: differential properties in semi-simple, symmetric and orthogonal cases, Riv. Mat. Univ. Parma (N.S.) 11 no. 2 (2020), 315–333. MR Zbl
-
A. Dolcetti and D. Pertici, Elliptic isometries of the manifold of positive definite real matrices with the trace metric, Rend. Circ. Mat. Palermo (2) 70 no. 1 (2021), 575–592. DOI MR Zbl
-
B. Hall, Lie Groups, Lie Algebras, and Representations: An Elementary Introduction, second ed., Graduate Texts in Mathematics 222, Springer, Cham, 2015. DOI MR Zbl
-
O. Hatori and L. Molnár, Isometries of the unitary group, Proc. Amer. Math. Soc. 140 no. 6 (2012), 2127–2140. DOI MR Zbl
-
S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces, Pure and Applied Mathematics 80, Academic Press, New York-London, 1978. MR Zbl
-
M. Hunt, G. Mullineux, R. J. Cripps, and B. Cross, Characterizing isoclinic matrices and the Cayley factorization, Proc. Institution Mechanical Engineers, Part C: J. Mech. Eng. Sci. 230 no. 18 (2016), 3267–3273. DOI
-
A. W. Knapp, Lie Groups Beyond an Introduction, second ed., Progress in Mathematics 140, Birkhäuser Boston, Boston, MA, 2002. MR Zbl
-
J. E. Mebius, A matrix-based proof of the quaternion representation theorem for four-dimensional rotations, 2005. arXiv:math/0501249 [math.GM].
-
B. O'Neill, Semi-Riemannian Geometry, Pure and Applied Mathematics 103, Academic Press, New York, 1983. MR Zbl
-
A. L. Onishchik, The group of isometries of a compact Riemannian homogeneous space, in Differential Geometry and Its Applications (Eger, 1989), Colloq. Math. Soc. János Bolyai 56, North-Holland, Amsterdam, 1992, pp. 597–616. MR Zbl
-
A. Perez-Gracia and F. Thomas, On Cayley's factorization of 4D rotations and applications, Adv. Appl. Clifford Algebr. 27 no. 1 (2017), 523–538. DOI MR Zbl
-
G. de Rham, Sur la reductibilité d'un espace de Riemann, Comment. Math. Helv. 26 (1952), 328–344. DOI MR Zbl
-
M. R. Sepanski, Compact Lie Groups, Graduate Texts in Mathematics 235, Springer, New York, 2007. DOI MR Zbl
-
K. Shankar, Isometry groups of homogeneous spaces with positive sectional curvature, Differential Geom. Appl. 14 no. 1 (2001), 57–78. DOI MR Zbl
-
F. Thomas, Approaching dual quaternions from matrix algebra, IEEE Trans. Robotics 30 no. 5 (2014), 1037–1048. DOI
-
F. W. Warner, Foundations of Differentiable Manifolds and Lie Groups, Graduate Texts in Mathematics 94, Springer-Verlag, New York-Berlin, 1983. MR Zbl
|